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Part 1 — An overview of parameterized algorithms



The early steps of NP-Completeness Theory

> Cook’s Theorem (1971) : saT is NP-Complete
(2-saT € P)

> Karp's list of 21 NP-complete problems (1972), among which:

Common understanding : NP—Complete problems are all "equivalent” !
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> Cook’s Theorem (1971) : saT is NP-Complete
(2-saT € P)

> Karp's list of 21 NP-complete problems (1972), among which:

. u \"
» VERTEX COVER: Does there exist

a subset S of at most k vertices
such that every edge of G
is covered by some vertex of S ?

» INDEPENDENT SET: Does there exist a subset S of at least k
vertices pairwise non-adjacent in a graph G ?

» COLORING: Can the vertices of a graph G be colored by at
most k colors in such a way that adjacent vertices receive
different colors ?

Common understanding : NP—Complete problems are all "equivalent” !




Tractability of NP—Complete problems

Observations :
» COLORING is NP—Complete for k = 3 colors.

» VERTEX COVER and INDEPENDENT SET belong to P for every
fixed k : naive algorithm in O(n*) steps.



Tractability of NP—Complete problems

Observations :
» COLORING is NP-Complete for k = 3 colors.

» VERTEX COVER and INDEPENDENT SET belong to P for every
fixed k : naive algorithm in O(n*) steps.

Observation : G has a VERTEX COVER of size k
< G has an independent set of size n — k

Bounded Search Tree

0
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<kl e VERTEX COVER : O(2% - (m+ n))
/\ /\ INDEPENDENT SET :
FN O 020k - (m + n))



Tractability of NP—Complete problems

So we have :
» k-COLORING is Para-NP-Complete
» k-INDEPENDENT SET is XP

» k-VERTEX COVER is FPT
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Measure the time complexity in term of
> the input size n;
> a parameter k (independent of n) :
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Tractability of NP—Complete problems

So we have :
» k-COLORING is Para-NP-Complete
» k-INDEPENDENT SET is XP
» k-VERTEX COVER is FPT

Measure the time complexity in term of
> the input size n;

> a parameter k (independent of n) :

» solution size (natural parameter);
» maximum degree, treewidth, feedback vertex set
size. .. (structural parameters).

Définition : A parameterized problem is FPT (Fixed Parameter

Tractable) if it can be solved in (k) - n®() steps. Kk

ke
Observation : the parameter dependence could be : F(k) =2~



Polynomial time pre-processing

» Polynomial-time pre-processing often aims at reducing the input
size. How can we measure the reduction ?

Does there exist k lines covering the set S of points ?




Polynomial time pre-processing

» Polynomial-time pre-processing often aims at reducing the input
size. How can we measure the reduction ?

Does there exist k lines covering the set S of points 7

Observation 1: Only lines generated by pair of points of S are relevant.



Polynomial time pre-processing

» Polynomial-time pre-processing often aims at reducing the input
size. How can we measure the reduction ?

Does there exist k lines covering the set S of points ?‘

Observation 2: If a line L contains at least k + 1 points, then it has to
belong to the solution (if it exists) (e.g. here k = 3)

= remove L and decrease k by 1.



Polynomial time pre-processing

» Polynomial-time pre-processing often aims at reducing the input
size. How can we measure the reduction ?

Does there exist k lines covering the set S of points ?‘

Observation 2: If a line L contains at least k + 1 points, then it has to
belong to the solution (if it exists) (e.g. here k =3)

= remove L and decrease k by 1.

= a reduced instance contains at most k> points.‘




Kernelization — reduction to a kernel

Observation : we just proved that in polynomial time, we can
» decide whether an instance is negative (n > k?),

> or compte an équivalent instance of size (polynomially) bounded by
a fonction of k.

The problem (POINT-LINE COVER, k) admits a (quadratic) kernel‘




Kernelization — reduction to a kernel

Observation : we just proved that in polynomial time, we can
» decide whether an instance is negative (n > k?),

> or compte an équivalent instance of size (polynomially) bounded by
a fonction of k.

The problem (POINT-LINE COVER, k) admits a (quadratic) kernel‘

A kernelization for a parameterized problem is a polynomial time
algorithm, that given an instance (G, k) returns an instance (G’, k) such
that:

> (G, k) is a positive instance < (G’, k') is a positive instance

G'| < h(k) for some function h: N — N
k



Existence of a kernel and fixed parameterized tractability

Theorem : A parameterized problem is FPT iff it is decidable and admits
a kernelization.

Proof

= Let K be a kernelization. Consider the following algorithm A
1. compute G’ = K(G) in time polynomial in |G|,
2. decide if G’ € @ with an exact exponentiel algorithm A’.
< As |G| < h(k(k)), algorithm A runs in FPT—time.

= Let A be a FPT algorithm with time complexity (k) - n° for some
constant ¢ > 0

» if n=|G| < f(k), then the instance size is bounded,
» otherwise f(k)-n° < n-n°=n*!: thereby A runs in time
polynomial in |G]|.



Existence of a kernel and fixed parameterized tractability

Theorem : A parameterized problem is FPT iff it is decidable and admits
a kernelization.

Proof

= Let K be a kernelization. Consider the following algorithm A

1. compute G’ = K(G) in time polynomial in |G|,
2. decide if G’ € @ with an exact exponentiel algorithm A’.

< As |G’| < h(x(k)), algorithm A runs in FPT-time.

= Let A be a FPT algorithm with time complexity (k) - n° for some
constant ¢ > 0

» if n=|G| < f(k), then the instance size is bounded,
» otherwise f(k)-n° < n-n°=n*!: thereby A runs in time
polynomial in |G]|.

Observation : the resulting kernel size is exponential in k.



Does polynomial size kernel always exist ?

> A graph G = (V,E) and a parameter k € N
> Does G contains a path of length k 7

LONGEST PATH is NP-Complete (reduction to HAMILTONIAN PATH)
but can be solved in time O(c*.n%(")) with the CoLor CODING
technique.



Does polynomial size kernel always exist ?

Hypothesis: there exists a kernelization A for LONGEST PATH that
computes a kernel of size t = k€ bits.

> build an instance (G k) from t distinct instances
(G, k)= (G, k)® (G, k) D ... (G, k)

D@ ©



Does polynomial size kernel always exist ?

Hypothesis: there exists a kernelization A for LONGEST PATH that
computes a kernel of size t = k€ bits.

> build an instance (G, k) from t distinct instances
(G, k) = (G, . @ (G, k)

D0 6

Observation : (G, k) has a path of length k iff 3/ st G; as a path of
length k.

Question :
Is it possible to decide whether one of the instances has a path of length
k using less than 1 bit per instance in average 7



Non-existence of polynomial size kernel

Theorem: Unless co—NP C NP/poly, the parameterized LONGEST
PATH problem does not admit a polynomial kernel.

Several tools exist to establish lower bounds on the kernel size (under
some standard complexity assumptions)
> OR-composition [Bodlaender et al.] and AND-composition [Drucker]
» Polynomial and parameterized Transformations [Bodlaender et al.]

> Cross composition [Bodlaender et al.]

> ..
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~~ can we prove that k<-INDEPENDENT SET is not FPT?
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~~ can we prove that k<-INDEPENDENT SET is not FPT?
EXPONENTIAL TIME HYPOTHESIS:
|3-SAT cannot be solved in time 2°(")

Theorem: If k-CLIQUE or k-INDEPENDENT SET can be solved in
f(k) - n°®) time, then ETH is not valid.

Corollary: ETH = k-INDEPENDENT SET ¢ FPT



Parameterized intractability of XP problems

~~ can we prove that k<-INDEPENDENT SET is not FPT?
EXPONENTIAL TIME HYPOTHESIS:
|3-SAT cannot be solved in time 2°(")

Theorem: If k-CLIQUE or k-INDEPENDENT SET can be solved in
f(k) - n°®) time, then ETH is not valid.

Corollary: ETH = k-INDEPENDENT SET ¢ FPT

We can define a hierarchy of complexity classes:

|FPT CW[1] CW[2JC - CW[t] C--- C W[P] C XP|

Hypotheses :
> k-CLIQUE and k-INDEPENDENT SET are W/[1]-complete

> k-DOMINATING SET is W[2]-complete



Synthesis

Under standard complexity hypothesis, we have observe that some
NP—-Complete problems:

>

v

v

v

are NP-Complete for every fixed k
k-COLORING Para-NP-Complete

can be solved in time O(n*)
k-INDEPENDENT SET XP

can be solved in time f(k) - n91)

k-VERTEX COVER FPT

does not admit a polynomial size kernel
k-LONGEST PATH No-poly-Kernel

admit a polynomial size kernel
k-LINE-COVER poly-Kernel



Synthesis

Under standard complexity hypothesis, we have observe that some
NP—-Complete problems:

>

are NP-Complete for every fixed k
k-COLORING Para-NP-Complete

can be solved in time O(n*)
k-INDEPENDENT SET XP

can be solved in time f(k) - n91)

k-VERTEX COVER FPT

does not admit a polynomial size kernel
k-LONGEST PATH No-poly-Kernel

admit a polynomial size kernel
k-LINE-COVER poly-Kernel

Observation: the COLORING problem is FPT time with respect to other
parameters.



Part 2 — Meta-algorithmic theorems
An alternative story of parameterized algorithms



Graph Minors and Robertson & Seymour Theorem

H is a minor of G if it can be obtained by a series of
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Graph Minors and Robertson & Seymour Theorem

H is a minor of G if it can be obtained by a series of

> vertex deletions
> edge deletions
> edge contractions

Theorem [Robertson & Seymour — Wagner's conjecture]
Graphs are well-quasi ordered by the minor relation.



Consequences of Robertson & Seymour Theorem

~ every graph family closed under minor is characterized by a finite list
of forbidden minors.

» Planar graphs exclude I}%(I @
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Consequences of Robertson & Seymour Theorem

~ every graph family closed under minor is characterized by a finite list
of forbidden minors.

» Planar graphs exclude I}%(I @

> Graphs with Vertex Cover of size < k exclude I I . I . I I

Theorem [Robertson & Seymour]
In time f(|H|) - n®, we can test whether H is a minor of a graph G on n

vertices. ,
Corollary <» &

Every graph family closed under minor
can be recognized in O(n®)-time.

F minor-closed family



Consequences of Robertson & Seymour Theorem

By Robertson & Seymour Theorem and the minor inclusion test,
we know that

Corollary

» k-VERTEX COVER is (non-uniform) FPT.
» k-FEEDBACK VERTEX SET is (non-uniform) FPT.
» recognizing TREEWIDTH < k graphs is (non-uniform) FPT.

> recognizing graphs embeddable on a surface of genus k
graphs is (non-uniform) FPT.



Consequences of Robertson & Seymour Theorem

By Robertson & Seymour Theorem and the minor inclusion test,
we know that

Corollary

» k-VERTEX COVER is (non-uniform) FPT.
» k-FEEDBACK VERTEX SET is (non-uniform) FPT.
» recognizing TREEWIDTH < k graphs is (non-uniform) FPT.

> recognizing graphs embeddable on a surface of genus k
graphs is (non-uniform) FPT.

~~ How to obtain constructive meta-algorithmic theorems ?




Courcelle's theorem

Theorem [Courcelle’91]
Let G be a graph and ¢ an MSQO; formula. Then deciding whether
G |= ¢ is FPT with respect to parameter tw(G) + |¢]

» what is Monadic Second Order Logic ?

» what is treewidth?



Monadic Second Order Logic (on strings)
A string w = x1 ... x, € ¥ is represented by a structure S(a) with
universe [n] equipped with
> a binary relation symbol < representing the natural order on [n];

> Va € X, a unary relation symbol P, = {i € [n] | x; = a}



Monadic Second Order Logic (on strings)
A string w = x1 ... x, € ¥ is represented by a structure S(a) with
universe [n] equipped with
> a binary relation symbol < representing the natural order on [n];

> Va € X, a unary relation symbol P, = {i € [n] | x; = a}

Example: w=a-b-c-c-a-b

> P, ={1,5} Py ={2,6} P, ={3,4}



Monadic Second Order Logic (on strings)
A string w = x1 ... x, € X is represented by a structure S(a) with
universe [n] equipped with
> a binary relation symbol < representing the natural order on [n];

> Va € X, a unary relation symbol P, = {i € [n] | x; = a}

Soue

Vx (Pxa— 3y (x<yAVz (z<xVy<z)AP,b))

Theorem [Biichi, McNaughton]
The following statements are equivalent

1. A language L on algphabet ¥ is regular;
2. L can be recognized by a finite state automata;

3. there exists an MSO; formula ¢, such that w € L iff w = ¢;.



Pumping lemma

Lemma [Scott, Rabin]
Let L be a regular language. There exists an integer p < 1 such that
every word w € L of lenght |w| > p can be written w = x - y - z with

» ly|>1 and |x-z|<p and VieN, x-y.-zel
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every word w € L of lenght |w| > p can be written w = x - y - z with

» ly|>1 and |x-z|<p and VieN, x-y.-zel

Myhil-Nerode's equivalence classes: Let L be a regular language on

alphabet X and let u,v € ¥* S —

u= vifVywer*w-uelsw-vel
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> There exist finitely many equivalence classes

> Each equivalence class has a min-size representative u with |u| < p



Pumping lemma

Lemma [Scott, Rabin]
Let L be a regular language. There exists an integer p < 1 such that
every word w € L of lenght |w| > p can be written w = x - y - z with

» ly|>1 and |x-z|<p and VieN, x-y.-zel

Myhil-Nerode's equivalence classes: Let L be a regular language on

alphabet X and let u,v € ¥* S —

u= vifVywer*w-uelsw-vel

w v
> There exist finitely many equivalence classes

> Each equivalence class has a min-size representative u with |u| < p

w

AlgorithmtorecognizeL: N T A

) , (T T T T T T T T T T T T T
» lteratively find a suffixe u, p < |u| < 2p (w)

» Replace u by its representative r(u). EEREEEmRSESESs S

r(v)
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A tree decomposition of a graph G = (V,E) is a pair (T,{X;:t € T})
with T being a tree and Vt € T, X; C V, such that
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A tree decomposition of a graph G = (V,E) is a pair (T,{X;:t € T})
with T being a tree and Vt € T, X; C V, such that

> [vertex covering] Vx € V, 3t € T such that x € X;
> [edge covering] V(x,y) € E, 3t € T such that x,y € X;
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Generalization to trees and bounded treewidth graphs

A tree decomposition of a graph G = (V,E) is a pair (T,{X;:t € T})
with T being a tree and Vt € T, X; C V, such that
> [vertex covering] Vx € V, 3t € T such that x € X;
> [edge covering] V(x,y) € E, 3t € T such that x,y € X;
> [consistency| x € V belongs to X;, N Xy,, then ¥Vt € T on the
t; — tr-path in T, x € X;.

tw(T’X):ténsz);)'Xt‘_l tw(G):(rgi)rg)tw(T,X)



MSO, on graphs
A graph w = xy ...x, € X is represented by a structure S(a) with
universe V U E equipped with
> two unary relation symbols V and E;

> a binary relation symbol Inc = {(e,v) | EeAVv A v € e}
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MSO, on graphs

A graph w = xy ...x, € X is represented by a structure S(a) with
universe V U E equipped with

> two unary relation symbols V and E;
> a binary relation symbol Inc = {(e,v) | EeAVv A v € e}

Example: G is a connected graph

Vi, Vo,

[VVG V,(VE ViVve Vz)/\(VE V1:>V¢V2)/\(v€ V2=>V€ V]_)]
A Tvi € Vi,3vs € Vo, Te € E,inc(va, €) A inc(va, €)

Theorem [Courcelle’91]
Let G be a graph and ¢ an MSO,; formula. Then deciding whether
G |= ¢ is FPT with respect to parameter tw(G) + |¢|
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Some consequences of Courcelle’s theorem

Theorem
VERTEX COVER parameterized by solution size is FPT
Proof
» if G has a VERTEX COVER of size at most k, then tw(G) < k+1

> VC(G) = dxq,... Xk (VXl VX A
Ve, Ee (Inc(e,x1) V -+ VInc(e, x«)))

This applies to many other problems
» FEEDBACK VERTEX SET
» DOMINATING SET in planar graphs
» GRAPH COLORING in bounded treewidth graphs

> ..

A serious drawback: Inefficient algorithms due to high exponential
dependency in the parameter



Efficient meta-algorithms

F-DELETION Problem
Given a graph G = (V/, E) and an integer k as parameter,

» is there a subset X C V such that G — X is F-minor free ?



Efficient meta-algorithms
F-DELETION Problem
Given a graph G = (V/, E) and an integer k as parameter,
» is there a subset X C V such that G — X is F-minor free ?

Observations :
1. {K>}-DELETION = VERTEX COVER
= TREEWIDTH-ZERO VERTEX DELETION

2. {K3}-DELETION = FEEDBACK VERTEX SET
= TREEWIDTH-ONE VERTEX DELETION

More generally, how fast can we solve

» TREEWIDTH-t VERTEX DELETION 7?7



Efficient meta-algorithms
F-DELETION Problem
Given a graph G = (V/, E) and an integer k as parameter,
» is there a subset X C V such that G — X is F-minor free ?

Observations :
1. {K>}-DELETION = VERTEX COVER
= TREEWIDTH-ZERO VERTEX DELETION

2. {K3}-DELETION = FEEDBACK VERTEX SET
= TREEWIDTH-ONE VERTEX DELETION

More generally, how fast can we solve
» TREEWIDTH-t VERTEX DELETION 7

» PLANAR-F-DELETION (F contains a planar graph) ?



Known results (1)

When F is "non-planar”

» F-DELETION is FPT
(by the Roberston and Seymour' graph minor theorem)

{Ks, K3.3}-DELETION can be solved in 0*(22"*")

[Marx, Schlotter'07] [Kawarabayashi'09]

v

When F is planar

» {K;}-DELETION (VC)  0*(1.2738%) [J. Chen et al.'10]
» {Ks3}-DELETION (FVS) 0*(3.83) [Y. Cao et al',10],
> {0.}-DELETION 0*(c") [G. Joret et al."11]
» {K;}-DELETION 0*(c*) [E.J.Kim et al.’12]



Known results (2)

When F is planar (cont'd)

O(k log k
>22(%)

-n9M) _time algorithm based on DP
» 20(klogk) . n2 _time algorithm

» 200K . nlog? n -time algorithm for
CONNECTED-PLANAR-F-DELETION

[Fomin et al.'11]

[Fomin et al.'12]



Known results (2)

When F is planar (cont'd)

O(k log k
>22(%)

-n9M) _time algorithm based on DP
» 20(klogk) . n2 _time algorithm [Fomin et al.'11]

» 200K . nlog? n -time algorithm for
CONNECTED-PLANAR-F-DELETION [Fomin et al."12]

[KiM, LANGER, P., REIDL, ROSSMANITH, SAU, SIKDAR 2013]:

’A 2009 n? _time algorithm for PLANAR,—]:—DELETION‘

» [Chen et al.’05] No hope for a 2°(%) . n9(1)_time algorithm



Protrusion replacer

(G@H, k)& (G'®H, k+A)



Protrusion replacer

Let 1 be a parameterized problem, G, G’ be t-boundaried graphs
we say that

G=n.G if3An(G,G) stV H,
(GeH k)eNe (GeH k+Any(G,G))en




Protrusion replacer

Let 1 be a parameterized problem, G, G’ be t-boundaried graphs
we say that

G=n.G if3An(G,G") stV H,
(GeH,k)eNe (G'eH k+ An(G,G)) el

» 1 has Finite Integer Index (FIl) if =p ; has finitely many
equivalence classes.



Protrusion replacer

Observation If T1 has Finite Integer Index, then
replace G by one among finitely many representatives

» these representatives exists (depend only of I and t)

» how large can they be 7 how to compute them ?



Meta-algorithmic theorems for kernelization

» planar graphs distance property
~ Alber, Fellows, Niedermeier JACM’04
Polynomial-Time Data Reduction for Dominating Set

~~ Guo, Niedermeier ICALP'07
Linear problems kernels for NP-hard problems on planar graphs

» bounded genus quasi-compactness
~~ Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos

(Meta) Kernelization FOCS'09

» H-minor free bidim + separation ppty

~» Fomin, Lokshtanov, Saurabh, Thilikos SODA'10

Bidimensionality and kernels

» topological minor free treewidth-bounding
~~ Kim, Langer, Paul, Reidl, Rossmanith, Sau, Sikdar ICALP'13
Linear kernels [...] via protrusion decompositions



Meta-kernelization
Theorem [Bodlaender et al, FOCS'09]
If M C G; x Nis a problem on graphs embedded in a surface st
» I has Finite Integer Index and M or M is quasi-compact

then M admits a linear kernel



Meta-kernelization
Theorem [Bodlaender et al, FOCS'09]
If M C G; x Nis a problem on graphs embedded in a surface st

» I has Finite Integer Index and M or M is quasi-compact

then M admits a linear kernel

The proof is based on
» protrusion decomposition ~+ Can be computed in some cases

» protrusion replacer and MSO expressibility — ~~ Existential only



Explicit kernel via Dynamic Programming

Theorem [Garnero, P, Sau, Thilikos'14]
Let (G, k) be an instance of a parameterized problem I1. Given

» given a protrusion decomposition of G and
> a [l-encoder £ s.t. ~¢ is DP-friendly

we can construct a linear kernel for I (with explicit constants)
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being the boundary.
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Explicit kernel via Dynamic Programming

Theorem [Garnero, P, Sau, Thilikos'14]
Let (G, k) be an instance of a parameterized problem I1. Given

» given a protrusion decomposition of G and
> a [l-encoder £ s.t. ~¢ is DP-friendly

we can construct a linear kernel for I (with explicit constants)

(of width t) with root bag
being the boundary.

t-boundaried graph ~
rooted-tree decomposition 2 '“ “ “
» Equivalence between boundaried graphs certified by DP-tables

» size of the DP-tables ~~ number of equivalence classes and
~> size of the representative



Applications of the theorem

(treewidth modulator by [Fomin et al, SODA'10] +
protrusion decomposition by [Kim et al, ICALP'13])
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» r-DOMINATING SET
» r-SCATTERED SET
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» on graphs excluding a minor H
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deterministic but non-uniform wrt F and H - treewidth
modulator by [Fomin et al, FOCS'12])

» CONNECTED PLANAR F-PACKING

(Connectedness is important to prove that ~¢ ., is DP-friendly)



Applications of the theorem

(treewidth modulator by [Fomin et al, SODA'10] +
protrusion decomposition by [Kim et al, ICALP'13])

» on graphs excluding an apex minor H
» r-DOMINATING SET
» r-SCATTERED SET

» on graphs excluding a minor H

» CONNECTED PLANAR F-DELETION
(on topological minor free: uniform randomized kernel or
deterministic but non-uniform wrt F and H - treewidth
modulator by [Fomin et al, FOCS'12])

» CONNECTED PLANAR F-PACKING
(Connectedness is important to prove that ~¢ ., is DP-friendly)

~~ Dependency in the meta-parameter r or r(F) is triple

exponential p2cH IOk T



Thanks



