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Part 1 – An overview of parameterized algorithms



The early steps of NP-Completeness Theory

I Cook’s Theorem (1971) : sat is NP-Complete
(2-sat ∈ P)

I Karp’s list of 21 NP-complete problems (1972), among which:

I Vertex Cover: Does there exist
a subset S of at most k vertices
such that every edge of G
is covered by some vertex of S ?

vu

I Independent Set: Does there exist a subset S of at least k
vertices pairwise non-adjacent in a graph G ?

I Coloring: Can the vertices of a graph G be colored by at
most k colors in such a way that adjacent vertices receive
different colors ?

Common understanding : NP–Complete problems are all ”equivalent” !
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Tractability of NP–Complete problems

Observations :

I Coloring is NP–Complete for k = 3 colors.

I Vertex Cover and Independent Set belong to P for every
fixed k : naive algorithm in O(nk) steps.
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Tractability of NP–Complete problems

Observations :

I Coloring is NP–Complete for k = 3 colors.

I Vertex Cover and Independent Set belong to P for every
fixed k : naive algorithm in O(nk) steps.

Observation : G has a Vertex Cover of size k
⇔ G has an independent set of size n − k
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Tractability of NP–Complete problems

So we have :

I k-Coloring is Para-NP-Complete

I k-Independent Set is XP

I k-Vertex Cover is FPT

“However, measuring complexity only in terms of the input size means
ignoring any structural information about the input instances in the
resulting complexity theory. . . . ”

J. Flum and M. Grohe, Parameterized Complexity, 2006.

“The fondamental idea [of the parameterized complexity] is to restrict
the combinatorial explosion, seemingly unavoidable, that is responsible of
the exponential growth of the time complexity, to a specific parameter of
the problem. . . ”

R. Niedermeier, Invitation to fixed parameter algorithms, 2006.



Tractability of NP–Complete problems

So we have :

I k-Coloring is Para-NP-Complete

I k-Independent Set is XP

I k-Vertex Cover is FPT

Measure the time complexity in term of

I the input size n;

I a parameter k (independent of n) :

I solution size (natural parameter);
I maximum degree, treewidth, feedback vertex set

size. . . (structural parameters).

Observation : the parameter dependence could be : f (k) = 2kkk
..
..
..
kk



Tractability of NP–Complete problems

So we have :

I k-Coloring is Para-NP-Complete

I k-Independent Set is XP

I k-Vertex Cover is FPT

Measure the time complexity in term of

I the input size n;

I a parameter k (independent of n) :
I solution size (natural parameter);
I maximum degree, treewidth, feedback vertex set

size. . . (structural parameters).

Définition : A parameterized problem is FPT (Fixed Parameter
Tractable) if it can be solved in f (k) · nO(1) steps.

Observation : the parameter dependence could be : f (k) = 2kkk
..
..
..
kk



Polynomial time pre-processing

I Polynomial-time pre-processing often aims at reducing the input
size. How can we measure the reduction ?

Does there exist k lines covering the set S of points ?

⇒ a reduced instance contains at most k2 points.
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I Polynomial-time pre-processing often aims at reducing the input
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Does there exist k lines covering the set S of points ?
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⇒ a reduced instance contains at most k2 points.
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I Polynomial-time pre-processing often aims at reducing the input
size. How can we measure the reduction ?

Does there exist k lines covering the set S of points ?

Observation 2: If a line L contains at least k + 1 points, then it has to
belong to the solution (if it exists) (e.g. here k = 3)

⇒ remove L and decrease k by 1.

⇒ a reduced instance contains at most k2 points.
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Kernelization – reduction to a kernel

Observation : we just proved that in polynomial time, we can

I decide whether an instance is negative (n > k2),

I or compte an équivalent instance of size (polynomially) bounded by
a fonction of k .

The problem (Point-Line Cover, k) admits a (quadratic) kernel



Kernelization – reduction to a kernel

Observation : we just proved that in polynomial time, we can

I decide whether an instance is negative (n > k2),

I or compte an équivalent instance of size (polynomially) bounded by
a fonction of k .

The problem (Point-Line Cover, k) admits a (quadratic) kernel

A kernelization for a parameterized problem is a polynomial time
algorithm, that given an instance (G , k) returns an instance (G ′, k ′) such
that:

I (G , k) is a positive instance ⇔ (G ′, k ′) is a positive instance

I |G ′| 6 h(k) for some function h : N→ N

I k ′ 6 k



Existence of a kernel and fixed parameterized tractability

Theorem : A parameterized problem is FPT iff it is decidable and admits
a kernelization.

Proof

⇒ Let K be a kernelization. Consider the following algorithm A
1. compute G ′ = K(G ) in time polynomial in |G |,
2. decide if G ′ ∈ Q with an exact exponentiel algorithm A′.
⇐ As |G ′| 6 h(κ(k)), algorithm A runs in FPT–time.

⇒ Let A be a FPT algorithm with time complexity f (k) · nc for some
constant c > 0

I if n = |G | 6 f (k), then the instance size is bounded,
I otherwise f (k) · nc 6 n · nc = nc+1 : thereby A runs in time

polynomial in |G |.



Existence of a kernel and fixed parameterized tractability

Theorem : A parameterized problem is FPT iff it is decidable and admits
a kernelization.

Proof

⇒ Let K be a kernelization. Consider the following algorithm A
1. compute G ′ = K(G ) in time polynomial in |G |,
2. decide if G ′ ∈ Q with an exact exponentiel algorithm A′.
⇐ As |G ′| 6 h(κ(k)), algorithm A runs in FPT–time.

⇒ Let A be a FPT algorithm with time complexity f (k) · nc for some
constant c > 0

I if n = |G | 6 f (k), then the instance size is bounded,
I otherwise f (k) · nc 6 n · nc = nc+1 : thereby A runs in time

polynomial in |G |.

Observation : the resulting kernel size is exponential in k.



Does polynomial size kernel always exist ?

I A graph G = (V ,E ) and a parameter k ∈ N

I Does G contains a path of length k ?

Longest Path is NP–Complete (reduction to Hamiltonian path)
but can be solved in time O(ck .nO(1)) with the Color Coding
technique.

Observation : (G , k) has a path of length k iff ∃i st Gi as a path of
length k.

Question :
Is it possible to decide whether one of the instances has a path of length
k using less than 1 bit per instance in average ?



Does polynomial size kernel always exist ?

Hypothesis: there exists a kernelization A for Longest Path that
computes a kernel of size t = kc bits.

I build an instance (G , k) from t distinct instances
(G , k) = (G1, k)⊕ (G2, k)⊕ . . . ⊕ (Gt , k)

Observation : (G , k) has a path of length k iff ∃i st Gi as a path of
length k.
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Is it possible to decide whether one of the instances has a path of length
k using less than 1 bit per instance in average ?
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Non-existence of polynomial size kernel

Theorem: Unless co−NP ⊆ NP/poly, the parameterized Longest
Path problem does not admit a polynomial kernel.

Several tools exist to establish lower bounds on the kernel size (under
some standard complexity assumptions)

I OR-composition [Bodlaender et al.] and AND-composition [Drucker]

I Polynomial and parameterized Transformations [Bodlaender et al.]

I Cross composition [Bodlaender et al.]

I . . .



Parameterized intractability of XP problems

 can we prove that k-Independent Set is not FPT?
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 can we prove that k-Independent Set is not FPT?

Exponential Time Hypothesis:

3-SAT cannot be solved in time 2o(n)

Theorem: If k-Clique or k-Independent Set can be solved in
f (k) · no(k) time, then ETH is not valid.

Corollary: ETH ⇒ k-Independent Set /∈ FPT



Parameterized intractability of XP problems

 can we prove that k-Independent Set is not FPT?

Exponential Time Hypothesis:

3-SAT cannot be solved in time 2o(n)

Theorem: If k-Clique or k-Independent Set can be solved in
f (k) · no(k) time, then ETH is not valid.

Corollary: ETH ⇒ k-Independent Set /∈ FPT

We can define a hierarchy of complexity classes:

FPT ⊆W[1] ⊆W[2] ⊆ · · · ⊆W[t] ⊆ · · · ⊆W[P] ⊆ XP

Hypothèses :

I k-Clique and k-Independent Set are W [1]-complete

I k-Dominating Set is W [2]-complete



Synthesis

Under standard complexity hypothesis, we have observe that some
NP–Complete problems:

I are NP–Complete for every fixed k
k-Coloring Para-NP-Complete

I can be solved in time O(nk)
k-Independent Set XP

I can be solved in time f (k) · nO(1)

k-Vertex Cover FPT

I does not admit a polynomial size kernel
k-Longest Path No-poly-Kernel

I admit a polynomial size kernel
k-Line-Cover poly-Kernel



Synthesis

Under standard complexity hypothesis, we have observe that some
NP–Complete problems:

I are NP–Complete for every fixed k
k-Coloring Para-NP-Complete

I can be solved in time O(nk)
k-Independent Set XP

I can be solved in time f (k) · nO(1)

k-Vertex Cover FPT

I does not admit a polynomial size kernel
k-Longest Path No-poly-Kernel

I admit a polynomial size kernel
k-Line-Cover poly-Kernel

Observation: the Coloring problem is FPT time with respect to other
parameters.



Part 2 – Meta-algorithmic theorems
An alternative story of parameterized algorithms



Graph Minors and Robertson & Seymour Theorem

H is a minor of G if it can be obtained by a series of

I vertex deletions

I edge deletions

I edge contractions
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Graph Minors and Robertson & Seymour Theorem

H is a minor of G if it can be obtained by a series of

I vertex deletions

I edge deletions

I edge contractions

Theorem [Robertson & Seymour – Wagner’s conjecture]
Graphs are well-quasi ordered by the minor relation.



Consequences of Robertson & Seymour Theorem

 every graph family closed under minor is characterized by a finite list
of forbidden minors.

I Planar graphs exclude

I Graphs with Vertex Cover of size 6 k exclude



Consequences of Robertson & Seymour Theorem

 every graph family closed under minor is characterized by a finite list
of forbidden minors.

I Planar graphs exclude

I Graphs with Vertex Cover of size 6 k exclude



Consequences of Robertson & Seymour Theorem

 every graph family closed under minor is characterized by a finite list
of forbidden minors.

I Planar graphs exclude

I Graphs with Vertex Cover of size 6 k exclude

Theorem [Robertson & Seymour]
In time f (|H|) · n3, we can test whether H is a minor of a graph G on n
vertices.

F minor-closed family

Corollary
Every graph family closed under minor
can be recognized in O(n3)-time.



Consequences of Robertson & Seymour Theorem

By Robertson & Seymour Theorem and the minor inclusion test,
we know that

Corollary

I k-Vertex Cover is (non-uniform) FPT.

I k-Feedback Vertex Set is (non-uniform) FPT.

I recognizing Treewidth 6 k graphs is (non-uniform) FPT.

I recognizing graphs embeddable on a surface of genus k
graphs is (non-uniform) FPT.

I . . .



Consequences of Robertson & Seymour Theorem

By Robertson & Seymour Theorem and the minor inclusion test,
we know that

Corollary

I k-Vertex Cover is (non-uniform) FPT.

I k-Feedback Vertex Set is (non-uniform) FPT.

I recognizing Treewidth 6 k graphs is (non-uniform) FPT.

I recognizing graphs embeddable on a surface of genus k
graphs is (non-uniform) FPT.

I . . .

 How to obtain constructive meta-algorithmic theorems ?



Courcelle’s theorem

Theorem [Courcelle’91]
Let G be a graph and φ an MSO2 formula. Then deciding whether

G |= φ is FPT with respect to parameter tw(G ) + |φ|

I what is Monadic Second Order Logic ?

I what is treewidth?



Monadic Second Order Logic (on strings)

A string w = x1 . . . xn ∈ Σ is represented by a structure S(a) with
universe [n] equipped with

I a binary relation symbol 6 representing the natural order on [n];

I ∀a ∈ Σ, a unary relation symbol Pa = {i ∈ [n] | xi = a}
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A string w = x1 . . . xn ∈ Σ is represented by a structure S(a) with
universe [n] equipped with

I a binary relation symbol 6 representing the natural order on [n];

I ∀a ∈ Σ, a unary relation symbol Pa = {i ∈ [n] | xi = a}

Example: w = a · b · c · c · a · b
I Pa = {1, 5} Pb = {2, 6} Pa = {3, 4}



Monadic Second Order Logic (on strings)

A string w = x1 . . . xn ∈ Σ is represented by a structure S(a) with
universe [n] equipped with

I a binary relation symbol 6 representing the natural order on [n];

I ∀a ∈ Σ, a unary relation symbol Pa = {i ∈ [n] | xi = a}

b, c
a

b

∀x (Pxa→ ∃y (x 6 y ∧ ∀z (z 6 x ∨ y 6 z) ∧ Pyb))

Theorem [Büchi, McNaughton]
The following statements are equivalent

1. A language L on algphabet Σ is regular;

2. L can be recognized by a finite state automata;

3. there exists an MSO2 formula φL such that w ∈ L iff w |= φL.



Pumping lemma

Lemma [Scott, Rabin]
Let L be a regular language. There exists an integer p 6 1 such that
every word w ∈ L of lenght |w | > p can be written w = x · y · z with

I |y | > 1 and |x · z | 6 p and ∀i ∈ N, x · y i · z ∈ L.
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Myhil-Nerode’s equivalence classes: Let L be a regular language on
alphabet Σ and let u, v ∈ Σ∗
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Pumping lemma

Lemma [Scott, Rabin]
Let L be a regular language. There exists an integer p 6 1 such that
every word w ∈ L of lenght |w | > p can be written w = x · y · z with

I |y | > 1 and |x · z | 6 p and ∀i ∈ N, x · y i · z ∈ L.

Myhil-Nerode’s equivalence classes: Let L be a regular language on
alphabet Σ and let u, v ∈ Σ∗

u ≡L v if ∀w ∈ Σ∗,w · u ∈ L⇔ w · v ∈ L

w

w

u

v

. There exist finitely many equivalence classes

. Each equivalence class has a min-size representative u with |u| 6 p

Algorithm to recognize L:

I Iteratively find a suffixe u, p 6 |u| 6 2p
I Replace u by its representative r(u).

w

r(w)
v

r(v)



Generalization to trees and bounded treewidth graphs

A tree decomposition of a graph G = (V ,E ) is a pair (T , {Xt : t ∈ T})
with T being a tree and ∀t ∈ T , Xt ⊆ V , such that

I [vertex covering] ∀x ∈ V , ∃t ∈ T such that x ∈ Xt

I [edge covering] ∀(x , y) ∈ E , ∃t ∈ T such that x , y ∈ Xt

I [consistency] x ∈ V belongs to Xt1 ∩ Xt2 , then ∀t ∈ T on the
t1 − t2-path in T , x ∈ Xt .
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Generalization to trees and bounded treewidth graphs

A tree decomposition of a graph G = (V ,E ) is a pair (T , {Xt : t ∈ T})
with T being a tree and ∀t ∈ T , Xt ⊆ V , such that

I [vertex covering] ∀x ∈ V , ∃t ∈ T such that x ∈ Xt

I [edge covering] ∀(x , y) ∈ E , ∃t ∈ T such that x , y ∈ Xt

I [consistency] x ∈ V belongs to Xt1 ∩ Xt2 , then ∀t ∈ T on the
t1 − t2-path in T , x ∈ Xt .

tw(T ,X ) = max
t∈V (T )

|Xt | − 1 tw(G ) = min
(T ,X )

tw(T ,X )



MSO2 on graphs

A graph w = x1 . . . xn ∈ Σ is represented by a structure S(a) with
universe V ∪ E equipped with

I two unary relation symbols V and E;

I a binary relation symbol Inc = {(e, v) | Ee ∧ Vv ∧ v ∈ e}
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universe V ∪ E equipped with

I two unary relation symbols V and E;

I a binary relation symbol Inc = {(e, v) | Ee ∧ Vv ∧ v ∈ e}
Example: G is a connected graph
∀V1,V2,
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A graph w = x1 . . . xn ∈ Σ is represented by a structure S(a) with
universe V ∪ E equipped with

I two unary relation symbols V and E;

I a binary relation symbol Inc = {(e, v) | Ee ∧ Vv ∧ v ∈ e}
Example: G is a connected graph
∀V1,V2,
[ ∀v ∈ V , (v ∈ V1 ∨ v ∈ V2)∧ (v ∈ V1 ⇒ v 6∈ V2)∧ (v ∈ V2 ⇒ v 6∈ V1) ]
∧ ∃v1 ∈ V1,∃v2 ∈ V2,∃e ∈ E , inc(v1, e) ∧ inc(v2, e)

Theorem [Courcelle’91]
Let G be a graph and φ an MSO2 formula. Then deciding whether

G |= φ is FPT with respect to parameter tw(G ) + |φ|



Some consequences of Courcelle’s theorem

Theorem
Vertex Cover parameterized by solution size is FPT

Proof

I if G has a Vertex Cover of size at most k, then tw(G ) 6 k + 1

I VC(G ) = ∃x1, . . . xk (Vx1 . . .Vx1 ∧
∀e,Ee (Inc(e, x1) ∨ · · · ∨ Inc(e, xk)))
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I Feedback Vertex Set

I Dominating Set in planar graphs

I Graph Coloring in bounded treewidth graphs
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Some consequences of Courcelle’s theorem

Theorem
Vertex Cover parameterized by solution size is FPT

Proof

I if G has a Vertex Cover of size at most k , then tw(G ) 6 k + 1

I VC(G ) = ∃x1, . . . xk (Vx1 . . .Vx1 ∧
∀e,Ee (Inc(e, x1) ∨ · · · ∨ Inc(e, xk)))

This applies to many other problems

I Feedback Vertex Set

I Dominating Set in planar graphs

I Graph Coloring in bounded treewidth graphs

I . . .

A serious drawback: Inefficient algorithms due to high exponential
dependency in the parameter



Efficient meta-algorithms

F-Deletion Problem
Given a graph G = (V ,E ) and an integer k as parameter,

I is there a subset X ⊆ V such that G − X is F-minor free ?
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1. {K2}-Deletion ≡ Vertex Cover
≡ Treewidth-zero Vertex Deletion

2. {K3}-Deletion ≡ Feedback Vertex Set
≡ Treewidth-one Vertex Deletion

More generally, how fast can we solve

I Treewidth-t Vertex Deletion ?

I Planar-F-Deletion (F contains a planar graph) ?



Efficient meta-algorithms

F-Deletion Problem
Given a graph G = (V ,E ) and an integer k as parameter,

I is there a subset X ⊆ V such that G − X is F-minor free ?

Observations :

1. {K2}-Deletion ≡ Vertex Cover
≡ Treewidth-zero Vertex Deletion

2. {K3}-Deletion ≡ Feedback Vertex Set
≡ Treewidth-one Vertex Deletion

More generally, how fast can we solve

I Treewidth-t Vertex Deletion ?

I Planar-F-Deletion (F contains a planar graph) ?



Known results (1)

When F is ”non-planar”

I F-Deletion is FPT
(by the Roberston and Seymour’ graph minor theorem)

I {K5,K3,3}-Deletion can be solved in O∗(22(k log k)

)
[Marx, Schlotter’07] [Kawarabayashi’09]

When F is planar

I {K2}-Deletion (VC) O∗(1.2738k) [J. Chen et al.’10]

I {K3}-Deletion (FVS) O∗(3.83k) [Y. Cao et al’,10],

I {θc}-Deletion O∗(ck) [G. Joret et al.’11]

I {K4}-Deletion O∗(ck) [E.J.Kim et al.’12]



Known results (2)

When F is planar (cont’d)

I 22O(k log k) · nO(1) -time algorithm based on DP

I 2O(k log k) · n2 -time algorithm [Fomin et al.’11]

I 2O(k) · n log2 n -time algorithm for
Connected-Planar-F-Deletion [Fomin et al.’12]



Known results (2)

When F is planar (cont’d)

I 22O(k log k) · nO(1) -time algorithm based on DP

I 2O(k log k) · n2 -time algorithm [Fomin et al.’11]

I 2O(k) · n log2 n -time algorithm for
Connected-Planar-F-Deletion [Fomin et al.’12]

[Kim, Langer, P., Reidl, Rossmanith, Sau, Sikdar 2013]:

A 2O(k).n2 -time algorithm for Planar-F-Deletion

I [Chen et al.’05] No hope for a 2o(k) · nO(1)-time algorithm
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Let Π be a parameterized problem, G ,G ′ be t-boundaried graphs
we say that

G ≡Π,t G
′ if ∃ ∆Π(G ,G ′) st ∀ H,

(G ⊕ H, k) ∈ Π⇔ (G ′ ⊕ H, k + ∆Π,t(G ,G
′)) ∈ Π

I Π has Finite Integer Index (FII) if ≡Π,t has finitely many
equivalence classes.
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Observation If Π has Finite Integer Index, then
replace G by one among finitely many representatives

I these representatives exists (depend only of Π and t)

I how large can they be ? how to compute them ?



Meta-algorithmic theorems for kernelization

I planar graphs distance property
 Alber, Fellows, Niedermeier jacm’04

Polynomial-Time Data Reduction for Dominating Set

 Guo, Niedermeier icalp’07
Linear problems kernels for NP-hard problems on planar graphs

I bounded genus quasi-compactness
 Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos

(Meta) Kernelization focs’09

I H-minor free bidim + separation ppty
 Fomin, Lokshtanov, Saurabh, Thilikos soda’10

Bidimensionality and kernels

I topological minor free treewidth-bounding
 Kim, Langer, Paul, Reidl, Rossmanith, Sau, Sikdar icalp’13

Linear kernels [. . . ] via protrusion decompositions



Meta-kernelization

Theorem [Bodlaender et al, FOCS’09]
If Π ⊆ Gg × N is a problem on graphs embedded in a surface st

I Π has Finite Integer Index and Π or Π̄ is quasi-compact

then Π admits a linear kernel



Meta-kernelization

Theorem [Bodlaender et al, FOCS’09]
If Π ⊆ Gg × N is a problem on graphs embedded in a surface st

I Π has Finite Integer Index and Π or Π̄ is quasi-compact

then Π admits a linear kernel

The proof is based on

I protrusion decomposition  Can be computed in some cases

I protrusion replacer and MSO expressibility  Existential only



Explicit kernel via Dynamic Programming

Theorem [Garnero, P, Sau, Thilikos’14]
Let (G , k) be an instance of a parameterized problem Π. Given

I given a protrusion decomposition of G and

I a Π-encoder E s.t. ∼E is DP-friendly

we can construct a linear kernel for Π (with explicit constants)
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∂(G) ∂(G′)

I Equivalence between boundaried graphs certified by DP-tables

I size of the DP-tables  number of equivalence classes and
 size of the representative
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Applications of the theorem

(treewidth modulator by [Fomin et al, SODA’10] +

protrusion decomposition by [Kim et al, ICALP’13])

I on graphs excluding an apex minor H

I r -Dominating Set
I r -Scattered Set

I on graphs excluding a minor H

I Connected Planar F-Deletion
(on topological minor free: uniform randomized kernel or
deterministic but non-uniform wrt F and H - treewidth
modulator by [Fomin et al, FOCS’12])

I Connected Planar F-Packing

(Connectedness is important to prove that ∼E,g ,t is DP-friendly)

 Dependency in the meta-parameter r or r(F) is triple
exponential

222cH ·r log r



Applications of the theorem

(treewidth modulator by [Fomin et al, SODA’10] +

protrusion decomposition by [Kim et al, ICALP’13])

I on graphs excluding an apex minor H

I r -Dominating Set
I r -Scattered Set

I on graphs excluding a minor H

I Connected Planar F-Deletion
(on topological minor free: uniform randomized kernel or
deterministic but non-uniform wrt F and H - treewidth
modulator by [Fomin et al, FOCS’12])

I Connected Planar F-Packing

(Connectedness is important to prove that ∼E,g ,t is DP-friendly)

 Dependency in the meta-parameter r or r(F) is triple
exponential

222cH ·r log r



Applications of the theorem

(treewidth modulator by [Fomin et al, SODA’10] +

protrusion decomposition by [Kim et al, ICALP’13])

I on graphs excluding an apex minor H

I r -Dominating Set
I r -Scattered Set

I on graphs excluding a minor H

I Connected Planar F-Deletion
(on topological minor free: uniform randomized kernel or
deterministic but non-uniform wrt F and H - treewidth
modulator by [Fomin et al, FOCS’12])

I Connected Planar F-Packing

(Connectedness is important to prove that ∼E,g ,t is DP-friendly)

 Dependency in the meta-parameter r or r(F) is triple
exponential

222cH ·r log r



Thanks


