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Abstract. Null models have many applications on networks, from test-
ing the significance of observations to the conception of algorithms such
as community detection. They ususally preserve some network proper-
ties, such as degree distribution. Recently, some null-models have been
proposed for spatial networks, and applied to the community detection
problem. In this article, we propose a new null-model adapted to spatial
networks, that, unlike previous ones, preserves both the spatial structure
and the degrees of nodes. We show the efficacy of this null-model in the
community detection case both on synthetic and collected networks.

1 Introduction

In recent years, complex networks have become an important topic of research,
and are used to model systems and interactions in many different fields, from
social sciences to biology.

When elements represented as vertices have a location in space, and the dis-
tance between them plays a role, we use spatial networks to represent them.
Examples of networks modelled by spatial networks include transportation net-
works, infrastructure networks, mobility networks, or even neural networks. Sev-
eral models of spatial networks exist, such as random planar graph [1], or gener-
alizations of the Watts-Strogatz model. The distinctive characteristic of spatial
network models is that the probability of observing an edge between vertices de-
pends on the distance between them. This characteristic can be represented by a
deterrence function. For a broad overview of existing work on spatial networks,
one can turn to [2].

In complex networks, null-models are frequently used to compare the ob-
served properties (assortativity, diffusion, clustering, frequency of patterns, etc.)
of a collected network with the ones in a randomized version of it. Another com-
mon usage is in community detection, where a quality function called Modularity
compares the fraction of edges found inside communities in the observed net-
work and in the corresponding null-model. The most commonly used null model,
often called the configuration model (see sec. 2.1), rewires randomly connections
between vertices while conserving the degree distribution.



Previously proposed null-models for spatial networks conserve the position
of nodes, the deterrence function and the total number of edges, but not the
degree distribution. In this article, we propose a null model for spatial networks
that preserves as much as possible both the spatial properties and the degrees
of nodes.

1.1 Related Works

In [3], the authors study several socio-spatial properties of location-based so-
cial networks, such as the average geographical distance between friends or the
distribution of social link length. They compare these properties to two random-
ized version: the social null-model conserves the ties, but shuffles the position of
users, while the Geo null-model uses a probability of friendship P (d) to assign
edges randomly between nodes. P (d) is defined as the probability of observing
a friendship between individuals situated at a given distance. This model con-
serves the total number of edges and the deterrence function as much as possible,
but not the degree distribution of nodes, which only depends on the distance to
other nodes.

In [4], the authors propose a method to find space-independent communi-
ties in spatial networks. They successfully uncover a linguistic partition in a
Belgian mobile phone calls dataset, that was otherwise hidden by geographical
proximities. To do so, they use a modified version of the quality function called
Modularity (see sec. 2.3). We will detail this gravity-based null model in section
2.1. They use a modified version of the Louvain algorithm [5] to optimize their
variant of modularity. Several articles, for instance [6, 7], applied this approach
on different case studies.

In [8], the authors propose to use a mechanism similar than the one in [4],
but replace the gravity-based spatial null-model by a radiation-based one. The
radiation model has been recently proposed as an alternative to the gravity one,
and has attracted a lot of attention since then. Their model is described in section
2.1. They do not use the exact same method than [4] to optimize their quality
function, but a a variant of it. They also propose an extension to multiplex and
mutislice networks.

Organization of the article: This article is organized as follows: in the first
section, we describe the different null-models we will consider, the synthetic
benchmarks on which to test them, and describe which method we used for
community detection and validation. Section two introduces our new null-model
with conservation of degrees. Section three presents the results of the evaluation
process. Finally, section four presents an example of application on a collected
dataset of shared bicycles.

2 Description of the evaluation settings

2.1 Description of state-of-the-art null-models



Configuration Model The configuration model, or NG model, has been in-
troduced in [9]. It proposes to rewire randomly the graph while keeping the
degrees of nodes. More formally, in the case of undirected, weighted networks,
the expected weight of a node is PNG

ij =
kikj
2w , with ki the strength of node i

(ki =
∑

j Wij) and 2w the sum of all edge weights in the network 2w =
∑

ij Wij .
This null model is not spatial, but is the most commonly used in the definition

of modularity.

Gravity-Based This null-model introduced in [4] is based on works coming
from the transportation domain, where gravity models have long been used to
model the repartition of trips among areas such as cities, countries or neigh-
boroods. It is originally defined in analogy with Newton’s law of gravity as
Pij = K

ninj
dσij

, with ni a notion of the intrinsic strength of node i (for instance,

depending on application cases, its population, number of jobs, parking lots,
etc.), dij is the distance between nodes i and j, and σ is a parameter allowing
to tune the influence of distance.

In recent works, a more general version of the law is often used [10],

PGra
ij = ninjf(dij) (1)

with f(d) any deterrence function, and ni same as before. Instead of being de-
cided a priori, the deterrence function can be learned from the data as follows [8]:

f(d) =

∑
i,j|dij=dAij∑
i,j|dij=d ninj

(2)

with Aij the observed flow (number of trips, communications, etc.) between
nodes i and j, and dij , ni same as in eq.1.

We can note that if the distance has no effect, the deterrence function is a
constant function, and the gravity-based model becomes exactly the configura-
tion model.

Radiation-Based Just as the gravity law is an analogy of Newton’s law of grav-
ity, the radiation model takes his inspiration form laws of radiation in physics.
It has first been introduced in [11], and has been successfully applied in several
cases since.. It is defined as:

PRad
ij = Ti

ninj
(ni + rij)(ni + nj + rij)

(3)

With rij = qij − (ni + nj), qij being the sum of nk for all k in the circle
of center i and radius dij (population closer from i than j). Other notations
identical to eq. 8.

A particularity of this model is that it does not need an explicit deterrence
function, as the interactions between nodes depends on their intrinsic strength
and of the presence of other nodes around them.



To be able to tune the importance of distance, however, the variant of the
radiation model introduced in [8] adds a deterrence function effect learned from
data, identical to the one previously introduced. The Distance Tuned radiation
model becomes:

PDTRad
ij = P rad

ij f(dij) (4)

with f(dij) a deterrence function defined as in the gravity-based case.

2.2 Synthetic benchmarks for space-corrected community detection

To compare the results obtained by using different null-models, the most straight-
forward solution is to use synthetic benchmarks mixing a community structure
and a spatial structure.

The benchmark introduced in [4] in a gravity-based version and extended
in [8] to a radiation process generates a network with both a planted commu-
nity structure and a spatial structure. Its distinctive feature is that all edges
probabilities have to respect the spatial structure. Compared with the version
presented in [8], we introduce two minor modifications:

– We generalize it in order to allow any deterrence function
– We allow the gravity version to handle variable intrinsic weights

The generic test benchmark is defined as:

pIncij = λ(ci, cj)P
SNM
ij (f(dij))Z1 (5)

with ci the community containing node i, the function λ(ci, cj) = 1 if nodes i
and j are in the same community, and λ(ci, cj) = λd otherwise, PSNM

ij (f(d)) a
probability given by the chosen spatial null model with deterrence function f(d),
and Z1 a normalization constant ensuring that Σi>jp

Inc
ij = 1.

Given the parameters:

– N ∈ Z, N > 0 : number of nodes
– C ∈ Z, C > 0: number of communities
– l ∈ N, l > 0: length of the sides of the considered, square 2-dimensional space
– µ ∈ N, µ > 0 : graph’s density
– λd ∈ [0, 1]: mixing coefficient
– f(d): deterrence function
– Imin, Imax ∈ Z, Imax ≥ Imin > 0: minimum and maximum intrinsic strengths

We generate graphs according to the following procedure:

1. Attribute a position to each of the N nodes in space, defined uniformly at
random such that nx ∈ [0, l], ny ∈ [0, l]

2. Attribute an intrinsic strength to each node, uniformly at random such that
nI ∈ [Imin, Imax]

3. Attribute a community to each node, taken uniformly at random in the set
{1, .., C}



4. Compute pIncij for all i,j, for the chosen λd,PSNM
ij ,f(d)

5. Distribute uniformly at random L = µN(N − 1)/2 edges, where there is an
edge between i and j with probability pIncij , and multiple edges are inter-
preted as weights.

2.3 Community detection algorithm

The community detection procedure we use is identical to the one in [4]. The
idea is to use the Louvain algorithm [5], one of the most widely used algorithms
for community detection. The principle of this algorithm is to optimize a quality
function called modularity, using a fast greedy approach. Modularity is a quality
function of a network partition, that compares the fraction of internal edges in
a given partition and in a null-model. In its original definition, modularity uses
the configuration model as null-model. Here, we replace it by the null-model to
test. The generic version of modularity can be expressed as [8]:

Q =
1

2w
Σij(Wij − PNM

ij )δ(ci, cj) (6)

with 2w = ΣijWij the total edge weight, ci the community of node i, δ the
Kronecker delta, and PNM

ij the ij-th element of the null model matrix.

2.4 Community partition evaluation

For each set of benchmark’s parameters to test, a graph is generated, and com-
munities are found for each tested null-model using modified Louvain. It then
becomes possible to compare the detected partition, result of the algorithm, with
the planted partition. As in previous works [4,8], we use the Normalized Mutual
Information (NMI) [12], an information-theoretic similarity mesure that gives
a score between 0 and 1, 1 meaning that the two partitions are identical, and
0 meaning that there is no more correlation between them than expected by
chance.

3 Definition of a Degree Constrained Gravity-Based
model

In the previously introduced spatial null models, there is no simple relation be-
tween the intrinsic strength of a node and its actual strength (sum of weights
of adjacent edges) in a network generated according to this null model. This
means that if the only available data is an observed network, and we use ob-
served degrees of nodes as a proxy for their intrinsic importance, then any of
the previously proposed spatial null model fitted on this observed network will
not conserve the degrees of nodes. The null model we propose is searching for
a degree constrained solution, i.e a spatial null-model preserving the degrees of
nodes.



To do so, we take inspiration from the doubly constrained gravity model [13],
and adapt it to the case of spatial networks with estimated deterrence function.
The intuition is that we are searching for values of intrinsic strength that would
best explain the observed degrees. We present the method in its more general
form, adapted to oriented weighted networks. Therefore, we compute separately
for each node an Incoming estimated Intrinsic trength (nIeis) and an Outgoing
estimated Intrinsic Strength (nOeis). For non-oriented networks, nIeis = nOeis.

The method consists in iteratively estimating the new values for nIeis and
nOeis that satisfies the observed indegrees (degin) and outdegrees (degout) con-
straints.

We can define them recusively as :

nIeis =
degout(i)∑

i n
Oeisf(dij))

, nOeis =
degin(i)∑
i n

Ieisf(dij)
(7)

And the corresponding Degree Constrained gravity model is:

PDCgrav
ij = nOeisnIeisf(dij) (8)

Starting with initial values nOeis = degout and nIeis = degin, we first com-
pute all values for nOeis, then all values for nIeis, and so on and so forth until the
degrees obtained in the gravity model defined in Eq. 8 are close enough to the
target network. Although this process is known to converge [13], in this article
we will use a fix number of iterations, i = 5, to avoid discussions on stopping
criterium and convergence time.

3.1 Recomputation of the deterrence function

Because the computed deterrence function depends on the intrinsic strength of
nodes, estimating it using observed degrees as a proxy leads to a biased ap-
proximation. By recomputing the deterrence function after each iteration of the
algorithm, we can in part correct this bias.

3.2 Summary of the proposed method

The complete process for constructing a spatial null model can be summarized
as follows:

1. Initialise nIeis and nOeis with nodes out and in degrees

2. Compute the deterrence function according to Eq. 2

3. Update all nOeis according to Eq. 7

4. Update all nIeis according to Eq. 7

5. If stopping criterium is not reached, return to step 2)

6. Compute all PDCgrav
ij according to the gravity model defined in Eq. 8



4 Validation of null models on synthetic benchmarks

To test which null model is better suited to discover communities in which case,
we generate networks according to the proposed benchmark with different pa-
rameters, search for communities using the same algorithm with different null-
models, and compare discovered communities with planted partitions known by
construction. In this section, we first describe the sets of parameters considered,
secondly, we describe the community detection process and its evaluation, before
studying the results.

4.1 Benchmark parameters

To limit the number of cases to study, we decided to fix some parameters. The
influence of these parameters has already been studied in [8], and minor changes
do not affect much the results. Of course, major changes can have strong effect,
for instance is the graph becomes extremely sparse, finding communities becomes
harder for all methods.

We choose values close to the ones studied in [8]. Fixed parameters and their
values: N = 100, l = 10, µ = 100, Imin = 10, Imax = 100, C = 2

For the deterrence function, whose impact was not studied in [8], we consider
several values: For gravity based benchmarks, we take f(d) among {f(x) =
1/x, f(x) = 1/x0.5, f(x) = x2}. For the Radiaton case, we consider f(d) ∈
{f(x) = 1, f(x) = 1/x}. f(x) = 1 corresponds to the original definition of the
Radiation model, with no explicit definition of deterrence function.

As in [8], we allow the mixing parameter λd to vary from 0 to 1, i.e from
perfectly unambiguous community structure to a network with only a spatial
structure.

4.2 Evaluation process

For each set of parameters, we generate 50 instances of networks. For each in-
stance, we run the modified Louvain algorithm with each of the following null
models:

– Configuration model [14], noted as NG
– Gravity-based [4], noted as Gra
– Radiation-based (original) [11], noted as Rad
– Radiation-based with deterrence function [8], noted as DFrad
– Degree constrained Gravity-based, introduced in the present paper, noted as
DCgra

For each of these algorithms, we consider two cases, Fully Informed and
Network/Position Only.

In the Fully Informed version, we consider that we know not only the
observed network, but also the intrinsic strength of nodes and the deterrence
function used to generate the network. This is the same setting than tests con-
duced in [4, 8].
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(f) f(x) = 1/x0.5, N/P Only

Fig. 1. Results for the synthetic benchmark, using a generative Gravity model. In
fully informed cases, the gravity null-model is the most efficient, while the proposed
DCgra model gives best results when only the network and position of nodes is known.

In the Network/Position Only version, we consider that we only know
the observed network, and the position of nodes. The deterrence function is first
computed from these data, when needed, and the degree of nodes is used as
proxy for the intrinsic importance of nodes, as it is often done in applications
to collected datasets, for instance in [7, 8]. This setting is more realistic, for
applications to real world datasets.

4.3 Results

In Fig. 1, left column, we present the results for the synthetic benchmark with
a generative gravity model, and the fully informed case. As expected, the Gra
null-model is the most efficient. We can observe that the problem becomes harder
with the increase in the exponent of the deterrence function. In fact, the more
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(d) f(x) = 1/x2, N/P Only

Fig. 2. Results on the synthetic benchmark, using a Radiation generative model,
both for Fully Informed and Network/Position Only settings. While the DFrad
model gives by far the best results in fully informed cases, its efficacy dwindle when less
information is available, and the DCgra model and the original Radiation Null-models
give the best results.

this exponent is low, the more the network resemble a non-spatial network. The
proposed DCgravity model, that does not benefit from full information, comes
nevertheless second in most settings.

In fig. 1, right column, tests are conduced with same settings but in Net-
work/Position Only version, i.e similar to a collected dataset. In this configu-
ration, results for the original gravity model dwindle, in particular with a high
exponent for the deterrence function, in which cases the radiation models give
better results. The DCgravity algorithm gives best results in most settings.

In Fig. 2, a radiation generative model is used. With the function f(x) =
1, both Rad and DFrad give similar result, because this function is implicitly
assumed by the Rad null model. Although they reach high NMI scores in Full
Information settings, again the results shrink in the N/P only case, in particular
for DFrad. With a modified deterrence function, DFrad is the only one to give
good results on Fully informed settings, but again, it does not maintain this
efficiency for N/P Only. Interestingly, results for DCgra and Rad are comparable
in the N/P Only cases.

In conclusion, according to these benchmarks, Gra and DFrad are the best
methods to use when one already knows the nature of the underlying spatial pro-
cess (gravity or radiation), the real intrinsic strengh of nodes and the deterrence
function. If only the observed network is available, if the underlying process is



gravity based, then the DCgra null model gives the best results in most cases,
and it also gives results comparable to the Rad null-model when the underlying
process is radiation-based.

4.4 Application to a Bike Sharing network

We use a BSS dataset presented in [15] and that we provide in open access 3. It
is composed of all bicycle trips done in 2011 in the city of Lyon, France, using
the bicycle-sharing system called Velo’v. Each trip has a specific origin from a
static station in the city, and a destination station which can be any other. It
can be studied as a network as in [16], where each station corresponds to a node.
The weight on edge (i, j) corresponds to the number of trips done from i to
j. The network consists of more than 6 Million trips and 343 nodes (stations).
We use the great circle distance between stations to learn the deterrence func-
tion, although the difference with euclidian distance is negligeable for such short
distances.

In fig. 3, we can see communities discovered by the different proposed null-
model. Radiation-based null-models (results similar for both) apparently fail on
this dataset, probably because very few trips are actullaly observed between
close stations (under a km), contrary to the assumption of radiation model, for
which closest nodes necessarily have the strongest bonds. The NG null model
find relevant communities, corresponding to the spatial organisation of the city.
With the gravity and DCgravity, some non spatially constrained communities
are discovered, in particular ones corresponding to patterns typical of leisure or
convenient trips, through the bicycle friendly banks of the river and between city
parks. Although there is no argument to say that one partition is better than
the other in absence of any reference, DCgravity communities match even more
the rivers’ banks than the simple gravity one, as highlighted in Fig. 4.

5 Conclusion

In this article, we proposed a null model for spatial networks that conserves both
the spatial structure of a network and the degrees of nodes. We have shown on
synthetic benchmarks that it was more efficient that non degree-constrained
versions to discover community structures hidden in a spatial network. Results
on a real dataset confirmed that the approach was relevant, and succeeded to
discover meaningful communities while methods based on radiation approach
failed.

In future works, we want to explore different usages of such a DC null-model.
First, it could be used not only on spatial data, but also on any kind of data in
which a distance between node properties could be computed, such as a difference
in age, altitute, income, or even temporal data.

3 https://figshare.com/articles/Lyon_s_BSS_2011/4257128, the authors thank
JCDecaux (Cyclocity) for having provided access to the Velo’v dataset

https://figshare.com/articles/Lyon_s_BSS_2011/4257128


(a) Configuration Model (NG) (b) DCgravity

(c) Gravity (d) Radiation

Fig. 3. Communities found on the Lyon BSS dataset, using different null models.

Fig. 4. Details of the two communities discovered using DCgravity null-model that
correspond to enjoyable/convenient trips in the city, that were hidden by the influence
of space proximity.

We could also investigate other usages besides community detection: null
models are used as references for properties such as clustering coefficient, motif
frequencies, or, more straightforwardly, to discover the most significant edges
and nodes in a network.
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to users: a typology of vélo’v cyclists in lyon based on large-scale behavioural
dataset,” Journal of Transport Geography, vol. 41, pp. 280–291, 2014.

16. P. Borgnat, C. Robardet, P. Abry, P. Flandrin, J.-B. Rouquier, and N. Tremblay,
“A dynamical network view of lyon’s velo’v shared bicycle system,” in Dynamics
On and Of Complex Networks, Volume 2. Springer, 2013, pp. 267–284.


	Enhancing Space-Aware Community Detection Using Degree Constrained Spatial Null Model

