Classification of online disussions Is tree structure sufficient enough?

Mattias MANO¹

¹Centre de Recherche en Gestion - CRG École Polytechnique, France Laboratoire de Recherche en Informatique - LRI CentraleSupélec, France

mattias mano[at]polytechnique.edu

Seminar LIP6 - Complex Networks, 30 sept. 2016

2 Characterisation of trees

Context and motivations

2 Characterisation of trees

Thesis context

Financing and supervising:

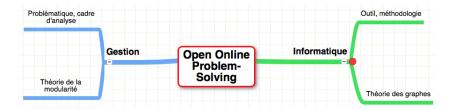
• Open Online Problem-Solving - OOPS, Management Sciences

- Jean-Michel DALLE, CRG, École Polytechnique et UPMC (Management sciences)
- Joanna TOMASIK, LRI, CentraleSupélec (Computer science)

Open Online Problem Solving

James Surowiecki (2004) - Wisdom of the crowds

Last several years:


- Development of online communities
- Arrival of "Q&A web sites": Yahoo! Answers, Stack Overflow, Bugzilla, Math Overflow, Reddit, ... → question = problem
- Evolution of after-sale service management for companies (Velkovska, 2015)

What has been done so far?

Important researches have been made concerning the problem solving:

- Test of modularity theory \rightarrow McCormack et al. (2006)
- Notion of congruence \rightarrow Cataldo et al. (2008)
- 'Distributed Problem Solving Networks' (DPSN) program led by P.A. David and W.H. Dutton from *Oxford Internet Institute* (2008)

This kind of researches needs a multidisciplinary approach between social science and computer science - **computational social science**.

What is the problem?

- What is the processus when a community, a group, try to solve a problem?
- Need to characterize the problems \rightarrow understand such processus
- Charecterization of communities: Open Source (Dalle & David -2003) or scientific community (Carayol & Dalle - 2006), "Core-Periphery" model (Halfaker et al. - 2012)

Issues to be addressed

- Does a tree/forest shape exist? → Create a classification of the problems.
- Ould we determine the problem difficulty and the possibility to find a solution to it?

2 Characterisation of trees

Literature review

Model for cascade evolution and pattern:

- Barabasi & Albert (1999): Preferential Attachment (PA) model
- Gómez, Kappen & Kaltenbrunner (2011): enhanced PA model
- Park & Barabasi (2007): (D,H)-phase diagram
- Tan, Luo & Peng (2012): enhanced Park-Barabasi model
- Milo, Shen-Orr et al. (2010): motif in networks

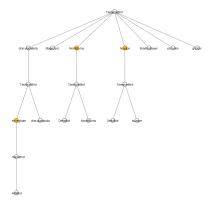
External variables:

- Dalle & David (2003): management within and among open source/free software (OS/FS) projects
- Carayol & Dalle (2006): problem choice within scientific communities
- Anderson, Huttenlocker et al. (2012): experience impactes time answering
- Tan, Niculae et al. (2016): entry time, back-and-forth, number of participants

Reddit - Change My View (CMV)

What is it? How does it work?

- $\bullet\,$ Members argue on any subjects \to agora in ancient Greece
- Important rules frame the discussion both on "Original Poster" and on challengers
- "Original Poster" (OP) opens a discussion, who "accept to have wrong and want help to change their view [...] within 3h"
- Members provide arguments to change the point of view of OP
- Anyone assignes a delta $\Delta,$ justifying a minimal change in the view \rightarrow not the end of the discussion



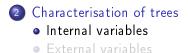
Where and when?

- Extraction from Reddit API by Tan et al. (2016)
- January 2013 (creation of CMV) to August 2015
- Sample from May to August 2015: 1'927 discussions, 111'811 posts, 1'606 Original Posters and 13'439 unique participants

nternal variables External variables

Dataset 2/2

- Internal data: information on the shape of trees: depth, width, degree distribution, ...
- External data: information on the members of the community, on the posts: number of votes, experience in the forum, ...


Two paths

Follow two paths in parallel:

- Characterisation of tree through its structure
- 2 Characterisation of tree through external information

Reddit - CMV: a typical PA-network? 1/2

Barabasi & Albert (1999): **Preferential-Attachment model** for the large networks:

- How a network evolve with time?
- Two common features of real networks:
 - **Open world:** number of vertices N evolves with time
 - **Preferential connectivity:** rich-gets-richer effect
- A new vertex appears and connect with probability $\Pi\colon$
- $\Pi(k_i) = \frac{k_i}{\sum_j k_j}$, k_j : degree of vertex i
- $\Pi(k) \sim k^{lpha}
 ightarrow$ Power Law

Internal variables External variables

Reddit - CMV: a typical PA-network? 2/2

Methodology: Gomez et al. (2014) testing enhanced PA-model, using a *maximum likelihood parameter estimation*

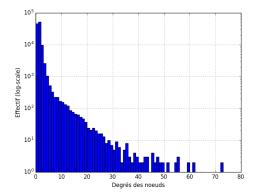


Figure: Degree distribution on the Reddit - CMV sample

External variables

Pattern inside the trees

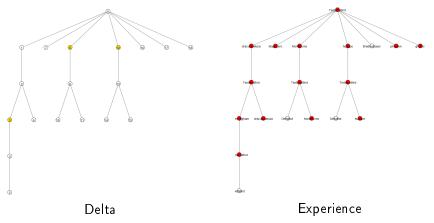
Have a though about the rules: discussion within 3h, awarding $\Delta,$ gives up-vote \rightarrow influence on behaviors

Pattern inside the trees

Have a though about the rules: discussion within 3h, awarding $\Delta,$ gives up-vote \rightarrow influence on behaviors

Literature review gives us some important features when communities discuss:

- Experience: how experienced a participant is? \rightarrow number of Δ already received
- Problem solved: has the problem been solved? \to a post gets a Δ when it convinces the OP
- Vote: members could vote for what they consider the "best" answer \rightarrow better predictor than previous one


19 / 31

• Time: the sooner the better to get the reward

Internal variables External variables

Value on the nodes?

Could these variables become intern to the tree structure?

Park-Barabasi model for graph: how to characterise a network on a property?

- Property (P) takes only two values: 1 or 0 (P1 or P0)
- Graph: $N = n_1 + n_0 \& M = m_{11} + m_{10} + m_{00}$
- P randomly distributed: $\bar{m}_{11} = \frac{n_1(n_1-1)}{2}p$, $\bar{m}_{10} = n_1(N n_1)p$ with connectance $p = \frac{2M}{N(N-1)}$ (how dense is the graph)

New indicators:

New indicators:

• Dyadicity
$$D = \frac{m_{11}}{\bar{m}_{11}}$$

New indicators:

• Dyadicity $D = \frac{m_{11}}{\overline{m}_{11}} > 1 \rightarrow P1$ is *dyadic*: nodes w/ P1 tend to connect more densely among themselves than expected for a random configuration

• Heterophilicity
$$H = \frac{m_{10}}{\bar{m}_{10}}$$

New indicators:

- Dyadicity $D = \frac{m_{11}}{\overline{m}_{11}} > 1 \rightarrow P1$ is *dyadic*: nodes w/ P1 tend to connect more densely among themselves than expected for a random configuration
- Heterophilicity $H = \frac{m_{10}}{\bar{m}_{10}} > 1 \rightarrow P1$ is *heterophilic*: nodes w/ P1 have more connections to nodes w/ P0 than expected randomly

New indicators:

- Dyadicity $D = \frac{m_{11}}{\overline{m}_{11}} > 1 \rightarrow P1$ is *dyadic*: nodes w/ P1 tend to connect more densely among themselves than expected for a random configuration
- Heterophilicity $H = \frac{m_{10}}{\bar{m}_{10}} > 1 \rightarrow P1$ is *heterophilic*: nodes w/ P1 have more connections to nodes w/ P0 than expected randomly

We can calculate those indicators for each tree of the dataset and draw the phase diagram (Tan et al. (2012) applied to trees).

Internal variables External variables

Dyads 3/4

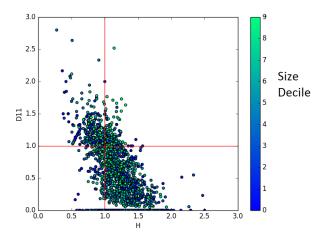


Figure: (D,H) - phase diagram for "experience" variable

Internal variables External variables

Dyads 3/4

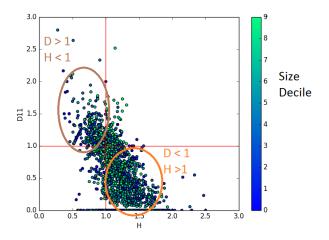


Figure: (D,H) - phase diagram for "experience" variable

Internal variables External variables

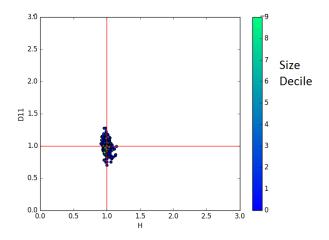
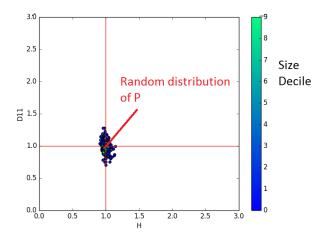


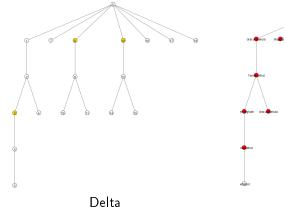
Figure: (D,H) - phase diagram for "experience" variable (simulated data)

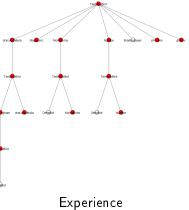
Mattias MANO, Seminar LIP6 - Complex Networks, 30 sept. 2016 Classification of online disussions

Internal variables External variables

Dyads 4/4



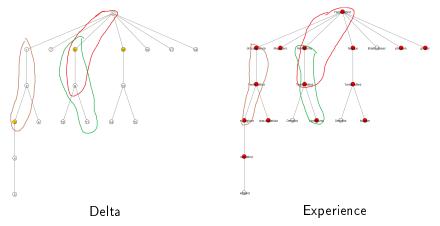

Figure: (D,H) - phase diagram for "experience" variable (simulated data)


Mattias MANO, Seminar LIP6 - Complex Networks, 30 sept. 2016 Classification of online disussions

Internal variables External variables

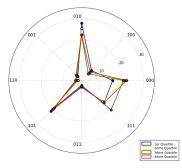
What about triads?

Triads 1/2



Context and motivations Characterisation of trees External variables

Triads 2/2


Highligt the 8 possible triads (Milo et al. 2010) : 000, 001, 010, 100, 101, 110, 011, 111.

With the following property: "author has experience"

Diagramme de Kiviat : distribution (%) des triplets pour experience

Any patterns?

Size of discussions

Internal variables External variables

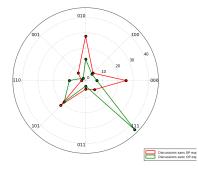

With the following property: "author has experience"

Diagramme de Kiviat : distribution (%) des triplets pour experience

Any patterns?

Size of discussions

Diagramme de Kiviat : distribution (%) des triplets pour experience

(non) expert OP - green (red)

- $\bullet\,$ Full implementation PA-model to add external variables $\rightarrow\,$ get a better fit
- $\bullet\,$ Tree classification on a criterion \to which one? Solving of the problem is not enough
- Extention to the 18'000 trees of the dataset
- Comparison with others forums (Coursera)

Internal variables External variables

Classification of online disussions Is tree structure sufficient enough?

Mattias MANO¹

¹Centre de Recherche en Gestion - CRG École Polytechnique, France Laboratoire de Recherche en Informatique - LRI CentraleSupélec, France

mattias mano[at]polytechnique.edu

Seminar LIP6 - Complex Networks, 30 sept. 2016

