Time Weight Content-Based Extensions of Temporal Graphs for Personalized Recommendation

Armel Jacques Nzekon Nzeko’o, Maurice Tchuente, Matthieu Latapy

In WEBIST 2017

Recommender systems are an answer to information overload on the web. They filter and present to customer, a small subset of items that he is most likely to be interested in. Since user’s interests may change over time, accurately capturing these dynamics is important, though challenging. The Session-based Temporal Graph (STG) has been proposed by Xiang et al. to provide temporal recommendations by combining long- and short-term preferences. Later, Yu et al. have introduced an extension called Topic-STG, which takes into account topics extracted from tweets’ textual information. Recently, we pushed the idea further and proposed Content-based STG. However, in all these frameworks, the importance of links does not depend on their arrival time, which is a strong limitation: at any given time, purchases made last week should have a greater influence than purchases made a year ago. In this paper, we address this problem by proposing Time Weight Content-based STG, in which we assign a time-decreasing weight to edges. Using Time-Averaged Hit Ratio, we show that this approach outperforms all previous ones in real-world situations.

Download

Using Degree Constrained Gravity Null-Models to understand the structure of journeys networks in Bicycle Sharing Systems

Remy Cazabet, Pierre Borgnat, Pablo jensen

In ESANN 2017

Bicycle Sharing Systems are now ubiquitous in large cities around the world. In most of these systems, journeys’ data can be ex- tracted, providing rich information to better understand it. Recent works have used network based-machine learning, and in particular space-corrected node clustering, to analyse such datasets. In this paper, we show that spatial-null models used in previous methods have a systematic bias, and we propose a degree-contrained null-model to improve the results. We finally apply the proposed method on the BSS of a city.

Download

Enhancing Space-Aware Community Detection Using Degree Constrained Spatial Null Model

Remy Cazabet, Pierre Borgnat, Pablo Jensen

In Complenet 2017

Null models have many applications on networks, from testing the significance of observations to the conception of algorithms such as community detection. They usually preserve some network properties , such as degree distribution. Recently, some null-models have been proposed for spatial networks, and applied to the community detection problem. In this article, we propose a new null-model adapted to spatial networks, that, unlike previous ones, preserves both the spatial structure and the degrees of nodes. We show the efficacy of this null-model in the community detection case both on synthetic and collected networks.

Download

Characterising inter and intra-community interactions in link streams using temporal motifs

Jean Creusefond, Remy Cazabet

In Complenet 2017

The analysis of dynamic networks has received a lot of attention in recent years, thanks to the greater availability of suitable datasets. One way to analyze such dataset is to study temporal motifs in link streams , i.e. sequences of links for which we can assume causality. In this article, we study the relationship between temporal motifs and communities , another important topic of complex networks. Through experiments on several real-world networks, with synthetic and ground truth community partitions, we identify motifs that are overrepresented at the frontier –or inside of– communities.

Download

Rigorous Measurement of the Internet Degree Distribution

Matthieu Latapy, Elie Rotenberg, Christophe Crespelle, Fabien Tarissan

In Complex Systems, volume 26, number 1 (2017)

The degree distribution of the internet, i.e. the fraction of routers with k links for any k, is its most studied property. It has a crucial influence on network robustness, spreading phenomena, and protocol design. In practice, however, this distribution is observed on partial, biased and erroneous maps. This raises serious concerns about the true knowledge we actually have of this key property. Here, we design and run a drastically new measurement approach for the reliable estimation of the degree distribution of the internet, without resorting to any map. It consists in sampling random core routers and precisely estimating their degree with probes sent from many monitors scattered over the internet. Our measurement shows that the true degree distribution significantly differs from classical assumptions: it is heterogeneous but it decreases sharply, in a way incompatible with a heavy-tailed power law.

Download

Un nouvel algorithme de clustering pour la détection danomalies

Damien Nogues

salle 24-25/405 à 11h00

La détection dintrusion est une problématique importante en cyber-sécurité. Cependant, de nombreuses approches classiques utilisent une approche à base de règles. Pour chaque attaque, unesignature de détection est créée. Ces approches ne permettent donc pas de détecter de nouvelles attaques, ou des attaques connues mais modifiées. Pour cette raison, nous nous sommesintéressés aux approches de détection danomalies. Ces méthodes utilisent des techniques dapprentissage non supervisé pour détecter des déviations à la norme. Ainsi, les techniques declustering sont fréquemment utilisées. Mais les algorithmes classiques de clustering, tel que k-means, ne sont pas très adaptés à ce problème. En effet, ces derniers nécessitent souvent de fixera priori le nombre de classes désiré. De plus, ces algorithmes sont en général conçus pour traiter des données quantitatives, ou parfois qualitatives. En détection dintrusions, les données sontsouvent hétérogènes. Nous détaillerons donc un nouveau critère de clustering adapté aux données hétérogènes, ainsi quun algorithme doptimisation de ce critère. Enfin, nous verronscomment il est possible dutiliser la partition obtenue pour effectuer une détection danomalies efficace sur des flux réseaux.

Towards understanding and leveraging the structure of real-world graphs

Maximilien Danisch

Campus Jussieu, Salle 26-00/124 à 11h00

Real-world graphs (a.k.a. complex networks) are ubiquitous: the web, Facebook, Twitter, brain networks, protein interaction networks, etc. Studying these graphs and solving computational problems on them (say maximum clique, partitioning or dense subgraph) has applications in many fields.I will first show that the structure of some real-world graphs is special. In particular, they are not adversarial and some difficult problems (say NP-complete or NP-hard problems) can be solved on some huge real-world graphs (say 2G edges or more).I will then present two works along the lines of « understanding and leveraging the structure of real-world graphs in order to build better algorithms »: (i) Enumerating all k-cliques and (ii) Computing the density-friendly graph decomposition.

Coalition games on interaction graphs

Nicolas Bousquet

15 Novembre 2016, salle 26-00/124

We consider cooperative games where the viability of a coalition is determined by whether or not its members have the ability to communicate amongst themselves. This necessary condition for viability was proposed by Myerson and is modeled via an interaction graph; a coalition S of vertices is then viable if and only if the graph induced graph S is connected. The non-emptiness of the core of a coalition game can be tested by a well-known covering LP. Moreover, the integrality gap of its dual packing LP defines exactly the multiplicative least-core and the relative cost of stability of the coalition game. This gap is upper bounded by the packing-covering ratio which is known to be at most the treewidth of the interaction graph plus one. We examine the packing-covering ratio and integrality gaps of graphical coalition games in more detail. First we introduce a new graph parameter, called the vinewidth (a parameter derived from the treewidth), which characterizes the worst packing-covering ratio. Then we will show that this new parameter correctly evaluates both primal and dual integrality gaps. Joint work with Zhentao Li and Adrian Vetta.

Finding remarkably dense sequences of contacts in link streams

Noé Gaumont, Clémence Magnien and Matthieu Latapy

In Social Network Analysis and Mining (2016) 6: 87. doi:10.1007/s13278-016-0396-z

A link stream is a set of quadruplets (b, e, u, v) meaning that a link exists between u and v from time b to time e. Link streams model many real-world situations like contacts between individuals, connections between devices, and others. Much work is currently devoted to the generalization of classical graph and network concepts to link streams. We argue that the density is a valuable notion for understanding and characterizing links streams. We propose a method to capture specific groups of links that are structurally and temporally densely connected and show that they are meaningful for the description of link streams. To find such groups, we use classical graph community detection algorithms, and we assess obtained groups. We apply our method to several real-world contact traces (captured by sensors) and demonstrate the relevance of the obtained structures.

Download

Mining Time-stamped Network Data Spectral Methods and Centrality Measures

Ingo Scholtes

Mercredi 19 Octobre 2016à 11h00 salle 24-25/405

Recent research has highlighted limitations of studying complex systems with time-varying topologies from the perspective of static, time-aggregated networks. Non-Markovian characteristics resulting from the specific ordering of interactions in temporal networks were identified as one important mechanism that alters causality and affects dynamical processes. So far, an analytical explanation for this phenomenon and for the significant variations observed across different systems is missing. Summarizing our recent research in this area, in this talk I will introduce a framework that allows to analyze temporal networks with non-Markovian characteristics. The framework is based on higher-order aggregate networks, a simple generalization of the commonly used static representation of temporal network data. I will show that spectral properties of such higher-order aggregate networks can explain the slow-down of diffusion processes compared to aggregate networks, which has been observed in a number of empirical data sets. I further show that we can derive an exact analytical prediction for the magnitude of this change compared to the weighted, time-aggregate network. I finally present recent results on the analysis of node centralities in non-Markovian temporal networks, concluding that this approach provides interesting perspectives for (i) temporal community detection by spectral clustering, (ii) refined measures of centrality for time-evolving networks, and (iii) analytical studies of dynamical processes in complex systems with time-evolving interaction topologies.

On the notion of hyperbolicity in graphs

David Coudert

Salle 24-25/405

The Gromov hyperbolicity is an important parameter for analyzing complex networks since it is a measure of the tree-likeness of a graph from a metric perspective. This notion has been recently applied in different contexts, such as the design of routing schemes, network security, computational biology, the analysis of graph algorithms, and the classification of complex networks. For instance, it gives bounds on the best possible stretch of some greedy-routing schemes in Internet-like graphs. The best known algorithm for computing hyperbolicity has running-time O(n^{3.69}), which is clearly prohibitive for big graphs. In this talk, we will present recent advances on the computation of this parameter. We will present an algorithm that performs well in practice. Although its time complexity is in O(n^4), it can compute the hyperbolicity of graphs with 100.000 nodes in short time. We will discuss the limitations of this algorithm and related open problems. We will also provide some results on the time complexity lower bound. In addition, we will show how to use some simple properties of the graph to get tight bounds on its hyperbolicity, e.g., being bipartite, a line graph, vertex transitive, etc. These properties are used for establishing bounds on the hyperbolicity of various interconnection network topologies proposed for large data centers.

Classification of online discussions: is tree structure sufficient enough?

Mattias Mano

Vendredi 30 Septembre à 10h30, Salle 26-00/332

Slides

Over the past years, online communities have considerably grown. Especially, a new kind of forums emerged: the « Questions and Answers » (Q&A) forums. They cover lots of different fields, from opinion questions (such as Yahoo! Answers, Reddit, Quora, …) to really technical questions in Computer Science (Stack Overflow, Bugzilla, …) or in Mathematics (Math Overflow). We study the opinion forum « Reddit – Change My View ». Participants debate on society subject. Using graph theory modeling, I wonder if structural informations of the discussion (graph) are sufficient enough to be characteristic of what happen in the discussion.

P2PTV Multi-channel Peers Analysis

Marwan Ghanem, Olivier Fourmaux, Fabien Tarissan and Takumi Miyoshi

In The 18th Asia-Pacific Network Operations and Management Symposium (APNOMS’16), Kanazawa, Japan, 2016.

After being the support of the data and voice convergence, the Internet has become one of the main video providers such as TV-stream. As an  alternative to limited or expensive technologies, P2PTV has turned out to be a promising support for such applications. This infrastructure strongly relies on the overlay composed by the peers that consume and diffuse video contents at the same time. Understanding the dynamical properties of this overlay, and in particular how the users switch from one overlay to another, appears to be a key aspect if one wants to improve the quality of P2PTV. In this paper, we investigate the question of relying on non-invasive measurement techniques to track the presence of users on several channels of P2PTV. Using two datasets obtained by using network measurement on P2PTV infrastructure, we show that such an approach contains sufficient information to track the presence of users on several channels. Besides, exploiting the view provided by sliding time windows, we are able to refine the analysis and track users that switch from one channel to another, leading to the detection of super-peers and providing explanations of the different roles they can play in the infrastructure. In addition, by comparing the results obtained on the two datasets, we show how such analyses can shed some light on the evolution of the infrastructure policy.

Download

Predicting links in ego-networks using temporal information

Lionel Tabourier, Anne-Sophie Libert and Renaud Lambiotte

In EPJ Data Science (2016) 5: 1

Link prediction appears as a central problem of network science, as it calls for unfolding the mechanisms that govern the micro-dynamics of the network. In this work, we are interested in ego-networks, that is the mere information of interactions of a node to its neighbors, in the context of social relationships. As the structural information is very poor, we rely on another source of information to predict links among egos’ neighbors: the timing of interactions. We define several features to capture different kinds of temporal information and apply machine learning methods to combine these various features and improve the quality of the prediction. We demonstrate the efficiency of this temporal approach on a cellphone interaction dataset, pointing out features which prove themselves to perform well in this context, in particular the temporal profile of interactions and elapsed time between contacts.

Download

Characterizing and predicting mobile application usage

Keun-Woo Lim, Stefano Secci, Lionel Tabourier and Badis Tebbani

In Computer Communications, 2016, vol. 95, p. 82-94

In this paper, we propose data clustering techniques to predict temporal characteristics of data consumption behavior of different mobile applications via wireless communications. While most of the research on mobile data analytics focuses on the analysis of call data records and mobility traces, our analysis concentrates on mobile application usages, to characterize them and predict their behavior. We exploit mobile application usage logs provided by a Wi-Fi local area network service provider to characterize temporal behavior of mobile applications. More specifically, we generate daily profiles of “what” types of mobile applications users access and “when” users access them. From these profiles, we create usage classes of mobile applications via aggregation of similar profiles depending on data consumption rate, using three clustering techniques that we compare. Furthermore, we show that we can utilize these classes to analyze and predict future usages of each mobile application through progressive comparison using distance and similarity comparison techniques. Finally, we also detect and exploit outlying behavior in application usage profiles and discuss methods to efficiently predict them.

Download

Parameterized complexity: from graph minor theory to efficient algorithms

Christophe Paul

Vendredi 08 juillet 2016 à 11h, salle 24-25/405

Slides

Parameterized complexity suggests a multi-parameter analysis of the computational complexity of hard problems. The idea is to understand the influence of parameters, distinct from the input size, in the resolution of a problem. Such parameters could be the solution size or the structural parameters such as width parameters. After an introduction to parameterized complexity, we will present some of the algorithmic consequences of the graph minor theory. From the work of Robertson and Seymour, it is known that every graph family closed under minor can be recognized in cubic time. However for most of such graph family, such a result is existential only. Since then constructive meta-algorithmic theorems have been proposed (including Courcelles theorem) within the framework of parameterized complexity. We will discuss recent developments in this line of research that led to efficient algorithms for large family of problems.

Graphs: is there something between theory and practice?

Gilles Tredan

Vendredi 24 juin 2016 à 11h, salle 24-25/405

My first part will focus on the problem of charting graphs: can we believe the maps we build for complex systems? My second part will present efforts to capture AFK social interaction networks (the Souk project), and figure out what to do with the obtained dynamic graphs. My third part is yet to be defined. My hole presentation will try to find a balance between algorithmic perspectives and data analysis.

Detection and classification of network traffic anomalies

Johan Mazel

Mercredi 8 juin 2016 à 11h, salle 24-25/405

Internet plays a central role in our lives. However, it is an extremely diverse and complex system. Ranging from non-malicious unexpected events such as flash-crowds and failures, to network attacks such as denials-of-service and network scans, network traffic anomalies can have serious detrimental effects on the performance and integrity of the network. Anomaly detection is thus paramount in order to guarantee users’ access to Internet resources. In this talk, we will address recent advances in network traffic anomaly detection and classification, that leverage graph analysis techniques, machine learning techniques and big data.

Suppressing diffusion processes on arbitrary networks using treatment resources of limited efficiency

Argyris Kalogeratos

Lundi 13 juin 2016 à 11h, salle 26-00/332

Slides

In many real-life situations, it is critical to dynamically suppress or remove an undesired diffusion process (viruses, information, behaviors, etc.). The talk will present a framework for Dynamic Resource Allocation (DRA) assuming a continuous-time SIS epidemic model, and that a budget of treatment resources of limited efficiency are at the disposal of authorities. Special emphasis will be given on the macro- and microscopic (or local) properties of the network structure for the problem and two strategies will be presented that fall in this framework: a) a simple yet effective greedy approach, and b) a more sophisticated one that uses a precomputed priority plan of how the healing strategy should proceed on a specific network. Additionally, extensions in competitive scenarios will be discussed.

Kempe equivalence of colourings

Marthe Bonamy

Vendredi 3 juin 2016 à 11h, salle 24-25/405

Slides

Given a colouring of a graph, a Kempe change is the operation of picking a maximal bichromatic subgraph and switching the two colours in it. Two colourings are Kempe equivalent if they can be obtained from each other through a series of Kempe changes. Kempe changes were first introduced in a failed attempt to prove the Four Colour Theorem, but they proved to be a powerful tool for other colouring problems. They are also relevant for more applied questions, most notably in theoretical physics. Consider a graph with no vertex of degree more than some integer D. In 2007, Mohar conjectured that all its D-colourings are Kempe-equivalent. Feghali, Johnson and Paulusma proved in 2015 that this is true for D=3, with the exception of one single graph which disproves the conjecture in its generality. We settle the remaining cases by proving the conjecture holds for every integer D at least 4. This is a joint work with Nicolas Bousquet (LIRIS, Ecole Centrale Lyon, France), Carl Feghali (Durham University, UK) and Matthew Johnson (Durham University, UK).