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Abstract—Many real-world complex networks, like assessment in Section IV. We present in Section V
client-product or file-provider relations, have a bipartite gur prediction method, and our experiments in Sec-

nature and evolve during time. Predicting links that jon v We discuss our conclusions and perspectives
will appear in them is one of the main approach to in Section VII

understand their dynamics. Only few works address the
bipartite case, though, despite its high practical interes

and the specific challenges it raises. We define in this
paper the notion of internal links in bipartite graphs

and propose a link prediction method based on them. Il. RELATED WORK
We describe the method and experimentally compare it
to a basic collaborative filtering approach. We present
results obtained for two typical practical cases. We reach
the conclusion that our method performs very well, and
that internal links play an important role in bipartite

Link prediction is a key research problem in dy-
namic network analysis. Several works study this prob-

graphs and their dynamics. lem on classical (non-bipartite) graphs [4], [5], [6],
but they are not directly applicable to or appropriate
I. INTRODUCTION for bipartite graphs. For instance because they rely

Many real-world complex networks have a natur N the presume of triangles in the graph. Up to our
%owledge, only two works target this problem [7],

bipartite structure and may therefore be modeled Th h dant tonological d
bipartite graphs [1]j.e. two sets of nodes with links >~ € autnors adapt Some topological measures use
n classical graphs for predicting links in bipartite

only between nodes in different sets. Typical exan S ) .
ples include peer-to-peer file-provide graphs [2] wher%raphs' I_n addmon, they consider tyvo transformations
peers are linked to the files they provided; and cIien’l)-]c the blpartlt_e graph |r_1t0 a cla§S|caI one, and they
product graphs where clients are linked to the producLl!ge a _superwsed learning algorithm to perform link
they bought [3]. prediction.

Most of these networks are dynamic: they evolve Another research prObIem is Closely related to link
during time, with node and link additions and repPrediction in bipartite graphs: the recommendation
movals. One approach for studying such dynamics ioblem [9]. Recommendation systems are used to
link prediction which consists in predicting the linksSuggest items to users, such as products to customers
that will probably appear in the future, given a snapsh&r instance. Notice however that the two problems
of the considered graph at a given time [4]. are quite different: recommendation aims typically at

We address here the problem of link prediction ifinding products of interest foall customers; predic-
bipartite graphs. To do so, we define a special kirfgPn aims at finding links that will appear in the future.
of links in bipartite graphs, which we calhternal Predicting a huge number of new links for a given node
links. We then propose an approach based on thed no links for the other nodes will therefore be of
links and compare it to a basic classical approach. Wigle interest regarding recommendation but may be a
study the performance of our method on two real-worl@reat success regarding prediction.
datasets. We show that this method reaches very goodrhe most successful and widely used approach for
performances and that internal links play a key role irecommendation is collaborative filtering [10], [11],
the dynamics of real-world bipartite graphs. [3], which consists in ranking the most relevant items

The paper is organized as follows. We review relatddr a given user in order of decreasing interest, and then
work in Section Il and present the bipartite frameworkn recommending the tofy items to this user. We will
including the notion of internal links, in Section lll. use it in this paper for the purpose of comparison with
We formally state the considered problem and itsur method.



We finally introduce the notion of induced links.

Definition 2 (induced links)Given a  bipartite
graph G = (L, T,E), the set of links induced
by any pair of nodes(u,v) in (L x T) is:
L(u,v) ={u} x N(v) = {(u,w),w € N(v)}.

In Figure 1, for instance,l(A,5) = {A} x
N(@j) = {(A,B),(4,C), (4, D)}. Notice thatE, =
Uu,vyer L(u,v): the links of the L-projection of
G are the links induced by all the links af. By
I1l. BIPARTITE GRAPHS WEIGHTED PROJECTIONS definition, a pair of nodegu,v) € (L x T)\ E is an

AND INTERNAL LINKS internal link if and only if all the links it induces are

We present here bipartite graphs and their transfaiready inG_ . In Figure 1, for instance,l (B,l) =
mations into (weighted) classical graphs, called proje¢{B, C), (B, D), (B, E)} C E, and thereforg B, 1)
tion. We also introduce a new class of links in bipartités an internal link.
graphs, which we calinternal links These links are
at the core of our work.

A bipartite graph; = (L, T, E) is defined by a set Let us consider a dynamic bipartite graph defined
L of bottom nodes, a set of top nodes and a setby a set ofn timestamped linkeD = {(t;, u;, v;),i =

E C 1 x T of links. The key point is that links exist1 n}. Let G = (L,T,E) be the graph observed
only between a node in. and one inT. We denote by from a given instan’ta ’to another instant > a:

Fig. 1: An example of bipartite grap@¥ (left), and its
L -projectionG_ (right).

IV. THE BIPARTITE LINK PREDICTION PROBLEM

N(u)={ve (LUT), (u,v) € E} the neighborhood

of a nodew in G. If w € L thenN(u) C T, and
conversely.
The L-projection ofG is the graphG, = (L, E.)

in which (u,v) € F, if v andv have at least one
neighbor in common inG: N(u) N N(v) # (. See

Figure 1 for an example. We denote By, (u) the
neighborhood of a node in G: Ni(u) = {v €
1, (u,v) € E1} = N(N(u)). The T-projection of
G, denoted byG, is defined dually.

As explained for instance in [1{7, contains much

less information tharz. In particular, the fact that
andwv are linked inG_ means that they havat least

1L = {u,I(t,u,v) € Dsta <t < b}, T =
{v,3(t,u,v) € D st.a < t < b} and E =
{(u,v),3(t,u,v) € D st.a <t < b}. WecalG
the reference grapland [a, b] the reference period

Now let us consider an instaat> b. This induces
a set £/ of links added toG during the period
[b, c[, which we call theprediction period E' =
{(u,v),3(t,u,v) € Dst.b<t<ctN(LxT\E).
Notice that we consider only the links between nodes
of G (we ignore new nodes appearing in the period
[b, ¢[) which are not present G/ (we consider links
in L x T\ E only).

In this framework, the goal of a link prediction

one neighbor in common i& but says nothing on their
number of common neighbors. One way to captur
such information is to use weighted projectionin
which a weightw(u,v) is associated to each link
(u,v) € E;. We present such weight functions i
Section VI-A.

We now introduce a special class of links, calle
internal links which play a key role in the whole paper

Definition 1 (internal links): Let us consider a bi-
partite graphG = (L, T, F) and the bipartite graph
G' = (L, T,EU{(u,v)}) obtained by adding the link

method is to find a sef of predicted linkswhich
%ontains many of the links &’ but only few which
are not inE’. Notice that in the extreme case where
one predictsall possible links,j.e. P = L x T \ FE,
"then one succeeds in predicting all links6f but also

redicts many links which are not iB’. Conversely,
gredicting no link at allj.e. P =, trivially does not
‘predicting links not inE’ but fails in predicting any
link in E'.

(u,v) € L x T to G, with (u,v) ¢ E. The link (u,v)
is internalif G|, =G’ .

In other words, an internal link in a bipartite gragh

is a pair of nodes$u, v) such that adding the linf, v)

P

false positives
P\E

true positives
PnE'

false negatives
PnE'

to G does not change it$-projection. In Figure 1 for
instance(B,!) is an internal link. Indeed, all neighbors
of I in G, namely N(l) = {C,D, E}, are already
linked to B in G : the pairs of bottom nodeB, C), ) o o ]
(B, D) and(B, E) already have a neighbor in commorf_:'g- 2:A pred|ct|c_)n method d|V|de§ the set of p(_)'_53|ble
in G, respectivelyj, j andk. Adding link (B,1) to G links L x T\ E |r_1to four categories: _true positives,
increases their number of common neighbore mnd 1 E'; true negativesP \ E; false positives >\ E';
thus does not change-projection. and false negatives? N £,

true negatives
P\E'



Let us denote byP the set of links that the method

@0

predicts will not appearP = (1. x T\ E) \ P. Link Y I o _ec
prediction dividesL x T \ E the into four classes (see e
Figure 2): the seP N E’ of true positivess the set of ¢ ¢ & 9 = &

appearing links that the method successfully predicts; links induced by(B, 1)
the setP\ E’ of true negativess the set of unpredicted ’

G
links which indeed do not appear; conversely, fhlse .\'
positivesare the links inP \ F’, i.e. the links which A > E ~® > oc
we predicted but do not appear, and fakse negatives °

are the links inP N E'.

The aim of a link prediction method is to maximize threshold= 1, threshold= 12
the number of true positives and negatives while mifyi 3. £yample of internal link prediction . First row
imizing the number of false positives and negativeﬁ.eft to right): a bipartite grapl@ and the links ofG
This is classically captured by two quantities [12];yceq by the internal linkB, 1). Second row (left to

ician i PNE’| i |PNE’| ) . i ;
called precision i.e. —z— andrecall i.e. —77—. right): the links E -, and E, -, with weight at least

In this section, we introduce our link predictionglven weight function,

method for bipartite graphs, which we cadternal link
prediction ) .
The key feature of our prediction method is that (B, 1); the_.\refore vye do not pr_edlcﬁtB,l).
it focuses on internal links: it predicts internal links'he complexity of this method is the same as the
only (of which there are much less than possible linkan€ of the collaborative filtering approach that we use
betweenT and L nodes). The underlying intuition is for comparison, and it is bounded by the computa-
that two bottom nodes which already have a commdipn of G.: it is in time O(A_|E|), where A, =
neighbor inG (i.e.they are linked irG | ) will probably maxue [N1(u)| is the largest degree i, and
acquire more in the future. Instead, if two nodes ha@PaceO(|T| + | L[) in addition to the space needed
no common neighbor i, then they will probably still for storingG.
have none in the future. The links that can be added to
G which fit both criteria are precisely internal links.
Going further, two bottom nodes with many com- The performances of link prediction methods depend
mon neighbors inG will probably have more in the On various parameters, in particular the reference and
future. We will capture this in a weight functionprediction periods durations, and the weight function.
(defined in the next section), with the expectation tha this paper we focus on the weight functions. We
the links that will appear are the internal links inducindirst describe three classical weight functions used in
1 -links with high weights. the literature. We then describe real-world datasets for
This leads to the following prediction method, whickpur experiments. We show that the amount of internal
we call internal links prediction Let us consider a links in them is high, which ensures the relevance
weight functionw, and a given weight threshold. ©of predicting internal links. Finally, we compare the
We denote byZ | . = {(u,v) € E1, w(u,v) >t} the performances of our approach for link prediction to the
set of links in the projection that have a weight largepnes of the collaborative filtering approach, a classical
than or equal ter. We then predict all the internal links 'ecommendation technique.
which induce at least one link i/ . A
Figure 3 shows an example of internal linkK"™
prediction. The set of internal links ofG is Several approaches are used for weighting the links
{(B,1),(C,k),(D,k),(E,j)}; let us focus on the of the L-projection in order to capture more informa-
internal link (B,1). It induces (B, C), (B,D), and tion than raw projections. We present the main ones in
(B, E). Given a threshold we predict(B, 1) if one this section.
of these links has weight at least For instance (see First, the weight of link(u,v) may be defined as
Figure 3): the number of (top) neighbors that and v have in
e if T = 11, only 5 links in the projection have common in the bipartite graph, calletim[13]:
we?ght_lar_gerthan or equal tg incIuding(B,C)j o(u,v) = [N (u) N N(v)|.
which is induced by(B,); we therefore predict
(B,1); Notice that ifu and v both have many neighbors,
e if T = 71y, only one link has the weight largertheno(u, v) will naturally tend to be high. Conversely,
than or equal ter, and it is not a link induced by if « andv have only few neighbors but these neighbors

VI. EXPERIMENTAL RESULTS

Weight functions
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Fig. 4: Performances of the two considered link predictiopthods internal link prediction (ILP) and
collaborative filtering (CF) (left: file-provider biparitgraph; right: user-tag bipartite graph) when the weight
function is the Jaccard coefficient. We plot precision anchile(vertical axis) as functions of the number of

predicted links (horizontal axis).

are the same, thern(u, v) is low, which does not reflect We use for our experiments a file-provider graph from
the fact thatu andv are very similar. To capture this,a peer-to-peer measurement [16] and user-tag graph

one may use thdaccardcoefficient [14]:

_ [N(w) A N(v)|

T MU Nl

from delicious.com [17]. For each dataset, we choose
reference and prediction periods which are represen-
tative of wide ranges of values for these parameters.
Basic features of the reference graphand the new

The value ofy(u, v) may however be strongly biasedlinks E’ appearing during the prediction period are
if one of the two nodes has many neighbors and theesented in Table I, for the two datasets.

other one only few: the value would then be very low,
even if all neighbors of one node are neighbors of the

other. From this point of view, though, nodes play an
unbalanced role: & -nodex has an influence on the
similarity betweenw pairs of L-nodes.

When N(z) is large, this is huge; on the contrary,

file-provider user-tag
number of T-nodes 1,920, 353 13,851
number of L-nodes 122,599 21, 398
number of links inE 4,502,704 435, 830
number of links inE’ 1,170,504 1,663,799
fraction of internal link inE’ 34% 21%

if @ T-node only has two neighbors then it probablfABLE I: Number of T-nodes, L-nodes, links in the
indicates a significant similarity between them. T@ipartite graphG, new links in the prediction period
capture this, one may consider that eacimodevotes and fraction of internal links among them, for file-

for the similarity between its neighbors and that thgrovider and user-tag bipartite graphs.

sum of its votes is only one (it has only one voice to
distribute). This leads to thdelta function [15]:

2
duv)= Y IN(z)| x (IN(z)| = 1)

€N (u)NN (v)

and capture relevant informations about a bipartite

graph. Each has its own strengths and weaknesses, &n

The fraction of internal links among the new links

E’ appearing during the prediction period is very high,
34% and 21% for file-provider and user-tag bipartite
graphs respectively. This motivates our approach of
All weighting functions presented above are naturdbcusing on this special class of links.

dmpact of the number of predicted links

up to our knowledge there has been only limited com- In order to illustrate the performances of our link
parison between them until now. By comparing theiprediction method, we observe the impact of the
performance in the context of link prediction belownumber of predicted link$P| on the two prediction

we expect to give some insight on their respectivmethods. We compute the precision and recall for all

relevance in this context.

function of | P|.
Note that high values ofP| correspond to small
Evaluating our method in practice requires the availsalues of the threshold for internal links prediction.

B. Data

ability of large scale bipartite dataith their dynamics

possible values ofP| and plot them in Figure 4 as a

If T =0 then all possible internal links are predicted,
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Fig. 5: Precision (vertical axis) as a function of recall fjzontal axis), for the three weight functions: sum,
Jaccard and delta. First row: file-provider bipartite grefdcond row: user-tag bipartite graph. Léfternal link
prediction(ILP); right: collaborative filtering (CF). Each point cesponds to the precision and recall obtained
for a given value oft or .

which corresponds in this example 8d¢% and21% D. Impact of the weight function
of all appearing link for file-provider and user-tag Let b the | t of weiaht functi
bipartite graphs respectively. However, many of these €t us now observe the Impact of weight functions

links do not actually appear, and so the correspond” both considered prediction methods and real-world

ing precision is almost zero. Instead, if a very hig atasets. We compute the precision and recall for all

threshold is used then only few internal links art@.OSSibIe values of the thresheidor internal link pre-

predicted, and so the obtained recall is almost Zer%lction and all possible values oV for collaborative

However, most of these few links do appear, whic I]:c?rrllng;b\;vg pl((j)t thell()pta';ned pr5eC|3|on as a function
corresponds to a precision of almast% and45% for of the obtained recall In Figure .

file-provider and user-tag bipartite graphs respectively, FOr internal link prediction(Figure 5, left), a first
important observation is that the considered weight

functions clearly split into two classes for the file-
provider graph (first row): sum and Jaccard reach very
More generally, the number of predicted link8| high values of precision, and are also able to reach
has a strong impact on the performance of the predi¢ery good compromises between precision and recall
tion methods. Figure 4 shows that precision decreadéke a precision 060% and a recall oR0%); instead,
and recall increases whdi| increases, as expecteddelta leads to poor performances. In the user-tag graph
In practice, one has to choose a tradeoff between ttgecond row), the three weight functions give good
two performance indicators. Figure 4 also shows th@ompromises between precision and recall.
internal link predictionsurpasses significantly collab- No such behavior is observable for collaborative
orative filtering, but we do not detail this here. filtering (Figure 5, right), and for all weight functions



internal link prediction performs much better tharsimilar statistics based on internal links may be used
collaborative filtering (notice that the vertical axes aréor this same purpose, and have significant advantages

at different scales to help readability).

over redundancy (in particular, it is not a local measure,

and is related to the graph dynamics). We consider this

VII. CONCLUSION

In this paper, we introduce a new class of links
in bipartite graphs, which we calhternal links and
propose a method which uses them for solving the linkll
prediction problem. We evaluate the relevance of this
method by comparing it to a classical collaborative?]
filtering approach and perform experiments on two
datasets.

Our link prediction method has the following advan-[3]
tages. First, it performs very well, much better than a
collaborative filtering approach, where no other metho%
was previously available. Moreover, our method is
purely structural: it relies on the identification of a
specific kind of links which will probably appear in 5]
the future; this gives much insight on the properties
of the underlying dynamics. Finally, the use of weight
functions allows to tune the method in order to reac
target tradeoffs in the quality of the prediction: one
may use small thresholds to have excellent precision
at the cost of a poorer recall, and conversely. [

Our work may be extended in several ways. In par-
ticular, other (maybe more specific) weight functions
may be introduced and tested. One may also predi
internal links that inducenly links with weight above
the threshold (inducingnesuch link is sufficient in our
current algorithm), or use botf- and 1 -projections
(our current algorithm only uses thée- one). There
is therefore room for improving the method and its
results. [

Likewise, it would be interesting to conduct more
experimentations and compare results on differefi¢l
datasets. Comparing our method with others, in P&
ticular machine learning approaches like the one pre-
sented in [7] is also appealing. Last but not leas4l
our work calls for the development of link prediction
methods forexternallinks (those links which are not
internal). [15]

Another interesting direction would be to modify[le]
our approach in order to perform recommendation. As
already explained, link prediction and recommendation
are quite different problems, but they are strongIM7
related. Just like we adapted collaborative filtering for
link prediction in bipartite graphs, one may adapt our
method and evaluate its relevance for recommendation.

Finally, we think that the notion ointernal links
introduced in this paper is fundamental and may be
used as a building block in a much wider scope, in
particular analysis of bipartite graphs in general. Al-
though different, it is close to the notion efdundancy
proposed in [1], which is one of the main statistics
currently used for studying real-world bipartite graphs.
The fraction of internal links in any bipartite graph and

El
[10]

as one of the main perspectives of our work.
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