Parameterized Complexity in a Nutshell and Some Meta-Algorithmic Theorems

Christophe PAUL CNRS - LIRMM

Complex Network Seminar LIP6 – UPMC July 8, 2016

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Part 1 – An overview of parameterized algorithms

The early steps of NP-Completeness Theory

► Cook's Theorem (1971) : SAT is NP-Complete $(2\text{-SAT} \in \mathbf{P})$

▶ Karp's list of 21 NP-complete problems (1972), among which:

Common understanding : NP-Complete problems are all "equivalent" !

The early steps of NP-Completeness Theory

- ► Cook's Theorem (1971) : SAT is NP-Complete $(2\text{-SAT} \in \mathbf{P})$
- ▶ Karp's list of 21 NP-complete problems (1972), among which:
 - VERTEX COVER: Does there exist a subset S of at most k vertices such that every edge of G is covered by some vertex of S ?

- ▶ INDEPENDENT SET: Does there exist a subset S of at least k vertices pairwise non-adjacent in a graph G ?
- COLORING: Can the vertices of a graph G be colored by at most k colors in such a way that adjacent vertices receive different colors ?

Common understanding : NP-Complete problems are all "equivalent" !

Observations :

- COLORING is **NP**–Complete for k = 3 colors.
- VERTEX COVER and INDEPENDENT SET belong to P for every fixed k : naive algorithm in O(n^k) steps.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Observations :

- COLORING is **NP**–Complete for k = 3 colors.
- VERTEX COVER and INDEPENDENT SET belong to P for every fixed k : naive algorithm in O(n^k) steps.

Observation : G has a VERTEX COVER of size k \Leftrightarrow G has an independent set of size n - k

VERTEX COVER : $O(2^k \cdot (m+n))$ INDEPENDENT SET : $O(2^{(n-k)} \cdot (m+n))$

So we have :

k-COLORING is Para-NP-Complete

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- ► *k*-Independent Set is **XP**
- ► *k*-Vertex Cover is **FPT**

So we have :

- k-COLORING is Para-NP-Complete
- ► *k*-Independent Set is **XP**
- ► *k*-Vertex Cover is **FPT**

Measure the time complexity in term of

- the input size n;
- a parameter k (independent of n) :
 - solution size (natural parameter);
 - maximum degree, treewidth, feedback vertex set size...(structural parameters).

So we have :

- *k*-COLORING is Para-NP-Complete
- ▶ k-INDEPENDENT SET is XP
- ▶ *k*-VERTEX COVER is **FPT**

Measure the time complexity in term of

- the input size n;
- a parameter k (independent of n) :
 - solution size (natural parameter);
 - maximum degree, treewidth, feedback vertex set size... (structural parameters).

Définition : A parameterized problem is **FPT** (Fixed Parameter Tractable) if it can be solved in $f(k) \cdot n^{O(1)}$ steps.

Observation : the parameter dependence could be :

Polynomial-time pre-processing often aims at reducing the input size. How can we measure the reduction ?

Does there exist k lines covering the set S of points ?

Polynomial-time pre-processing often aims at reducing the input size. How can we measure the reduction ?

Does there exist k lines covering the set S of points ?

Observation 1: Only lines generated by pair of points of S are relevant.

Polynomial-time pre-processing often aims at reducing the input size. How can we measure the reduction ?

Does there exist k lines covering the set S of points ?

Observation 2: If a line L contains at least k + 1 points, then it has to belong to the solution (if it exists) (e.g. here k = 3)

 \Rightarrow remove L and decrease k by 1.

Polynomial-time pre-processing often aims at reducing the input size. How can we measure the reduction ?

Does there exist k lines covering the set S of points ?

Observation 2: If a line L contains at least k + 1 points, then it has to belong to the solution (if it exists) (e.g. here k = 3)

 \Rightarrow remove L and decrease k by 1.

 \Rightarrow a reduced instance contains at most k^2 points.

Kernelization - reduction to a kernel

Observation : we just proved that in polynomial time, we can

- decide whether an instance is negative $(n > k^2)$,
- or compte an équivalent instance of size (polynomially) bounded by a fonction of k.

The problem (POINT-LINE COVER, k) admits a (quadratic) kernel

Kernelization - reduction to a kernel

Observation : we just proved that in polynomial time, we can

- decide whether an instance is negative $(n > k^2)$,
- or compte an équivalent instance of size (polynomially) bounded by a fonction of k.

The problem (POINT-LINE COVER, *k*) admits a (quadratic) kernel

A kernelization for a parameterized problem is a polynomial time algorithm, that given an instance (G, k) returns an instance (G', k') such that:

- (G, k) is a positive instance $\Leftrightarrow (G', k')$ is a positive instance
- $|G'| \leq h(k)$ for some function $h : \mathbb{N} \to \mathbb{N}$
- $k' \leq k$

Existence of a kernel and fixed parameterized tractability

Theorem : A parameterized problem is **FPT** iff it is decidable and admits a kernelization.

Proof

 \Rightarrow Let ${\mathcal K}$ be a kernelization. Consider the following algorithm ${\mathcal A}$

- 1. compute $G' = \mathcal{K}(G)$ in time polynomial in |G|,
- 2. decide if $G' \in Q$ with an exact exponential algorithm \mathcal{A}' .

 \leftarrow As $|G'| \leq h(\kappa(k))$, algorithm \mathcal{A} runs in **FPT**-time.

- ⇒ Let A be a **FPT** algorithm with time complexity $f(k) \cdot n^c$ for some constant c > 0
 - if $n = |G| \leq f(k)$, then the instance size is bounded,
 - otherwise f(k) · n^c ≤ n · n^c = n^{c+1} : thereby A runs in time polynomial in |G|.

Existence of a kernel and fixed parameterized tractability

Theorem : A parameterized problem is **FPT** iff it is decidable and admits a kernelization.

Proof

 \Rightarrow Let ${\mathcal K}$ be a kernelization. Consider the following algorithm ${\mathcal A}$

- 1. compute $G' = \mathcal{K}(G)$ in time polynomial in |G|,
- 2. decide if $G' \in Q$ with an exact exponential algorithm \mathcal{A}' .

 \leftarrow As $|G'| \leq h(\kappa(k))$, algorithm \mathcal{A} runs in **FPT**-time.

- ⇒ Let A be a **FPT** algorithm with time complexity $f(k) \cdot n^c$ for some constant c > 0
 - if $n = |G| \leq f(k)$, then the instance size is bounded,
 - otherwise f(k) · n^c ≤ n · n^c = n^{c+1} : thereby A runs in time polynomial in |G|.

Observation : the resulting kernel size is exponential in k.

Does polynomial size kernel always exist ?

- A graph G = (V, E) and a parameter $k \in \mathbb{N}$
- Does G contains a path of length k ?

LONGEST PATH is **NP**-Complete (reduction to HAMILTONIAN PATH) but can be solved in time $O(c^k \cdot n^{O(1)})$ with the COLOR CODING technique.

Does polynomial size kernel always exist ?

Hypothesis: there exists a kernelization \mathcal{A} for LONGEST PATH that computes a kernel of size $t = k^c$ bits.

▶ build an instance (G, k) from t distinct instances $(G, k) = (G_1, k) \oplus (G_2, k) \oplus \ldots \oplus (G_t, k)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Does polynomial size kernel always exist ?

Hypothesis: there exists a kernelization \mathcal{A} for LONGEST PATH that computes a kernel of size $t = k^c$ bits.

▶ build an instance (G, k) from *t* distinct instances $(G, k) = (G_1, k) \oplus (G_2, k) \oplus \ldots \oplus (G_t, k)$

Observation : (G, k) has a path of length k iff $\exists i$ st G_i as a path of length k.

Question:

Is it possible to decide whether one of the instances has a path of length k using less than 1 bit per instance in average ?

Non-existence of polynomial size kernel

Theorem: Unless $co-NP \subseteq NP/poly$, the parameterized LONGEST PATH problem does not admit a polynomial kernel.

Several tools exist to establish lower bounds on the kernel size (under some standard complexity assumptions)

OR-composition [Bodlaender et al.] and AND-composition [Drucker]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Polynomial and parameterized Transformations [Bodlaender et al.]
- Cross composition [Bodlaender et al.]

▶ ...

Parameterized intractability of **XP** problems

 \rightsquigarrow can we prove that *k*-INDEPENDENT SET is not **FPT**?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Parameterized intractability of **XP** problems

 \rightsquigarrow can we prove that *k*-INDEPENDENT SET is not **FPT**?

EXPONENTIAL TIME HYPOTHESIS:

3-SAT cannot be solved in time $2^{o(n)}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem: If k-CLIQUE or k-INDEPENDENT SET can be solved in $f(k) \cdot n^{o(k)}$ time, then ETH is not valid. Corollary: ETH \Rightarrow k-INDEPENDENT SET \notin **FPT**

Parameterized intractability of **XP** problems

 \rightsquigarrow can we prove that *k*-INDEPENDENT SET is not **FPT**?

EXPONENTIAL TIME HYPOTHESIS:

3-SAT cannot be solved in time $2^{o(n)}$

Theorem: If k-CLIQUE or k-INDEPENDENT SET can be solved in $f(k) \cdot n^{o(k)}$ time, then ETH is not valid. Corollary: ETH \Rightarrow k-INDEPENDENT SET \notin **FPT**

We can define a hierarchy of complexity classes:

 $\mathsf{FPT} \subseteq \mathsf{W}[1] \subseteq \mathsf{W}[2] \subseteq \cdots \subseteq \mathsf{W}[t] \subseteq \cdots \subseteq \mathsf{W}[P] \subseteq \mathsf{XP}$

Hypothèses :

- ▶ *k*-CLIQUE and *k*-INDEPENDENT SET are *W*[1]-complete
- ► *k*-DOMINATING SET is *W*[2]-complete

Synthesis

Under standard complexity hypothesis, we have observe that some $\ensuremath{\textbf{NP-Complete}}$ problems:

are NP-Complete for every fixed k k-COLORING	Para-NP-Complete
 can be solved in time O(n^k) k-INDEPENDENT SET 	ХР
 can be solved in time f(k) · n^{O(1)} k-VERTEX COVER 	FPT
 does not admit a polynomial size kernel k-LONGEST PATH 	No-poly-Kernel
 admit a polynomial size kernel k-LINE-COVER 	poly-Kernel

Synthesis

Under standard complexity hypothesis, we have observe that some $\ensuremath{\textbf{NP}}\xspace-\ensuremath{\textbf{C}}\xspace$ problems:

are NP-Complete for every fixed k k-COLORING	Para-NP-Complete
 can be solved in time O(n^k) k-INDEPENDENT SET 	ХР
can be solved in time f(k) · n ^{O(1)} k-VERTEX COVER	FPT
 does not admit a polynomial size kernel k-LONGEST PATH 	No-poly-Kernel
 admit a polynomial size kernel k-LINE-COVER 	poly-Kernel

Observation: the COLORING problem is **FPT** time with respect to other parameters.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Part 2 – Meta-algorithmic theorems An alternative story of parameterized algorithms

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

H is a **minor** of G if it can be obtained by a series of

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

H is a **minor** of G if it can be obtained by a series of

vertex deletions

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

H is a **minor** of G if it can be obtained by a series of

vertex deletions

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

H is a **minor** of G if it can be obtained by a series of

- vertex deletions
- edge deletions

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

H is a **minor** of G if it can be obtained by a series of

- vertex deletions
- edge deletions

H is a **minor** of G if it can be obtained by a series of

- vertex deletions
- edge deletions
- edge contractions

- 日本 - 4 日本 - 4 日本 - 日本

H is a **minor** of G if it can be obtained by a series of

- vertex deletions
- edge deletions
- edge contractions

Theorem [Robertson & Seymour – Wagner's conjecture] Graphs are well-quasi ordered by the minor relation.

Consequences of Robertson & Seymour Theorem

 \rightsquigarrow every graph family closed under minor is characterized by a finite list of forbidden minors.

Planar graphs exclude

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Consequences of Robertson & Seymour Theorem

 \rightsquigarrow every graph family closed under minor is characterized by a finite list of forbidden minors.

Planar graphs exclude

• Graphs with Vertex Cover of size $\leq k$ exclude

Consequences of Robertson & Seymour Theorem

 \rightsquigarrow every graph family closed under minor is characterized by a finite list of forbidden minors.

Planar graphs exclude

• Graphs with Vertex Cover of size $\leq k$ exclude

Theorem [Robertson & Seymour]

In time $f(|H|) \cdot n^3$, we can test whether H is a minor of a graph G on n vertices.

Corollary

Every graph family closed under minor can be recognized in $O(n^3)$ -time.

Consequences of Robertson & Seymour Theorem

By Robertson & Seymour Theorem and the minor inclusion test, we know that

Corollary

- ► *k*-VERTEX COVER is (non-uniform) **FPT**.
- ► *k*-FEEDBACK VERTEX SET is (non-uniform) **FPT**.
- ▶ recognizing TREEWIDTH $\leq k$ graphs is (non-uniform) **FPT**.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 recognizing graphs embeddable on a surface of genus k graphs is (non-uniform) FPT.

▶ ...

Consequences of Robertson & Seymour Theorem

By Robertson & Seymour Theorem and the minor inclusion test, we know that

Corollary

- ► *k*-VERTEX COVER is (non-uniform) **FPT**.
- ► *k*-FEEDBACK VERTEX SET is (non-uniform) **FPT**.
- ▶ recognizing TREEWIDTH $\leq k$ graphs is (non-uniform) **FPT**.
- recognizing graphs embeddable on a surface of genus k graphs is (non-uniform) FPT.

• • • •

 \rightsquigarrow How to obtain constructive meta-algorithmic theorems ?

Courcelle's theorem

Theorem [Courcelle'91]

Let G be a graph and ϕ an **MSO**₂ formula. Then deciding whether $G \models \phi$ is FPT with respect to parameter $\mathbf{tw}(G) + |\phi|$

- what is Monadic Second Order Logic ?
- what is treewidth?

Monadic Second Order Logic (on strings)

A string $w = x_1 \dots x_n \in \Sigma$ is represented by a structure S(a) with universe [n] equipped with

▶ a binary relation symbol \leq representing the natural order on [n];

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► $\forall a \in \Sigma$, a unary relation symbol $P_a = \{i \in [n] \mid x_i = a\}$

Monadic Second Order Logic (on strings)

A string $w = x_1 \dots x_n \in \Sigma$ is represented by a structure S(a) with universe [n] equipped with

▶ a binary relation symbol \leq representing the natural order on [n];

► $\forall a \in \Sigma$, a unary relation symbol $P_a = \{i \in [n] \mid x_i = a\}$

Example: $w = a \cdot b \cdot c \cdot c \cdot a \cdot b$

• $P_a = \{1, 5\}$ $P_b = \{2, 6\}$ $P_a = \{3, 4\}$

Monadic Second Order Logic (on strings)

A string $w = x_1 \dots x_n \in \Sigma$ is represented by a structure S(a) with universe [n] equipped with

- ▶ a binary relation symbol \leq representing the natural order on [n];
- ► $\forall a \in \Sigma$, a unary relation symbol $P_a = \{i \in [n] \mid x_i = a\}$

 $\forall x \ (P_x a \to \exists y \ (x \leqslant y \land \forall z \ (z \leqslant x \lor y \leqslant z) \land P_y b))$

Theorem [Büchi, McNaughton]

The following statements are equivalent

- 1. A language L on algohabet Σ is regular;
- 2. L can be recognized by a finite state automata;
- 3. there exists an **MSO**₂ formula ϕ_L such that $w \in L$ iff $w \models \phi_L$.

Lemma [Scott, Rabin]

Let *L* be a regular language. There exists an integer $p \leq 1$ such that every word $w \in L$ of lenght $|w| \ge p$ can be written $w = x \cdot y \cdot z$ with

▶ $|y| \ge 1$ and $|x \cdot z| \le p$ and $\forall i \in \mathbb{N}, x \cdot y^i \cdot z \in L$.

Lemma [Scott, Rabin]

Let *L* be a regular language. There exists an integer $p \leq 1$ such that every word $w \in L$ of lenght $|w| \ge p$ can be written $w = x \cdot y \cdot z$ with

▶ $|y| \ge 1$ and $|x \cdot z| \le p$ and $\forall i \in \mathbb{N}, x \cdot y^i \cdot z \in L$.

Myhil-Nerode's equivalence classes: Let L be a regular language on alphabet Σ and let $u, v \in \Sigma^*$ w u $u \equiv_{I} v$ if $\forall w \in \Sigma^{*}, w \cdot u \in L \Leftrightarrow w \cdot v \in L$ n

Lemma [Scott, Rabin]

Let L be a regular language. There exists an integer $p \leq 1$ such that every word $w \in L$ of lenght $|w| \ge p$ can be written $w = x \cdot y \cdot z$ with

▶ $|y| \ge 1$ and $|x \cdot z| \le p$ and $\forall i \in \mathbb{N}, x \cdot y^i \cdot z \in L$.

Myhil-Nerode's equivalence classes: Let *L* be a regular language on alphabet Σ and let $u, v \in \Sigma^*$ $u \equiv_L v$ if $\forall w \in \Sigma^*, w \cdot u \in L \Leftrightarrow w \cdot v \in L$

> There exist finitely many equivalence classes

 \triangleright Each equivalence class has a min-size representative u with $|u|\leqslant p$

Lemma [Scott, Rabin]

Let L be a regular language. There exists an integer $p \leq 1$ such that every word $w \in L$ of lenght $|w| \ge p$ can be written $w = x \cdot y \cdot z$ with

▶ $|y| \ge 1$ and $|x \cdot z| \le p$ and $\forall i \in \mathbb{N}, x \cdot y^i \cdot z \in L$.

Myhil-Nerode's equivalence classes: Let *L* be a regular language on alphabet Σ and let $u, v \in \Sigma^*$ $u \equiv_L v$ if $\forall w \in \Sigma^*, w \cdot u \in L \Leftrightarrow w \cdot v \in L$

- > There exist finitely many equivalence classes
- \triangleright Each equivalence class has a min-size representative u with $|u| \leqslant p$

Algorithm to recognize *L*:

- ▶ Iteratively find a suffixe $u, p \leq |u| \leq 2p$
- ▶ Replace u by its representative r(u).

A tree decomposition of a graph G = (V, E) is a pair $(T, \{X_t : t \in T\})$ with T being a tree and $\forall t \in T$, $X_t \subseteq V$, such that

A tree decomposition of a graph G = (V, E) is a pair $(T, \{X_t : t \in T\})$ with T being a tree and $\forall t \in T$, $X_t \subseteq V$, such that

- [vertex covering] $\forall x \in V$, $\exists t \in T$ such that $x \in X_t$
- ▶ [edge covering] $\forall (x, y) \in E$, $\exists t \in T$ such that $x, y \in X_t$

A tree decomposition of a graph G = (V, E) is a pair $(T, \{X_t : t \in T\})$ with T being a tree and $\forall t \in T$, $X_t \subseteq V$, such that

- [vertex covering] $\forall x \in V$, $\exists t \in T$ such that $x \in X_t$
- ▶ [edge covering] $\forall (x, y) \in E$, $\exists t \in T$ such that $x, y \in X_t$
- ▶ [consistency] $x \in V$ belongs to $X_{t_1} \cap X_{t_2}$, then $\forall t \in T$ on the $t_1 t_2$ -path in $T, x \in X_t$.

A tree decomposition of a graph G = (V, E) is a pair $(T, \{X_t : t \in T\})$ with T being a tree and $\forall t \in T$, $X_t \subseteq V$, such that

- [vertex covering] $\forall x \in V$, $\exists t \in T$ such that $x \in X_t$
- ▶ [edge covering] $\forall (x, y) \in E$, $\exists t \in T$ such that $x, y \in X_t$
- ▶ [consistency] $x \in V$ belongs to $X_{t_1} \cap X_{t_2}$, then $\forall t \in T$ on the $t_1 t_2$ -path in $T, x \in X_t$.

$$\mathbf{tw}(\mathcal{T},\mathcal{X}) = \max_{t \in V(\mathcal{T})} |X_t| - 1 \qquad \mathbf{tw}(\mathcal{G}) = \min_{(\mathcal{T},\mathcal{X})} \mathbf{tw}(\mathcal{T},\mathcal{X})$$

MSO_2 on graphs

A graph $w = x_1 \dots x_n \in \Sigma$ is represented by a structure S(a) with universe $V \cup E$ equipped with

- two unary relation symbols V and E;
- ▶ a binary relation symbol $Inc = \{(e, v) | Ee \land Vv \land v \in e\}$

MSO₂ on graphs

A graph $w = x_1 \dots x_n \in \Sigma$ is represented by a structure S(a) with universe $V \cup E$ equipped with

- two unary relation symbols V and E;
- ▶ a binary relation symbol $Inc = \{(e, v) | Ee \land Vv \land v \in e\}$

Example: *G* is a connected graph $\forall V_1, V_2,$ [$\forall v \in V, (v \in V_1 \lor v \in V_2) \land (v \in V_1 \Rightarrow v \notin V_2) \land (v \in V_2 \Rightarrow v \notin V_1)$] $\land \exists v_1 \in V_1, \exists v_2 \in V_2, \exists e \in E, inc(v_1, e) \land inc(v_2, e)$

MSO₂ on graphs

A graph $w = x_1 \dots x_n \in \Sigma$ is represented by a structure S(a) with universe $V \cup E$ equipped with

- two unary relation symbols V and E;
- ▶ a binary relation symbol $Inc = \{(e, v) | Ee \land Vv \land v \in e\}$

Example: *G* is a connected graph $\forall V_1, V_2,$ [$\forall v \in V, (v \in V_1 \lor v \in V_2) \land (v \in V_1 \Rightarrow v \notin V_2) \land (v \in V_2 \Rightarrow v \notin V_1)$] $\land \exists v_1 \in V_1, \exists v_2 \in V_2, \exists e \in E, inc(v_1, e) \land inc(v_2, e)$

Theorem [Courcelle'91]

Let G be a graph and ϕ an **MSO**₂ formula. Then deciding whether $G \models \phi$ is FPT with respect to parameter $\mathbf{tw}(G) + |\phi|$

Theorem

 $\operatorname{Vertex}\,\operatorname{Cover}\,$ parameterized by solution size is $\ensuremath{\text{FPT}}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proof

Theorem

 $\operatorname{Vertex}\,\operatorname{Cover}\,$ parameterized by solution size is $\ensuremath{\mathsf{FPT}}$

Proof

▶ if G has a VERTEX COVER of size at most k, then $\mathbf{tw}(G) \leq k+1$

►
$$VC(G) = \exists x_1, \dots, x_k \ (Vx_1 \dots Vx_1 \land \forall e, Ee \ (Inc(e, x_1) \lor \dots \lor Inc(e, x_k)))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

 Vertex Cover parameterized by solution size is $\ensuremath{\mathsf{FPT}}$

Proof

▶ ...

▶ if G has a VERTEX COVER of size at most k, then $\mathbf{tw}(G) \leq k+1$

►
$$VC(G) = \exists x_1, \dots, x_k \ (Vx_1 \dots Vx_1 \land \forall e, Ee \ (Inc(e, x_1) \lor \dots \lor Inc(e, x_k)))$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

This applies to many other problems

- ► FEEDBACK VERTEX SET
- ► DOMINATING SET in planar graphs
- ▶ GRAPH COLORING in bounded treewidth graphs

Theorem

 Vertex Cover parameterized by solution size is $\ensuremath{\mathsf{FPT}}$

Proof

▶ ...

▶ if G has a VERTEX COVER of size at most k, then $\mathbf{tw}(G) \leq k+1$

►
$$VC(G) = \exists x_1, \dots, x_k \ (Vx_1 \dots Vx_1 \land \forall e, Ee \ (Inc(e, x_1) \lor \dots \lor Inc(e, x_k)))$$

This applies to many other problems

- ► FEEDBACK VERTEX SET
- ► DOMINATING SET in planar graphs
- ▶ GRAPH COLORING in bounded treewidth graphs

A serious drawback: Inefficient algorithms due to high exponential dependency in the parameter

Efficient meta-algorithms

$\mathcal{F} ext{-}\mathrm{DELETION}$ Problem

Given a graph G = (V, E) and an integer k as parameter,

▶ is there a subset $X \subseteq V$ such that G - X is \mathcal{F} -minor free ?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Efficient meta-algorithms

$\mathcal{F} ext{-}\mathrm{DELETION}$ Problem

Given a graph G = (V, E) and an integer k as parameter,

▶ is there a subset $X \subseteq V$ such that G - X is \mathcal{F} -minor free ?

Observations :

1.
$$\{K_2\}$$
-Deletion \equiv Vertex Cover
 \equiv Treewidth-zero Vertex Deletion

2.
$$\{K_3\}$$
-Deletion \equiv Feedback Vertex Set
 \equiv Treewidth-one Vertex Deletion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

More generally, how fast can we solve

• TREEWIDTH-t VERTEX DELETION ?

Efficient meta-algorithms

$\mathcal{F} ext{-}\mathrm{DELETION}$ Problem

Given a graph G = (V, E) and an integer k as parameter,

▶ is there a subset $X \subseteq V$ such that G - X is \mathcal{F} -minor free ?

Observations :

1.
$$\{K_2\}$$
-Deletion \equiv Vertex Cover
 \equiv Treewidth-zero Vertex Deletion

2.
$$\{K_3\}$$
-Deletion \equiv Feedback Vertex Set
 \equiv Treewidth-one Vertex Deletion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

More generally, how fast can we solve

- TREEWIDTH-t VERTEX DELETION ?
- ▶ PLANAR-*F*-DELETION (*F* contains a planar graph) ?

Known results (1)

When \mathcal{F} is "non-planar"

► *F*-DELETION is FPT (by the Roberston and Seymour' graph minor theorem)

• { K_5 , $K_{3,3}$ }-DELETION can be solved in $O^*(2^{2^{(k \log k)}})$ [Marx, Schlotter'07] [Kawarabayashi'09]

When \mathcal{F} is planar

• $\{K_2\}$ -DELETION (VC) $O^*(1.2738^k)$

 $O^*(c^k)$

- $\{K_3\}$ -DELETION (FVS) $O^*(3.83^k)$
- ► $\{\theta_c\}$ -DELETION $O^*(c^k)$
- \blacktriangleright { K_4 }-Deletion

[J. Chen et al.'10]

- [Y. Cao et al',10],
- [G. Joret et al.'11]
- [E.J.Kim et al.'12]

Known results (2)

When \mathcal{F} is planar (cont'd)

- ► $2^{2^{O(k \log k)}} \cdot n^{O(1)}$ -time algorithm based on DP
- $2^{O(k \log k)} \cdot n^2$ -time algorithm

[Fomin et al.'11]

► 2^{O(k)} · n log² n -time algorithm for CONNECTED-PLANAR-*F*-DELETION

[Fomin et al.'12]

Known results (2)

When \mathcal{F} is planar (cont'd)

- ► $2^{2^{O(k \log k)}} \cdot n^{O(1)}$ -time algorithm based on DP
- $2^{O(k \log k)} \cdot n^2$ -time algorithm

[Fomin et al.'11]

► 2^{O(k)} · n log² n - time algorithm for CONNECTED-PLANAR-*F*-DELETION [Fomin et al.'12]

[KIM, LANGER, P., REIDL, ROSSMANITH, SAU, SIKDAR 2013]:

A $2^{O(k)}$. n^2 -time algorithm for PLANAR- \mathcal{F} -DELETION

• [Chen et al.'05] No hope for a $2^{o(k)} \cdot n^{O(1)}$ -time algorithm

 $(G \oplus H, k) \Leftrightarrow (G' \oplus H, k + \Delta)$

イロト イポト イヨト イヨト

æ

Let Π be a parameterized problem, G, G' be *t*-boundaried graphs we say that

 $G \equiv_{\Pi,t} G' \text{ if } \exists \Delta_{\Pi}(G,G') \text{ st } \forall H,$ $(G \oplus H, k) \in \Pi \Leftrightarrow (G' \oplus H, k + \Delta_{\Pi,t}(G,G')) \in \Pi$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Let Π be a parameterized problem, G, G' be *t*-boundaried graphs we say that

 $G \equiv_{\Pi,t} G' \text{ if } \exists \Delta_{\Pi}(G,G') \text{ st } \forall H,$ $(G \oplus H, k) \in \Pi \Leftrightarrow (G' \oplus H, k + \Delta_{\Pi,t}(G,G')) \in \Pi$

► Π has Finite Integer Index (FII) if ≡_{Π,t} has finitely many equivalence classes.

Observation If Π has Finite Integer Index, then replace G by one among finitely many representatives

- these representatives exists (depend only of Π and t)
- how large can they be ? how to compute them ?

Meta-algorithmic theorems for kernelization

planar graphs	distance property
→ Alber, Fellows, Niedermeier	JACM'04
Polynomial-Time Data Reduction for Dom	JIN JACM'04
→ Guo, Niedermeier	ICALP'07
Linear problems kernels for NP-hard proble	ems on planar graphs
 ▶ bounded genus → Bodlaender, Fomin, Lokshtanov, Penninkx, (Meta) Kernelization 	quasi-compactness Saurabh, Thilikos FOCS'09
 ► H-minor free → Fomin, Lokshtanov, Saurabh, Thilikos	bidim + separation ppty
Bidimensionality and kernels	SODA'10
 ▶ topological minor free → Kim, Langer, Paul, Reidl, Rossmanith, Sau, Linear kernels [] via protrusion decompo 	treewidth-bounding Sikdar ICALP'13 ositions

Meta-kernelization

Theorem [Bodlaender et al, FOCS'09]

If $\Pi \subseteq \mathcal{G}_g \times \mathbb{N}$ is a problem on graphs embedded in a surface st

▶ Π has Finite Integer Index and Π or $\overline{\Pi}$ is quasi-compact

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

then Π admits a linear kernel

Meta-kernelization

Theorem [Bodlaender et al, FOCS'09]

If $\Pi\subseteq \mathcal{G}_g\times\mathbb{N}$ is a problem on graphs embedded in a surface st

▶ Π has Finite Integer Index and Π or $\overline{\Pi}$ is quasi-compact

then Π admits a linear kernel

The proof is based on

- ▶ protrusion decomposition → Can be computed in some cases
- ► protrusion replacer and MSO expressibility ~~ Existential only

Explicit kernel via Dynamic Programming

Theorem [Garnero, P, Sau, Thilikos'14]

Let (G, k) be an instance of a parameterized problem Π . Given

- given a protrusion decomposition of G and
- a Π -encoder \mathcal{E} s.t. $\sim_{\mathcal{E}}$ is DP-friendly

we can construct a linear kernel for Π (with explicit constants)
Explicit kernel via Dynamic Programming

Theorem [Garnero, P, Sau, Thilikos'14]

Let (G, k) be an instance of a parameterized problem Π . Given

- given a protrusion decomposition of G and
- a Π -encoder \mathcal{E} s.t. $\sim_{\mathcal{E}}$ is DP-friendly

we can construct a linear kernel for Π (with explicit constants)

t-boundaried graph \rightsquigarrow rooted-tree decomposition (of width *t*) with root bag being the boundary.

Explicit kernel via Dynamic Programming

Theorem [Garnero, P, Sau, Thilikos'14]

Let (G, k) be an instance of a parameterized problem Π . Given

- given a protrusion decomposition of G and
- a Π -encoder \mathcal{E} s.t. $\sim_{\mathcal{E}}$ is DP-friendly

we can construct a linear kernel for Π (with explicit constants)

t-boundaried graph \rightsquigarrow rooted-tree decomposition (of width *t*) with root bag being the boundary.

- Equivalence between boundaried graphs certified by DP-tables
- ► size of the DP-tables ~> number of equivalence classes and ~> size of the representative

Applications of the theorem

(treewidth modulator by [Fomin et al, SODA'10] + protrusion decomposition by [Kim et al, ICALP'13])

- on graphs excluding an apex minor H
 - ► *r*-Dominating Set
 - ▶ *r*-Scattered Set

Applications of the theorem

(treewidth modulator by [Fomin et al, SODA'10] +

protrusion decomposition by [Kim et al, ICALP'13])

- on graphs excluding an apex minor H
 - ► *r*-Dominating Set
 - ▶ *r*-Scattered Set
- on graphs excluding a minor H
 - CONNECTED PLANAR *F*-DELETION

 (on topological minor free: uniform randomized kernel or
 deterministic but non-uniform wrt *F* and *H* treewidth
 modulator by [Fomin et al, FOCS'12])
 - Connected Planar \mathcal{F} -Packing

(Connectedness is important to prove that $\sim_{\mathcal{E},g,t}$ is DP-friendly)

Applications of the theorem

(treewidth modulator by [Fomin et al, SODA'10] +

protrusion decomposition by [Kim et al, ICALP'13])

- on graphs excluding an apex minor H
 - ► *r*-Dominating Set
 - ▶ *r*-Scattered Set
- on graphs excluding a minor H
 - CONNECTED PLANAR *F*-DELETION

 (on topological minor free: uniform randomized kernel or
 deterministic but non-uniform wrt *F* and *H* treewidth
 modulator by [Fomin et al, FOCS'12])
 - Connected Planar \mathcal{F} -Packing

(Connectedness is important to prove that $\sim_{\mathcal{E},g,t}$ is DP-friendly)

→ Dependency in the meta-parameter r or $r(\mathcal{F})$ is triple exponential $2^{2^{c_H \cdot r \log r}}$

Thanks

◆□ → < @ → < E → < E → ○ < ○ < ○ </p>