
Multi-Step Community Detection and Hierarchical Time
Segmentation in Evolving Networks

Thomas Aynaud
UPMC Univ Paris 06, UMR 7606, LIP6, F-75252,

Paris, France
thomas.aynaud@lip6.fr

Jean-Loup Guillaume
UPMC Univ Paris 06, UMR 7606, LIP6, F-75252,

Paris, France
jean-loup.guillaume@lip6.fr

ABSTRACT
Many complex systems composed of interacting objects like
social networks or the web can be modeled as graphs. They
can usually be divided in dense sub-graphs with few links
between them, called communities and detecting this un-
derlying community structure may have a major impact in
the understanding of these systems. We focus here on evolv-
ing graphs, for which the usual approach is to represent the
state of the system at different time steps and to compute
communities independently on the graph obtained at each
time step.

We propose in this paper to use a different framework: in-
stead of detecting communities on each time step, we detect
a unique decomposition in communities that is relevant for
(almost) every time step during a given period called the
time window. We propose a definition of this new decompo-
sition and two algorithms to detect it quickly. We validate
both the approach and the algorithms on three evolving net-
works of different kinds showing that the quality loss at each
time step is very low despite the constraint of maximization
on several time steps.

Since the time window length is a crucial parameter of
our technique, we also propose an unsupervised hierarchical
clustering algorithm to build automatically a hierarchical
time segmentation into time windows. This clustering relies
on a new similarity measure based on community structure.
We show that it is very efficient in detecting meaningful
windows.

Categories and Subject Descriptors
[Data]: Social networks, Graphs; [Algorithms/Models]:
Clustering, Classification

General Terms
Community detection, evolving graphs, social networks, com-
plex networks, web, clustering
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
The 5th SNA-KDD Workshop ’11 (SNA-KDD’11), August 21, 2011, San
Diego CA USA. Âl’ ACM, 2011. This is the author’s version of the work.
It is posted here by permission of ACM for your personal use. Not for redis-
tribution. The definitive version was published in SNAKDD proceedings,
2011
Copyright 2011 ACM 978-1-4503-0225-8 ...$10.00.

Introduction
Many complex systems are modeled by graphs, or complex
networks, which are particularly suited for representing large
groups of interacting objects. For instance, the web is a
graph of web pages interacting through hyperlinks and the
brain is a graph of neurons connected through synapses.
Even if they model systems of very different types, these
graphs share common non-trivial properties like a low aver-
age distance and a small global density balanced with a high
local density. This last property means that there are few
links inside these graphs but that links are grouped, which
suggests that there exist groups of nodes with many links
inside the groups but few between them. These groups of
nodes are called communities and finding and understand-
ing this underlying structure may have a major impact in
the global understanding of the modeled systems. For in-
stance, the detection of these communities can be used for
graph visualization [2] or to mine various kinds of graphs:
they can be groups of interest in a social network [4, 33], web
pages dealing with the same subject [10], proteins that share
a common function in a metabolic network [36] or modules
in a software source code [18].

In the last decade, many definitions have formalized this
concept and many algorithms have been proposed to com-
pute these communities in large graphs using only topolog-
ical information in an efficient way [12, 25, 27]. The Lou-
vain Method [7] in particular allows to detect communities
quickly and efficiently with enlightening results.

Complex networks model systems that are usually evolv-
ing (pages appear or disappear on the web, contacts between
people evolve over time...). However, most of these graphs
are still studied as static graphs, i.e. without considering
time. These studies therefore overlook much information
that would be crucial to fully understand phenomena taking
place in the network. Now that more and more data con-
taining temporal information becomes available, algorithms
devoted to evolving graphs are required. However, finding
and analyzing communities on evolving graphs raises new
complex issues. For example, an evolving graph can be seen
as a sequence of static graphs, but it raises the issue of de-
ciding what happens between snapshots.

In this paper, we propose a novel approach that consists
in detecting communities that are satisfying on a given long
period. To achieve this, we detect only one partition in com-
munities for a given period that will be relevant for every
time step of this period and will thus represents the struc-
ture of these snapshots at once. Obviously, considering one
unique clustering that is relevant for several snapshots can-

not be as good on a given snapshot as partitions found by a
static algorithm that specifically optimizes it for this partic-
ular snapshot, but we will show that we can find partitions
having equivalent quality even during long periods. Relying
on an existing static definition allows us to quantify the loss
of quality and to validate more efficiently our results. This
unique decomposition will represent a more global structure
since it will remain valid for a long time called the time
window.

Choosing a relevant time window is of course an issue
since the graph may have a given structure for some time
and then change during another period. For instance, a
contact graph is different between day and night since people
are often with colleagues during daytime and with family
during evening and night. Furthermore, the structure during
the day also evolves with meetings, lunches or breaks: time
windows can therefore contain smaller natural windows. We
propose to identify automatically such changes by building
a hierarchical decomposition of time in which each period
can be associated to a clustering of the graph.

This paper contribution is thus twofold: first a new def-
inition of multi-step communities with two algorithms to
detect them on very large datasets and second an automatic
method to hierarchically extract meaningful time windows.
This paper is organized as follows: we first introduce some
background and related works and then we define precisely
the concept of multi-step communities. In section 3 we pro-
pose two algorithms to efficiently detect such communities
and, in section 4, we evaluate these algorithms on three
evolving graphs with very different features. Finally, we
present and validate the hierarchical time decomposition in
meaningful time windows, before concluding and presenting
the perspectives of this work.

1. BACKGROUND AND RELATED WORK

1.1 Communities
Detecting communities in complex networks has raised a

lot of interest and many algorithms have been proposed.
Usually, people try to find a partition π of the nodes which
can be evaluated by a quality function that gives a score to π.
The modularity [20] is a widely used quality function which
compares, for each community, the proportion of links inside
the community with a null model claiming that meaningful
communities are more densely connected than a null model
would expect. The classical null model is a random graph
with the same degree sequence as the graph under study.
Using this null model, with L the total number of links, ls
the number of links inside a community s and ds the total
degree of s, the modularity of a partition π is:

Q(π) =
∑
s∈π

ls
L
−
(
ds
2L

)2

Since the modularity is null when all nodes are grouped in
a single community, interesting modularities are always pos-
itive and the higher the modularity, the better the partition.
Readers can refer to [6] for tighter bounds and a more pre-
cise study of the modularity and to [26] for expected values
on random graphs. The modularity’s main drawback is that
it favors large communities [6]. However, it is very natural
for studying graph structure and it can be easily extended

to more complex cases, such as directed or weighted graphs
and overlapping communities [17, 21].

Finding the partition that maximizes the modularity on a
given graph is NP-hard and many approximation algorithms
have been proposed (see [12, 25, 27] for very complete sur-
veys). Modularity is one of the few quality functions that
can be optimized on huge graphs. Indeed, networks of bil-
lion links have been partitioned in a few hours [7] and this
efficiency is required in order to study evolving graphs com-
posed of many huge static graphs. Since we are using heuris-
tic algorithms, a low value of the modularity can mean either
that the algorithm does not succeed in finding meaningful
structure or that this structure does not exist. With this
limitation in mind, we will use in this paper the Louvain
Method, which is the fastest modularity optimization algo-
rithm [7] producing very high quality results. We describe
it in more details in section 2.2.

1.2 Communities in evolving graphs
Evolving graphs can generally be described as a sequence

of static graphs where several modifications occur between
consecutive snapshots. On such graphs, two main approaches
have been followed to study the evolution of communities:
computing communities for each snapshot and then tracking
communities among them, or using the temporal informa-
tion directly during the detection, i.e. detecting communi-
ties on the evolving graph itself.

The first approach is much simpler since it consists in
community detection at each time step, which can be done
with any algorithm. However, it requires the tracking of
the communities i.e. following what happens between two
consecutive snapshots. A community may remain stable,
split, appear, disappear, or merge with another one for in-
stance. The intuitive method is to compare two communi-
ties of consecutive time steps with rules based on the size of
their intersection [1, 14, 29]. These rules can be used con-
jointly with the clustering algorithm [23] or simplified by
tracking only specific core nodes such as the ones defined
in [34] which would be more representative of their commu-
nity than others. Many workarounds are required because
of stability issues: the static algorithms used on each snap-
shot are often non-stable and hence produce different results
even if the input graph does not change. This produces noise
that makes the tracking very difficult. To solve this issue,
one may consider only stable communities [14] or use a very
constrained algorithm [23].

The second approach consists in directly integrating time
into the computation. Different techniques have been pro-
posed, such as probabilistic models [32], modified algorithms
like streaming algorithms [22], modification of static algo-
rithms [3], use of new objects like sliced networks [19] and
finally new definitions of communities [31]. A new definition
proposed in [16] splits the quality function in two terms: one
for the quality of a snapshot partition and one for the sta-
bility. It can be quickly summarized in defining the quality
Qdyn as Qdyn = Qsnapshot+αQstability where Qsnapshot is a
static quality function, modularity for instance, Qstability is
a stability term and α is a parameter that allows changing
the importance of the stability. Instead of a stability term,
[28] extends this idea and proposes to add an overall qual-
ity term. The partition found at time t does not have to
be close to the partition at time t − 1 but must be a good
partition at time t and a fairly good partition at time t− 1.

We propose in this paper to extend this idea by computing
communities that are almost always good on a given time
period.

Finally, extracting interesting time windows based on struc-
tural changes has attracted attention mainly to perform
event detection by studying how much new information is
brought by the new snapshot [30] and by discovering corre-
lated spatio-temporal changes [9]. We will extend the notion
of time windows to a hierarchy of windows that do not have
to be consecutive in section 4, based on our notion of multi-
step communities.

2. MULTI-STEP COMMUNITIES

2.1 Definition
We consider here that an evolving graph is a succession

of static graphs, each of them representing the state of the
complex network at a given time. The evolving graph G on
a set of snapshots S = {1, 2, ..., n} is G = {G1, G2, ..., Gn}
with Gi = (Vi, Ei) the snapshot i with nodes Vi and edges
Ei. We denote by V = ∪i∈{1,...,n}Vi the set of all the nodes
and a clustering, i.e. communities, is a partition of V . We
also define a time window T as a subset of the possible snap-
shots, i.e. T ⊆ S. In many situations, not all snapshots
have the same importance and we may assign a weight wi
to snapshot i. A possible use of weights is to consider snap-
shots that are not regularly spaced in time: for instance if
snapshot i represents the state of the network for a long pe-
riod, then wi could be related to the length of the period.
It is also possible to give an increasing importance to recent
snapshots using a weight like: wi = i

n
. Then, we define

Qavg (G, π, T) the average modularity of the partition π of
V for a given time window T as:

Qavg (G, π, T) =
1∑

i∈T wi

∑
i∈T

wi.Q (Gi, π)

WhereQ (Gi, π) is the modularity of the partition π on the
static graph Gi considering only the nodes in Vi. We call
it the static modularity to differentiate it from Qavg, the
average modularity, which applies on evolving graphs and is
defined on several snapshots. Detecting communities means
finding a partition that maximizes the average modularity.
As it is a NP-complete problem [8], we will actually try
to find partitions that have the higher average modularity
possible.

2.2 Detection algorithms
We propose two algorithms to find a partition of high av-

erage modularity on a given time window. The first one
consists in building a new graph that is an average repre-
sentation of the evolving graph and then detecting static
communities on it. The second method is a modification of
the Louvain Method which is a static modularity optimiza-
tion algorithm.

To be more precise, the Louvain Method is a hierarchi-
cal greedy algorithm designed to optimize the modularity
on a static graph (weighted or not). It is composed of two
phases, executed alternatively. Initially, each node is in a
singleton community. Next, during phase 1, nodes are con-
sidered one by one 1. Each one is placed in its neighboring

1The results depend on the order in which nodes are con-

community (including its own community) that maximizes
the static modularity gain. This phase is repeated until no
node is moved (the obtained decomposition is therefore a
local maximum). Then, phase 2 consists in building a new
graph between the communities found during phase 1: there
is a node in the new graph for each community and, for two
communities C and C′, there is a link of weight w where
w =

∑
v,v′∈C×C′ weight(v, v

′). There is also a loop on C of

weight
∑
v,v′∈C×C weight(v, v

′) 2. The algorithm then exe-
cutes phase 1 and 2 alternatively until the static modularity
no longer increases.

2.2.1 Sum-method
Rather than directly optimizing the average modularity,

we first propose the sum-method to optimize the static mod-
ularity on an average representation of the evolving graph.
Given an evolving graph G = {G1, G2, ..., Gn} and a time
window T ⊆ {1, ..., n}, we build a new weighted graph,
called the sum graph, which is the union of all the snap-
shots in T : each edge of the sum graph is weighted by the
total time during which this edge exists in T . Since the sum
graph is a static weighted graph, we can apply the Louvain
Method on it, or any other classical algorithm, and use the
result as multi-step communities.

However, the metric optimized this way is slightly different
from the average modularity. Given a partition π, we denote
by ltc the number of links inside the community c at time
t, Lt the number of links of Gt and dtc the total degree of
the community c at time t. The total weight of links inside
community c is therefore

∑
t∈T ltc, the total weight of the

sum graph is
∑
t∈T Lt and the total weighted degree of the

community c is
∑
t∈T dtc. Then, the static modularity of

the partition π on the sum graph is equal to:

Qsum(π,G, T) =
∑
c∈Π

∑
t∈T ltc∑
t∈T Lt

−
(∑

t∈T dtc

2.
∑
t∈T Lt

)2

If we come back to the definition of average modularity
and after reordering the summation, we have:

Qavg(π,G, T) =
1∑

i∈T wi

∑
c∈Π

(∑
t∈T

ltc
Lt
−
∑
t∈T

(
dtc

2.Lt

)2
)

Therefore the static modularity on the sum graph Qsum
is not exactly the average modularity Qavg and we will next
propose a second method to directly optimize this quantity.
Nevertheless, this first method is very fast since sum graphs
are usually much smaller than the sum of the size of all snap-
shots and we will see that it is a good first approximation
since the obtained results have a high average modularity.

2.2.2 Average-method
To optimize the average modularity we will modify the

Louvain Method. Two reasons explain the efficiency of the
Louvain Method. First, when it must decide into which
community a node should be moved, it can compute quickly
the static modularity gain of each possible move. Second,

sidered. It does not really matter in our results and we use
one predefined order for each graph.
2This ensures that the partition found after phase 1 has the
same static modularity as the partition of the new graph
where each node is put in its own community.

the size of the considered network is quickly reduced at phase
2 and therefore all subsequent phases are really fast. We
must change two elements to adapt the Louvain Method to
optimize the average modularity during a time window T :
the computation of the quality gain in the first phase and
how to build the network between communities in the second
one.

One must note that the difference between two partitions
is the sum of the differences of the static modularity for
each snapshot. Therefore, the average modularity gain can
also be easily computed locally: it is the average of the static
gains for each snapshot of T . The transformation of the net-
work into a network of communities can be modified in the
following way: given a partition π of V , we apply the same
transformation as for the Louvain Method on every snapshot
of T independently (with different weights for each snapshot)
to obtain a new evolving network between the communities
of π. We call this algorithm the average-method.

Executing the average-method does not take more time
in worst cases than executing the classic Louvain Method
on each snapshot of T since it consider less nodes during
phase 1. Therefore, it remains applicable to huge datasets
composed of thousands of nodes and thousands of time steps.
An implementation of this algorithm is available at [13]. We
will next analyze the results of these two algorithms.

3. RESULTS ANALYSIS
To validate our approach and the two associated algo-

rithms, we use three evolving graphs with very different
characteristics, which show the advantages and the limita-
tions of our approach.

Blogs dataset. During four months, about six thousands
blogs have been monitored to track posts, comments and
citation links between blogs. We study here the aggregated
graph between blogs. We start with an empty graph and
every day we add the blogs and links seen this day. The
obtained evolving graph grows slowly and regularly during
120 time steps. For more details about the measurement,
see [11].

Mrinfo dataset. The second graph represents the topol-
ogy of multicast routers on the Internet measured with the
mrinfo tool. This tool allows asking to a multicast router
all its neighboring multicast routers. Every day, mrinfo was
run on a first router and then recursively on every neighbor
in a breadth first search fashion. This is not a social net-
works, but our algorithms and definitions are valid on any
kind of evolving graphs and internet topology share many
properties with social networks [35, 5]. Thus we consider it
as another interesting dataset and include it in our study.
The measurement has been performed during several years,
yielding a dynamic map of the multicast routers topology.
For more details about the measurement, see [24]. We focus
here on year 2005, which represents 365 snapshots contain-
ing about 3100 nodes on average. The evolution of this
graph is divided in three very distinct phases. The first
phase spans from the beginning up to day 52. During this
phase the graph is very unstable and contains many events.
The second phase is between days 52 and 117 and is more
stable. Finally, the third phase lasts from day 117 to the
end. This last phase is similar to the first one but is longer
and contains fewer events.

Imote dataset. The last graph is a sensor graph repre-
senting proximity between participants of the Infocom 2005

conference. Participants received a sensor device capable of
recording the presence of nearby devices. The experiment
started at the conference registration on the evening before
the conference itself, then lasted three nights and days. The
measurement ended at the end of the third morning. The
measurement is very noisy since bluetooth devices often fail
to detect each other. People move and so links are quickly
changing, resulting in a graph with many transformations.
It is composed of 41 nodes and 25000 snapshots, which are
not regularly distributed in time. This allowed us to weight
snapshots with the effective duration between them. Note
that the graph is very stable during night, with only a few
connections, and very dynamic during days. For more de-
tails see [15].

The three graphs have very different characteristics. Mrinfo
and Blogs are quite stable and Imote is very dynamic; Imote
contains many snapshots and Blogs only a few. Finally,
Blogs is growing (no link is ever removed) and therefore the
last snapshot contains all the information. We will see in
the sequel that the two algorithms provide results which are
related to these characteristics.

3.1 Average modularity
To study the efficiency of the algorithms we compare the

quality of several partitions during the whole measurement
and the time window T is then {1, ..., n}. The s-partition
is the result of the sum-method (see Section 2.2.1) and the a-
partition the result of the average-method (see Section 2.2.2).
We have also computed the partitions found by the classic
Louvain Method for every snapshot independently. These
are the static partitions. As they have the best static mod-
ularity we may expect, we compare their average static mod-
ularities to the values obtained with both our methods.

s-partition a-partition Average static
Blogs 0.6 (2min 20s) 0.61 0.62 (2min 40s)
Mrinfo 0.91 (28s) 0.92 0.923 (34s)
Imote 0.38 (16s) 0.39 0.56 (8s)

Table 1: Average modularities of studied partitions
during whole measurement and time of the opti-
mization on a regular desktop personal computer.
a-partitionnever takes more than a few seconds.

Table 1 presents the obtained modularities for the 3 meth-
ods. While a-partition and s-partition have very similar
quality, the a-partition is always better. As the s-partition
is faster to compute, it remains interesting, but from now on
we will always use the a-partitions and call them multi-step
partitions.

Finally, one can see that the multi-step partition has a
comparable average modularity to the maximum one in the
Blogs and Mrinfo graphs. We insist that this maximum
cannot be achieved because this would require a snapshot
so that the unique partition optimized for every snapshot
has a better static modularity on this snapshot than the
partition specifically optimized for it without consideration
of others. This is not realistic since you cannot find higher
static modularity by adding more constraint. If the evolving
graph is composed of only one snapshot, both methods are
exactly the classic Louvain Method.

The most difficult case for our algorithm is when the com-
munity structure changes drastically, for instance when a

few nodes that are strongly connected stop being connected
and change their links to nodes outside their community. It
happens in the Imote graph and we will see more precisely
in the sequel some cases where the algorithm finds a good
structure and some where it fails.

3.2 Static modularity of multi-step partitions
To obtain more precise information about the quality of

partitions, Figure 1 presents the static modularity of these
partitions over time. We have also added the best static par-
tition which is the partition among all the static partitions
which has the highest average modularity. Their average
modularity are 0.6 for Blogs, 0.61 for Mrinfo and 0.34 for
Imote. Excepted for Blogs, the best static partitions are not
good compared to s-partition and a-partition.

In the Blogs graph, multi-step partition and static par-
tition quality are regularly getting closer confirming that
static and average structure are getting closer. Similarly,
the best static partition challenges other approaches. This
is because this graph is always growing. Therefore, the last
snapshots are very similar to the sum graph and then the
last static partitions have a high average modularity.

In the Mrinfo graph, the multi-step partition has almost
always the same quality as the static. Thus, we capture
the overall structure of this graph with only one partition.
It works even during phase 2 between days 52 and 117. It
seems that parts of the set of nodes change during this pe-
riod, and thus this event does not affect the partition of the
other nodes. The best static partition here clearly fails in
discovering a global structure since it is good only during a
few snapshots. This shows the interest of looking for a rele-
vant multi-step partition on the whole measurement rather
than just selecting one snapshot which cannot be represen-
tative of the whole.

In the Imote graph, it appears that the structure changes
a lot over time and there is a clear day/night effect. The
multi-step partition is a lot more effective during night, since
the graph is almost static and groups are clearly separated.
Conversely it fails during the day when the structure is less
stable and thus more difficult to identify. The best static
partition suffers from same default and has a lower quality.

Finally, the efficiency of the average modularity depends
on graph characteristics. With Mrinfo and Imote, the multi-
step partition gives new information since there is no rep-
resentative time of the average structure whereas for Blogs
detecting the structure of the last snapshots is sufficient.

3.3 Nodes existence
An interesting insight is the existence or not of nodes dur-

ing the time window. The partition is unique and thus static,
but the graph evolves. Nodes and links appear and disap-
pear and although we only have one partition, communities
still evolve. Some nodes may even never exist at the same
time but be strongly connected to a very stable core in a
multi-step community. To represent this, we have drawn a
picture for every community where each line corresponds to
a node and each column to a time step (see Figure 2). If
the n− th node of the community exists at time t, the point
(t, n) is white and conversely the point is black if it does not
exist. To have a result which does not look noisy and is un-
derstandable, we must order the nodes carefully. We have
chosen one simple order which gives good results: nodes
are first ordered according to their first appearance time

Time

Group 1

Group 2

Core
group

Event 1 Event 2 Event 3

N
o
d
e
s

(a)

N
o
d
e
s

(b)

Figure 2: Nodes existence diagrams in Mrinfo
dataset for two interesting communities.

since nodes that appear together are often similar, and then
sorted according to the number of snapshots during which
they exist (it appears that this approach puts together nodes
involved in the same events).

This graphical representation is not interesting for all graphs
and communities since we cannot display many nodes nor
many snapshots. Furthermore the multi-step partitions are
not always meaningful and then trying to display them is not
very useful. In Blogs, communities grow slowly and there is
nothing really interesting to show. For Imote, there are too
many snapshots divided in phases where we do not find rel-
evant average structure so we do not represent it. The most
interesting results are obtained on Mrinfo, see Figure 2.

The community (a) illustrates the simplest case: all nodes
exist almost during the same time except a few outliers.
Nodes appear and disappear together which is revealing that
the grouping is relevant. The community (b) is a more com-
plex case and allows the identification of sub-clusters: a core
group composed of nodes that are the most present and two
groups that exist at different moments. Thus at the begin-
ning, group 1 and core group exist and disappear during
phase 2 between days 52 and 117 before reappearing for a
few days. Then, group 1 disappears and group 2 replaces it.

Such drawings illustrate that even if the partition is unique,
nodes may exist or disappear during the measurement and
therefore the communities are evolving. This reveals new
information about community structure, hence looking lo-
cally inside a community allows us to study an interesting
evolution.

4. TIME WINDOW AND HIERARCHY
Until now, we have always optimized the average mod-

ularity over the whole experiment time and we have seen
that in some cases this leads to communities of lower inter-
est since the average structure changes too much. We will
now exploit the fact that we can choose the time window
T . It can be an interval if we are interested only in consec-
utive snapshots, but it is not mandatory. For example, one
may imagine a repeated social structure every day, which
would therefore not be composed of consecutive snapshots,
and detecting it would be interesting.

4.1 Hierarchy
In Imote the structure changes between days and nights,

but it changes also during days with several sessions, lunches,
keynote, etc. Thus, time windows can naturally contain

0 50
100

150
200

250
300

350
400

Time

0.75

0.80

0.85

0.90

0.95

M
o
d
u
la

ri
ty

mrinfo

0
50000

100000

150000

200000

250000

Time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
imote

0 20 40 60 80
100

120

Time

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80
blogs

Multi-step partition
Static partitions
One static

Figure 1: Static modularities of the studied partitions on each snapshot.

smaller windows. This kind of hierarchical segmentation is
usually represented as a tree in which the leaves are the in-
dividual time steps, which are hierarchically grouped using
a similarity criterion. We propose an agglomerative hierar-
chical time clustering algorithm (algorithm 1): at the begin-
ning, every snapshot is alone and we group recursively the
two most similar windows until no possibility remains. This
algorithm requires a similarity measure to decide which time
windows should be merged.

Algorithm 1 Hierarchical time window merge algorithm.

1: G the initial graph
2: L the list of potential snapshots, initially empty
3: for all snapshots t of G do
4: Compute the communities π{t} on the snapshot t
5: Put {t} in L
6: end for
7: while L not empty do
8: Find Ti and Tj in L which maximize Sim(Ti, Tj)
9: Remove Ti and Tj of L and add T = Ti ∪ Tj in L

10: Output that Ti and Tj have been merged
11: Compute πT the communities of G on the window T
12: end while

4.1.1 Similarity
To define a similarity between time windows, we will rely

on the associated partitions. We claim that if two time win-
dows are structurally similar, the multi-step partition of one,
which summarizes its structure, will be a relevant decompo-
sition for the other and conversely. This can be evaluated
for two time windows Ti and Tj associated to the partitions
πi and πj by the similarity:

Sim(Ti, Tj) = Qavg(G, πi, Tj) +Qavg(G, πj , Ti)

We do not perform direct comparison of the partitions
because of the instability of the decomposition algorithms
as discussed earlier and in [3]. Conversely, the modularity
is very stable and therefore we use it to test if both time
windows have a similar structure.

Some extensions of the algorithm are possible. For ex-
ample, one may want to force the merged time windows to
be consecutive: in this case, the results are easier to inter-
pret but repeated structures will be missed if they are not
consecutive. In the following we will also forbid the merge

of time windows whose similarity is negative 3. With these
rules, the algorithm can produce several disjoint trees rather
than a simple one.

This algorithm can produce time segmentation quickly. If
the evolving graph is made of n snapshots, there are initially
n community detections to perform and one more commu-
nity detection for each merge, i.e. at most n more. Thus,
there are 2n executions of the sum-method (but most on
smaller time windows than the whole dataset) and each par-
tition must be evaluated on each snapshot, which is equiv-
alent to iterating over all the edges. The exact complexity
of this algorithm relies on the complexity of the Louvain
Method, which is unknown. For instance, the times segmen-
tation takes 1 hour and 30 minutes for Mrinfo, 25 minutes
for Blogs and 8 hours for Imote (the high number of snap-
shots induces a very large tree). If we use the constraint of
merging only consecutive time windows, these lengths drop
to 17 minutes for Mrinfo, 11 minutes for Blogs and 1 minute
50 seconds for Imote.

4.2 Time window hierarchies
Validation of the results is an important problem and is

now performed experimentally. We have checked that time
windows identified by the algorithm correspond to under-
standable phenomena in the graphs. This validates both
the algorithm and the similarity function. We have built the
tree for each dataset with and without forcing time windows
to be consecutive. Note that if we force time windows to be
consecutive, a strong modification of the structure during
one time step prevents time windows before and after this
event to be merged and results in a split. This validation
process is limited, but there do not exist an objective bench-
mark for dynamic community detection.

With the Mrinfo dataset using consecutive time windows
(Figure 3 top), the highest level, which contains the largest
time windows, is more granular than the 3 phases described
before. Indeed, there are many events during the first phase
which therefore cannot be identified as one consecutive time
window. The group of snapshots between 52 and 116 cor-
responds to phase 2 and the time windows after correspond
to the phase 3 also separated in four sub-windows by small
events. The first level hence reflects almost exactly what
we were expecting and we can explain many separations at

3the trivial partition where all nodes are in one community
has a modularity of 0, so a negative modularity describes a
worse decomposition!

Tree with consecutive time windows

Tree with non-consecutive time windows

Phase 3 separated by events

[350-364]

[118-155]

[117-155]

[157-159] [220-276]117

[220-348]

[277-348]

[157-218]

[160-218]

Phase 2

[52-116]

[88-116][52-87]

Phase 1 and Phase 3

Phase 3

[117-155],[157-158],[160-218],[220-276]

[146-155],[157-158],[160-218],[220-276]

[117-155],[157-158],[160-218],[220-348],[350-364]

[117-145] [277-312],[314-348],[350-364]

Phase 1

[1-6],8 14,[16-19],[21-31],33,35,[37-44],[46-51]

[1-6],[8-9],14,[16-19],[21-31],33,35,[37-44],[46-51]

[1-6],[8-10],12,14,[16-19],[21-31],33,35,[37-44],[46-51],[117-155],[157-218],[220-348],[350-364]

10,12

[1-6],[8-9],14,[16-19],[21-31],33,35,[37-44],[46-51],[117-155],[157-218],[220-348],[350-364]

Phase 2 and outliers

7,11,13,15,20,32,34,36,45,[52-116],156,219,349

[79-80]

32,34,45,[52-86],[88-116]

34,45,[52-78],[81-86],[88-116]

Phase 1 divided in
many small windows

Figure 3: First levels of the hierarchical time decomposition on the Mrinfo dataset. Numbers in tree nodes
represent time windows. For instance, “32,34,45,[52-86],[88-116]“ corresponds to the time window containing
days 32, 34, 45, from 52 to 86 and from 88 to 116. We have grouped time windows into blocks with potential
explanations when possible.

Second day

[145587-155816]

[145587-169262]

[155821-169262]

Conference end

Last morning

[230130-233839]

[235892-246651]

Third night+evening

[190973-228892][169263-190831]

[169263-228892]

[169263-235887]

Experiment beginning

First night

[2842-60715]

Beginning

[0-2842] [2842-72488]

[0-72488]

First day

[88507-142243]

First day

[72489-78972]

[79972-85391]

[79972-142243]

Second night+evening

Keynote or

[61887-72488]

Keynote or
morning sessions ?

Figure 4: First levels of the hierarchical time decomposition on Imote dataset using consecutive time windows.
Times are in seconds.

lower levels.
When considering the decomposition obtained with non-

consecutive time windows (Figure 3 bottom), the effect caused
by events disappears. The first level is composed of two
groups: one containing phase 2 and some outliers and one
containing phase 1 and 3, which are quite similar struc-
turally. This last group is then subdivided into phase 1
and phase 3. Sub-levels are separated by events. Moreover,
without any constraint of consecutive grouping, we remark
that time windows are often almost consecutive except for
events, showing that the algorithm tends to merge similar
time windows anyway.

Imote dataset presents similar results. Using consecutive
time windows, the highest level contains several time win-
dows that correspond to real moments (see Figure 4). The
first one corresponds to the beginning of the experiment con-
taining three groups: 45 minutes after the beginning, a first
long period corresponding to the first night and then another
2 hours and a half, which may correspond to the breakfast
and keynote speech (we do not have the exact experiment
timing so we can only conjecture). Then there is a small
group that may correspond to a part of the day 1. The next
window is composed of another part of the day 1 and of the
second night. The following time window contains mostly
the second day, which is then divided in two parts that al-

Nights

AfternoonMorning

Day or night 1

Day or night 2

Day or night 3

Figure 5: Biggest tree of the hierarchical time
segmentation of the Imote dataset using non-
consecutive time windows. Blocks represent big sub-
trees to be able to represent the whole structure.

most match the morning and the afternoon. The next time
window is composed of the last night and a part of the last
morning. The last window contains the remaining moments
of the last morning. Thus, the time segmentation algorithm
seems to detect easily explainable time windows.

We present a sketch of the structure of the largest tree
(the others are very small) of the decomposition built using
non-consecutive time windows on Figure 5. The tree is huge
and there are many sub-levels thus we can only give an idea
of the whole structure and each block is in fact a big sub-
tree. Sub-trees are composed of snapshots of the same day,
showing that graph structure gives meaningful information.
The two biggest groups are the day 2 and the nights. Day 2
is then divided into the morning and the afternoon and the
night sub-tree contains many sub-trees depending on the
day.

Before event at day 40

[29-39][15-28]

[15-39]

[40-47],50,53,[56-58]

[69-80]

Beginning

[1-120]

[3-120]

[15-53],[56-59],61,66,[69-80]

[15-47],50,53,[56-58]

[1-2]

Figure 6: Tree of the hierarchical time segmenta-
tion of Blogs. Gray blocks represent sub-trees and
dashed arrows long paths with only one snapshot
added at each step.

With Blogs, consecutive and non-consecutive trees are
very similar. They are unbalanced and almost degenerate
into a list which is consistent with the fact that the graph
regularly grows: there is no clear notion of time windows.
We hence draw only a sketch of the non-consecutive tree
on figure 6. There are only few long time windows. The
highest windows contain the first snapshots, which are the
most different from the average structure. We do not suc-
ceed in interpreting the other windows because of a lack of
knowledge about the measurement. We only know that a
measurement event happened at day 40 that can be seen in
the two lowest windows.

Finally, results seem very promising. Time segmentation
is often meaningful with graphs that exhibit an evolution
we can divide in time windows. Both approaches, using
consecutive and non-consecutive time windows are comple-
mentary: consecutive time windows are easier to interpret
and produce directly interesting results but non-consecutive
are less sensitive to events and can therefore detect some
long range or periodic connections.

5. CONCLUSIONS AND PERSPECTIVES
We have shown that communities can be detected not only

on one given snapshot but also on a given long period by
optimizing an average quality function. We have proposed
two algorithms to optimize this quality: one is very fast but
the other produces better results and remains applicable to
huge datasets with many large snapshots.

The new temporal quality function is very general and
weights allow to emphasize some snapshots or to consider
their duration. We used here the modularity as the basic
quality function but others could have been used. Using
a known static quality function is an asset to validate our
results: if the static quality function is valid and we have
the same quality on one snapshot, then our new method is
also valid on this snapshot. Having communities that span
on several snapshots and diagrams like the nodes existence
over time provide new analysis tools to obtain insights about
lives of communities.

Optimizing on a given period raises the issue of the rel-
evant length of time windows since using a long period is
not always satisfying. We have proposed a method to ex-
tract automatically interesting time windows that scales to
evolving graphs of thousands of nodes and snapshots. Non-
consecutive time windows can be detected using an agglom-
erative hierarchical time clustering algorithm which uses a
similarity function based on the snapshots structure: if two
snapshots have the same structure, the multi-step partition
of one will be relevant on the other and conversely.

These results give new insights on the complex networks
under study. The construction process of Blogs has a sig-
nificant impact on the conclusions we can draw and maybe
some links should be removed some time after their creation
to obtain a temporal structure that is more meaningful on
such web graphs. Our algorithms are most successful on the
Mrinfo and Imote datasets where clear phases exist, which
can be detected and described. This experimental validation
is still limited and this is a major concern for all dynamic
community detection algorithms: there exist no consensual
benchmark or dataset with ground truth. As several algo-
rithms now exist, we should develop such tools for objective
comparison.

Further studies will also focus on other similarity func-
tions. The current similarity function measures both how
similar and modular time windows are and normalization
might correct this default. Another limitation of the new
average modularity is due to the summation itself. The sum
is commutative and thus the order of the snapshots has no
influence on the results. This means that there is no causal-
ity and that, for instance, the succession of snapshots G1,
G2, G3 is strictly equivalent to the succession of snapshots
G3, G2, G1. As a first approximation, it is all right, but it
would be great to adapt the metric to deal with causality.

Acknowledgments
This work was partly funded by a grant from the Agence
Nationale de la Recherche, with reference ANR-10-JCJC-
0202 and by the project WebFluence #ANR-08-SYSC-009.

6. REFERENCES
[1] S. Asur, S. Parthasarathy, and D. Ucar. An

event-based framework for characterizing the
evolutionary behavior of interaction graphs. In Proc. of
the 13th ACM SIGKDD, pages 913–921. ACM, 2007.

[2] D. Auber, Y. Chiricota, F. Jourdan, and G. Melançon.
Multiscale visualization of small world networks. In
Proc. IEEE Symposium on Information Visualization,
pages 75–81, 2003.

[3] T. Aynaud and J.-L. Guillaume. Static community
detection algorithms for evolving networks. In WiOpt
Workshop on Dynamic Networks, pages 508–514, 2010.

[4] L. Backstrom, D. Huttenlocher, J. Kleinberg, and
X. Lan. Group formation in large social networks:
membership, growth, and evolution. Proc. of the 12th
ACM SIGKDD, pages 44–54, 2006.

[5] A.-L. Barabasi and R. Albert. Emergence of scaling in
random networks. Science, 286(5439):509, 1999.

[6] M. Barthélemy and S. Fortunato. Resolution limit in
community detection. Proc. of the National Academy
of Sciences of the United States of America,
104(1):36–41, 2007.

[7] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and
E. Lefebvre. Fast unfolding of communities in large
networks. J. Stat. Mech, 10008:1–12, 2008.

[8] U. Brandes, D. Delling, M. Gaertler, R. Goerke,
M. Hoefer, Z. Nikoloski, and D. Wagner. Maximizing
Modularity is hard. ArXiv Physics e-prints, 2006.

[9] J. Chan, J. Bailey, and C. Leckie. Discovering
correlated spatio-temporal changes in evolving graphs.
Knowledge and Information Systems, 16(1):53–96,
2008.

[10] Y. Chi, S. Zhu, X. Song, J. Tatemura, and B. L.
Tseng. Structural and temporal analysis of the
blogosphere through community factorization. Proc. of
the 13th ACM SIGKDD, pages 163–172, 2007.

[11] J.-P. Cointet and C. Roth. Socio-semantic Dynamics
in a Blog Network. 2009 International Conference on
Computational Science and Engineering, (6):114–121,
2009.

[12] S. Fortunato. Community detection in graphs. Physics
Reports, (486):75–174, 2010.

[13] J.-l. Guillaume. Web Page,
http://jlguillaume.free.fr/www/programs.php.

[14] J. Hopcroft, O. Khan, B. Kulis, and B. Selman.
Tracking evolving communities in large linked
networks. In PNAS, volume 101, pages 5249–5253.
National Acad Sciences, 2004.

[15] P. Hui, A. Chaintreau, J. Scott, R. Gass, J. Crowcroft,
and C. Diot. Pocket switched networks and human
mobility in conference environments. Proc. of the 2005
ACM SIGCOMM workshop on Delay-tolerant
networking - WDTN ’05, pages 244–251, 2005.

[16] R. Kumar, A. Tomkins, and D. Chakrabarti.
Evolutionary clustering. In In Proc. of the 12th ACM
SIGKDD, pages 554–560. ACM Press, 2006.

[17] E. A. Leicht and M. E. J. Newman. Community
structure in directed networks. Physical Review
Letters, 100(11), 2007.

[18] S. Mancoridis, B. Mitchell, C. Rorres, Y. Chen, and
E. Gansner. Using automatic clustering to produce
high-level system organizations of source code. In

Proc. 6th Intl. Workshop on Program Comprehension,
pages 45–53, 1998.

[19] P. Mucha, T. Richardson, K. Macon, and M. A.
Porter. Community structure in time-dependent,
multiscale, and multiplex networks. Science,
876:10–13, 2010.

[20] M. E. J. Newman and M. Girvan. Finding and
evaluating community structure in networks. Physical
Review E, 69(2):26113, 2004.

[21] V. Nicosia, G. Mangioni, V. Carchiolo, and
M. Malgeri. Extending the definition of modularity to
directed graphs with overlapping communities. J. Stat.
Mech., 2009:P03024, 2009.

[22] H. Ning, W. Xu, Y. Chi, Y. Gong, and T. Huang.
Incremental spectral clustering with application to
monitoring of evolving blog communities. In SIAM
Int. Conf. on Data Mining, 2007.

[23] G. Palla, A.-L. Barabasi, and T. Vicsek. Quantifying
social group evolution. Nature, 446:664–667, 2007.

[24] J. Pansiot, P. Mérindol, B. Donnet, and
O. Bonaventure. Extracting Intra-Domain Topology
from mrinfo Probing. In Passive and Active
Measurement, 2009.

[25] M. A. Porter, P. J. Mucha, and J.-P. Onnela.
Communities in Networks. Notices of the American
Mathematical Society, 56:1082–1097, 2009.

[26] J. Reichardt and S. Bornholdt. When are networks
truly modular? Physica D Nonlinear Phenomena,
224:20–26, 2006.

[27] S. E. Schaeffer. Graph clustering. Computer Science
Review, 1:27–64, 2007.

[28] X. Song, Y. Chi, B. L. Tseng, D. Zhou, and K. Hino.
Evolutionary spectral clustering by incorporating
temporal smoothness. In Proc. of the 13th ACM
SIGKDD, pages 153–162. ACM, 2007.

[29] M. Spiliopoulou, I. Ntoutsi, Y. Theodoridis, and
R. Schult. Monic: modeling and monitoring cluster
transitions. In Proc. of the 12th ACM SIGKDD, pages
706–711. ACM, 2006.

[30] J. Sun, C. Faloutsos, S. Papadimitriou, and P. Yu.
Graphscope: parameter-free mining of large
time-evolving graphs. In Proc. of the 13th ACM
SIGKDD, pages 687–696. ACM, 2007.

[31] C. Tantipathananandh, T. Berger-Wolf, and
D. Kempe. A framework for community identification
in dynamic social networks. Proc. of the 13th ACM
SIGKDD, pages 717–726, 2007.

[32] B. L. Tseng, Y.-R. Lin, Y. Chi, S. Zhu, and
H. Sundaram. Analyzing communities and their
evolutions in dynamic social networks. ACM
Transactions on Knowledge Discovery from Data,
3(2):1–31, 2009.

[33] M. L. Wallace, Y. Gingras, and R. Duhon. A new
approach for detecting scientific specialties from raw
cocitation networks. J. Am. Soc. Inf. Sci. Technol.,
60:240–246, 2009.

[34] Y. Wang, B. Wu, and N. Du. Community Evolution of
Social Network: Feature, Algorithm and Model.
Science And Technology, (60402011), 2008.

[35] D. J. Watts and S. H. Strogatz. Collective dynamics of
’small-world’ networks. Nature, 393(6684):440–442,

1998.

[36] J. Zhao, H. Yu, J. Luo, Z. Cao, and Y. Li. Hierarchical
modularity of nested bow-ties in metabolic networks.
BMC bioinformatics, 7(386), 2006.

