Towards realistic modeling of IP-level routing topology dynamics

Clémence Magnien, Amélie Medem, Sergey Kirgizov, Fabien Tarissan

Networking Science, 4 (1-4), p. 24-33, 2013

Many works have studied the Internet topology, but few have investigated the question of how it evolves over time. This paper focuses on the Internet routing IP-level topology and proposes a first step towards realistic modeling of its dynamics. We study periodic measurements of routing trees from a single monitor to a fixed destination set and identify invariant properties of its dynamics. Based on those observations, we then propose a model for the underlying mechanisms of the topology dynamics. Our model remains simple as it only incorporates load-balancing phenomena and routing changes. By extensive simulations,  we show that, despite its simplicity, this model effectively captures the observed behaviors, thus providing key insights of relevant mechanisms governing the Internet routing dynamics. Besides, by confronting simulations over different kinds of topology, we also provide insights of which structural properties play a key role to explain the properties of the observed dynamics, which therefore strengthens the relevance of our model.


Outskewer: Using Skewness to Spot Outliers in Samples and Time Series

Sébastien Heymann, Matthieu Latapy, Clémence Magnien

Proceedings of the 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2012), Istanbul, Turkey

Finding outliers in datasets is a classical problem of high interest for (dynamic) social network analysis. However, most methods rely on assumptions which are rarely met in practice, such as prior knowledge of some outliers or about normal behavior. We propose here Outskewer, a new approach based on the notion of skewness (a measure of the symmetry of a distribution) and its evolution when extremal values are removed one by one. Our method is easy to set up, it requires no prior knowledge on the system, and it may be used on-line. We illustrate its performance on two data sets representative of many use-cases: evolution of ego-centered views of the internet topology, and logs of queries entered into a search engine.


Extraction hiérarchique de fenêtres de temps basée sur la structure communautaire

Thomas Aynaud and Jean-Loup Guillaume

in Proceedings of MARAMI 2011

Dans cet article nous décrivons une méthode de décomposition du temps en fenêtres de temps dans un graphe dynamique. Une particularité de la méthode est que le résultat est un regroupement hiérarchique : les fenêtres de temps sont elles-mêmes susceptibles d’en contenir. En outre, les fenêtres n’ont pas besoin d’être contiguës ce qui permet par exemple de détecter une structure se répétant. De plus, chaque fenêtre est associée à une décomposition en communautés représentant la structure topologique du réseau durant cette fenêtre. Nous appliquons ensuite cette méthode à trois graphes de terrain dynamiques ayant des caractéristiques différentes pour montrer que les fenêtres identifiées correspondent bien à des phénomènes observables. In this paper, we describe a way to cluster the time in time windows in a dynamic network. The result is a tree and thus time windows can themselves contain smaller ones. Moreover, the windows do not have to be consecutive and this allows for instance to detect repeated structure. Each window is also associated to a community decomposition that represents the topological structure of the network during this window. We then apply the method to three dynamic networks to show that observed time windows correspond to observable phenomena.


Phénomènes de diffusion dans les réseaux dynamiques : simulation et modélisation

Alice Albano

JFGG 2011

Les phénomènes de diffusion sont présents dans de nombreux contextes: diffusion d’épidémies, de virus informatiques, d’information dans des réseaux sociaux, etc. Bien que les réseaux où se produit la diffusion soient souvent dynamiques, cette dynamique n’est pas prise en compte dans la plupart des modèles existants. L’objectif de ces travaux est de proposer des modèles de diffusion, et d’étudier l’impact de la dynamique du réseau sur la diffusion.


Multi-Step Community Detection and Hierarchical Time Segmentation in Evolving Networks

Thomas Aynaud and Jean-Loup Guillaume

proceedings of the Fifth SNA-KDD Workshop Social Network Mining and Analysis, in conjunction with the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2011)

Many complex systems composed of interacting objects  like social networks or the web can be modeled as graphs. They can usually be divided in dense sub-graphs with few links between them, called communities and detecting this underlying community structure may have a major impact in the understanding of these systems. We focus here on evolving graphs, for which the usual approach is to represent the state of the system at different time steps and to compute communities independently on the graph obtained at each time step. We propose in this paper to use a different framework: instead of detecting communities on each time step, we detect a unique decomposition in communities that is relevant for (almost) every time step during a given period called the time window.  We propose a definition of this new decomposition and two algorithms to detect it quickly. We validate both the approach and the algorithms on three evolving networks of different kinds showing that the quality loss at each time step is very low despite the constraint of maximization on several time steps. Since the time window length is a crucial parameter of our technique, we also propose an unsupervised hierarchical clustering algorithm to build automatically a hierarchical time segmentation into time windows. This clustering relies on a new similarity measure based on community structure. We show that it is very efficient in detecting meaningful windows.


Link prediction in bipartite graphs using internal links and weighted projection

Oussama Allali, Clémence Magnien and Matthieu Latapy

Proceedings of the third International Workshop on Network Science for Communication Networks (Netscicom 2011), In conjunction with IEEE Infocom 2011.

Many real-world complex networks, like client-product or file-provider relations, have a bipartite nature and evolve during time. Predicting links that will appear in them is one of the main approach to understand their dynamics. Only few works address the bipartite case, though, despite its high practical interest and the specific challenges it raises. We define in this paper the notion of internal links in bipartite graphs and propose a link prediction method based on them. We describe the method and experimentally compare it to a basic collaborative filtering approach. We present results obtained for two typical practical cases. We reach the conclusion that our method performs very well, and that internal links play an important role in bipartite graphs and their dynamics.


Long range community detection

Thomas Aynaud and Jean-Loup Guillaume

Latin-American Workshop on Dynamic Networks (LAWDN), Buenos Aires, 2010

Complex networks can usually be divided in dense subnetworks called communities. In evolving networks, the usual way to detect communities is to find several partitions independently, one for each time step. However, this generally causes troubles when trying to track communities from one time step to the next. We propose here a new method to detect only one decomposition in communities that is good for (almost) every time step. We show that this unique partition can be computed with a modification of the Louvain method and that the loss of quality at each time step is generally low despite the constraint of global maximization. We also show that some specific modifications of the networks topology can be identified using this unique partition in the case of the Internet topology.


Détection de communautés à long terme dans les graphes dynamiques

Thomas Aynaud and Jean-Loup Guillaume

Journée thématique Fouille de grands graphes, en conjonction avec la première conférence sur les Modèles et l’Analyse des Réseaux : Approches Mathématiques et Informatique (MARAMI), Toulouse, France, 2010

La plupart des graphes de terrain peuvent être décomposés en sous graphes denses appelés communautés. Habituellement, dans des graphes dynamiques, les communautés sont détectées pour chaque instant indépendamment ce qui pose de nombreux problèmes tels que la stabilité ou le suivi de des communautés entre deux décompositions successives. Nous proposons ici une méthode pour trouver une partition unique, de qualité, couvrant une longue période. Cette décomposition peut être trouvée efficacement via une adaptation de la méthode de Louvain et la perte de qualité à chaque instant due à la contrainte de détecter des communautés globales s’avère assez faible.


Static community detection algorithms for evolving networks

Thomas Aynaud and Jean-Loup Guillaume

Proceedings of International Workshop on Dynamic Networks (WDN), in conjunction with WiOpt 2010, pages 508-514

Complex networks can often be divided in dense sub-networks called communities. We study, using a partition edit distance, how three community detection algorithms transform their outputs if the input network is sligthly modified. The instabilities appear to be important and we propose a modification of one algorithm to stabilize it and to allow the tracking of the communities in a dynamic network. This modification has one parameter which is a tradeoff between stability and quality. The resulting algorithm appears to be very effective. We finally use it on a dynamic network of blogs.


Some Insight on Dynamics of Posts and Citations in Different Blog Communities

Abdelhamid Salah Brahim, Bénédicte Le Grand and Matthieu Latapy

IEEE ICC 2010 workshop « SocNets », Cape Town, South Africa, May 2010

This paper explores new approaches and methods to characterize post and citation dynamics in different blog communities. In particular, evolution of post popularity over time is studied, as well as information spreading cascades. This methodology goes beyond traditional approaches by defining classes of dynamic behaviors based on topological features of the post network, and by investigating the impact of topical communities on post popularity dynamics and on information spreading cascades. This methodology has been applied to a corpus of active French blogs monitored during 4 months.


Estimating properties in dynamic systems: the case of churn in P2P networks

Lamia Benamara and Clémence Magnien

Proceedings of the third International Workshop on Network Science for Communication Networks (NetSciCom 2010), In conjunction with IEEE Infocom 2010.

In many systems, such as P2P systems, the dynamicity of participating elements, or churn, has a strong impact. As a consequence, many efforts have been made to characterize it, and in particular to capture the session length distribution. However in most cases, estimating it rigorously is difficult. One of the reasons is that, because the observation window is by definition finite, parts of the sessions that begin before the window and/or end after it are missed. This induces a bias. Although it tends to decrease when the observation window length increases, it is difficult to quantify its importance, or how fast it decreases. Here, we introduce a general methodology that allows us to know if the observation window is long enough to characterize a given property. This methodology is not specific to one study case and may be applied to any property in a dynamic system. We apply this methodology to the study of session lengths in a massive measurement of P2P activity in the eDonkey system. We show that the measurement needs to last for at least one week in order to obtain representative results. We also show that our methodology allows us to precisely characterize the shape of the session length distribution.


Fast dynamics in Internet topology: preliminary observations and explanations

Clémence Magnien, Frédéric Ouedraogo, Guillaume Valadon, Matthieu Latapy

Fourth International Conference on Internet Monitoring and Protection (ICIMP 2009), May 24-28, 2009, Venice, Italy

By focusing on what can be observed by running traceroute-like measurements at a high frequency from a single monitor to a fixed destination set, we show that the observed view of the topology is constantly evolving at a pace much higher than expected. Repeated measurements discover new IP addresses at a constant rate, for long period of times (up to several months). In order to provide explanations, we study this phenomenon both at the IP, and at the Autonomous System levels. We show that this renewal of IP addresses is partially caused by a BGP routing dynamics, altering paths between existing ASes. Furthermore, we conjecture that an intra AS routing dynamics is another cause of this phenomenon.