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Abstract—Finding outliers in datasets is a classical problem of
high interest for (dynamic) social network analysis. However,
most methods rely on assumptions which are rarely met in
practice, such as prior knowledge of some outliers or about
normal behavior. We propose here Outskewer, a new approach
based on the notion of skewness (a measure of the symmetry
of a distribution) and its evolution when extremal values are
removed one by one. Our method is easy to set up, it requires
no prior knowledge on the system, and it may be used on-line.
We illustrate its performance on two data sets representative of
many use-cases: evolution of ego-centered views of the internet
topology, and logs of queries entered into a search engine.

I. INTRODUCTION

Faced with complex networks that evolve over time, a fre-
quent need is to monitor their evolution and automatically raise
alerts on abnormal behaviors of the system, i.e. events which
are statistically different from most others. This challenging
task is generally called outlier detection. In spite of many
works addressing this question for decades in various fields,
the diversity of cases leading to different outlier definitions
makes it hard to create a single universal method. Here we
consider the case of a property measured on an evolving
network (Figure 1). How can we automatically and reliably
identify outliers in it? It is challenging because these data
contain both regime changes (i.e. sudden changes of the mean
of the time series) due to the evolution of the normal behavior,
and outlying values that deviate globally or locally from the
main trend. Moreover, we have no prior knowledge on the
data; events may occur at different time scales; we want an on-
line method for real-time analysis. These settings are known to
pose a difficult problem. This paper introduces a new method
to automatically detect outliers in sets of numbers and in
time series. We also show its relevance for detecting abnormal
events in computer and social networks. The source code is
available [1].

A. Related Work

Given a data set, outlier detection aims at finding data
points which are very different from the remainder. This field
has received a large attention in the last decades because
outliers often represent critical information about an abnormal
behavior of the system described by the data. It covers a
broad spectrum of applications such as the identification of
mechanical faults, changes in system behavior, human and
instrument errors, natural deviations in a population, or data

cleaning prior to modelling. Outliers are also called: event,
novelty, anomaly, noise, deviation or exception [2].

However there is no formal definition of an outlier be-
cause this intuitive notion varies with the context and the
desired characteristics of outliers. In a statistical perspective,
Grubbs [3] defined that “an outlying observation, or outlier, is
one that deviates markedly from other members of the sample
in which it occurs”. Hawkins [4] defines an outlier as “an
observation which deviates so much from other observations
as to arouse suspicions that it was generated by a different
mechanism”, while Barnett and Lewis [5] call an outlier “an
observation (or subset of observations) which appears to be
inconsistent with the remainder of that set of data”. The
diversity of applications has led to the introduction of various
techniques for outlier detection [6]. Areas of research such as
statistics, data mining, information theory and process control
theory have produced various methods for spotting outliers
in stochastic processes. Specific researches also address the
question of detecting anomalies in the Internet traffic [7].

Existing methods may be divided between univariate meth-
ods (i.e. considering one variable), proposed in earlier works in
statistics, and multivariate methods (i.e. considering multiple
variables) which form the main part of the current body
of research. Although univariate methods have been studied
during a long time, and despite recent focus on multivariate
methods due to the increase of computational power, univariate
methods remain important to study.

We also distinguish parametric and non-parametric (model-
free) procedures [8]. Parametric procedures assume the values
to be identically and independently distributed following a
known probability distribution (generally a normal distribu-
tion), or at least a statistical estimate of the distribution param-
eters to fit the data. They flag as outliers the values that deviate
from the model hypotheses. They are often unsuitable for data
sets without prior knowledge of the underlying distribution [9]
because the hypotheses (e.g. the independence of values) are
not satisfied, and because the statistical models are not reliable
for real data and are hard to validate since many data sets do
not fit one particular model.

Non-parametric procedures do not assume knowledge of
the data distribution, and learn to detect outliers. In some
cases (supervised learning) labelled data sets are available,
from which the program builds a model of normal behavior
(and sometimes also a model of outlying behavior). Otherwise
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Fig. 1. Evolution of a property measured on a network during time. Some outliers are circled. Regime changes are pointed by arrows.

(unsupervised learning), the procedure builds a probabilistic
model of the data set, and updates this model as new points
appear. These procedures classify as outliers the data points
that deviate significantly from the model. These approaches are
based on histogram analysis, kernel density, distance measures
or clustering analysis.

The output of an outlier detector is a score of “outlierness”
assigned to each data point, which represents its probability to
be an outlier, or the distance from normal points. Data points
are ultimately classified as outliers when their score is above
a given threshold which is a parameter of the method.

The detection of outliers in temporal data relies mainly on
two approaches. In the first one, points which deviate from a
temporal model like the autoregressive integrated moving aver-
age (ARMA) model [10] or a finite-state automaton model [11]
are marked as outliers. In the second one, points very different
from other points within a sliding window are marked as
outliers. Regime changes (i.e. change points in time series
that are observed by sudden changes of the mean) may be
considered as anomalies as well [12], [13].

Finally, recent papers address the issue of outlier detection
in networks and graph streams [14] by finding surprising
motifs [15] [16].

B. Contribution and Organization of the Paper

We propose in this paper a new unsupervised non-
parametric univariate method that reliably detects multiple
outliers on either static or temporal data sets given the
following setting, which is known to be hard: values may
not be independent and identically distributed; we have no
prior knowledge of the underlying process which generated
the data, or of the probability distribution; in time series,
regime changes may exist due to the evolution of the normal
behavior (non-stationarity), and also outlying values which
deviate globally or locally from the main trend. We finally
want an on-line method for real-time monitoring. In this
context, our method has the following advantages: (a) it uses
a novel approach based on the study of the skewness of
distributions, and is easy to interpret; (b) it looks for outliers
only when the notion of outlier is relevant in the considered
data set; (c) it is easy to use, as the only parameter is the size
of the time window for time series, and (d) it may be used
on-line.

We describe our method in Section II, validate it in Section
III, and apply it on real-world data in Section IV; we conclude
in Section V.
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Fig. 2. Example of negative (left) and positive (right) skewed distributions.

II. THE OUTSKEWER METHOD

Our method relies on the notions of skewness of distribu-
tions and its evolution when extremal values are removed,
which we call skewness signature; we use this to detect outliers
in multisets of numbers and in time series.

A. Skewness

We consider a multiset (i.e. a set in which members may
appear more than once) X of n values. The distribution of
these values is the fraction Px, for each x, of values in X
which are equal to x. Such distribution samples are basically
described by their mean x̄ =

∑
x∈X(x/n) and standard

deviation σ =
√

1/(n− 1) ·
∑
x∈X(x− x̄)2. Going further,

the sample skewness is a measure of distribution asymmetry,
and can be estimated by:

γ(X) =
n

(n− 1)(n− 2)

∑
x∈X

(
x− x̄
σ

)3

.

Intuitively a negative skewness indicates a tail on the left
of the distribution more pronounced than the one on the right,
while a positive skewness means the converse, see Figure 2.
If no tail exists, i.e. all values are equal, γ(X) is undefined
because σ = 0. If both tails exist on each side and are equal,
γ(X) = 0. For normal distributions (Px = 1

σ
√
2π
e−

1
2 ( x−µσ )

2

),
γ(X) = 0, while for Pareto distributions (Px = aba

xa+1 where
0 < b ≤ a), γ(X) > 0. Examples of unimodal skewed
distributions are shown on Figure 2.

The skewness has the interesting feature to be influenced by
values which are far from other values, because it is based on
the cubed distance from values to the mean. Hence its value
changes a lot if they are removed. We show now how to use
this feature for outlier detection.

B. Skewness Signature

We consider the evolution of the skewness of a distribution
of values in a multiset X while extremal values are removed
one by one from X , which we call the skewness signature of



x

cu
m

ul
at

iv
e 

fr
eq

ue
nc

y

0.0

0.2

0.4

0.6

0.8

1.0

●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●

−8 −6 −4 −2 0 2

● not outlier
potential outlier
outlier

p

|s
ke

w
ne

ss
|

0.0

0.5

1.0

1.5

2.0

0 0.14 0.5 1

t T

p

|s
ke

w
ne

ss
|

0.0

0.1

0.2

0.3

0.4

0.5

0 0.14 0.5

t T

p

|s
ke

w
ne

ss
|

0.0

0.5

1.0

1.5

2.0

0 0.14 0.5 1

area of 
outliers 

area of 
potential outliers

area with no
outlier 

t’ T’

Fig. 3. Example of 50 values with 7 outliers and 5 potential outliers (from left to right): cumulative distribution; absolute values of the skewness signature;
zoom on it; absolute values of skewness for which outliers and potential outliers are detected. We obtain t = 0.14, T = 0.48, t′ = 0.16, T ′ = 0.24.

X . The extremal value of X , denoted by e(X), is:

e(X) =

{
max(X) if γ(X) > 0, and
min(X) otherwise.

In practice, the skewness is almost never equal to zero, hence
always choosing min(X) in the case where γ(X) = 0 induces
a negligible bias.

We define a series of multisets as follows: X0 = X , Xi =
Xi−1\{e(Xi−1)}, for all i > 0. In other words, Xi is the
multiset obtained by removing one occurrence of the largest
(resp. smallest) value of Xi−1 if the distribution of values in
Xi−1 has a positive (resp. negative or zero) skewness. Finally,
we define the skewness signature as the function s(p,X) =
γ(Xbp·nc), where n is the size of X and Xbp·nc is the multiset
obtained from X by removing bp · nc extremal values, i.e. a
fraction p of extremal values.

For example, if X = {-3, -2, -1, -1, 0, 1, 2, 3, 7}, values 7,
3, 2, -3, 1, -2, 0 are removed in this order1, and the values of
the skewness signature are 1.09, 0.22, 0.17, 0, 0.40, 0, 1.73.

The skewness signature may be used to find outliers in
unimodal distributions because outliers lie at their extremities,
and because skewness is sensitive to the removal of outliers.

C. Outlier Detection

Our method relies on the following hypotheses: outliers are
extremal values which cause the skewness to be far from zero;
the skewness signature converges to zero (i.e. the distribution
becomes more symmetric) when outliers are removed one by
one. Therefore, the distance of the skewness to zero can be
used to identify outliers. Extremal values which cause this
distance to be too large should be classified as outliers. But
how is it possible to determine that the distance is too large
without making any hypothesis on the data set?

We propose to consider the distance relatively to the pro-
portion of extremal values removed: the more extremal values
removed, the closer to zero the skewness is expected to be.
For any p ∈ [0; 0.5] we say that s is p-stable if and only
if |s(p′, X)| ≤ 0.5 − p, for all p′ ∈ [p, 0.5]. We do not
consider values of p larger than 0.5 because this corresponds
to a removal of more than half of all values; in such situations,

1Values are removed until γ(X) is not computable: our skewness estimator
is only relevant for data sets with at least 3 values.

the skewness has little to do with the original data, and it may
vary much if too many values are removed.

Let t be the smallest value such that s is t-stable, and T
be the largest value such that s is T -stable. When s is never
p-stable for any p, t and T do not exist. This case indicates
that it is irrelevant to look for outliers in the given data set,
according to our notion of outlier; in this case our method
classifies all values in the data set as unknown. Otherwise we
find outliers as follows.

We denote the smallest and largest numbers in Xi by
mini = min(Xi) and maxi = max(Xi). Then, minbp·nc
(resp. maxbp·nc) is the smallest (resp. largest) remaining value
when a fraction p of all values has been removed. Let t′ (resp.
T ′) be the smallest value of p such that |γ(Xbt′·nc)| ≤ 0.5− t
(resp. |γ(XbT ′·nc)| ≤ 0.5 − T ). Our method concludes as
follows: below minbt′·nc and above maxbt′·nc, values are
outliers; between minbt′·nc and minbT ′·nc included (resp.
maxbt′·nc and maxbT ′·nc), values are potential outliers;
values are not outliers otherwise. Notice that when t′ = T ′,
minbt′·nc = minbT ′·nc (resp. maxbt′·nc = maxbT ′·nc). In
this case, values equal to minbt′·nc (resp. maxbt′·nc) are po-
tential outliers. Figure 3 illustrates our method on an example.

D. Dynamic Extension

Our method may be used on time series representing the
evolution of a system’s property. Let {x0, x1, ..., xn} be a
time series. We consider the multisets which contain w values:
Xi = {xi−w+1, ..., xi}. Any value xi of the series belongs
to Xi, Xi+1, ..., Xi+w−1. We use our method on all these w
multisets, and consider the final class of xi to be the one which
occurs most often among these w classifications. In case of
equality, we give priority of outlier upon potential outlier upon
not outlier, because we prefer to detect too much outliers than
too few.

III. EXPERIMENTAL VALIDATION

The validation of outlier detection methods is difficult
because of the various outlier definitions, hypotheses and use
cases [8]. Labelled data sets raise also the issue of prior
criteria to label the data. We consider that our method should
detect outliers, if any, if the notion of outlier is relevant
for the given data set. In particular, we consider for our
experimental validation the following cases: (a) distributions
like Power laws (e.g. Pareto and Zipf’s law) commonly contain
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Fig. 4. Quartiles, min and max of s(p,X) on 1,000 normal (top) and Pareto (bottom) samples with the cumulative frequency distributions of s(p,X).

extremal values far from the mean (i.e. heterogeneous), so it
is erroneous to consider them as outliers, moreover Power law
distributions are asymmetrical so our method should conclude
that looking for outliers in them is irrelevant; (b) normal distri-
butions are symmetrical and extremal values far from the mean
are uncommon (i.e. homogeneous), so no outlier should be
detected but these extremal values when they occur; (c) half-
normal distributions (Px = 2a

π e
−x2a/π , where a > 0), which

are basically the absolute of normal distributions with mean
equal to 0, are asymmetrical but homogeneous, so this case
is ambiguous and should be unclear for our method as well;
(d) symmetric Pareto distributions (Px = aba

2 |x|
−1−a1|x|>b,

where 0 < a < 2 and b > 0), which are basically the mirror
symmetric of Pareto distributions about the vertical axis, are
symmetrical but heterogeneous, so we study the behavior of
our method in this case.

We first study the relevance of our method on these four
distributions, and we study the effect of the sample size (III.A).
Then we study the performance of our method to detect
outliers, and evaluate the rate of true outliers and false outliers
detected (III.B). We finally study the behavior of our method
when regime changes occur in temporal data (III.C).

A. Relevance

Our method is applicable if and only if the given data set
is p-stable for at least one value of p between 0 and 0.5. A
necessary condition for this is that |s(0.5, X)| < 0.5. We show
in this section that this is true for normal distributions (even
with a few outliers) and false for Pareto distributions, which
is the expected behavior: normal distributions are symmetrical
and homogeneous and Pareto distributions are asymmetrical
and heterogeneous.

We study the behavior of s on normal N (0, 1) and Pareto

(shape=6, location=2) probability distributions2. For each one,
we randomly generate 1,000 samples of 100 numbers to
obtain skewness signatures; we compute and plot the skewness
signature of each sample in Figure 4. We observe that the
values of normal signatures oscillate around zero, whereas the
values of Pareto signatures globally decrease and are above
zero until p ≈ 0.5. The cumulative frequency distributions
of s(p,X) on Figure 4 confirm these observations. We also
computed the skewness signatures of normal and Pareto distri-
butions with various parameters, and also various symmetrical
distributions3 which we do not present here due to space
constraints. All of them exhibit patterns similar to normal
signatures.

It is clear that the probability for Pareto skewness
to be within [−0.5; 0.5] increases with p. We estimate
P(|s(0.5, X)| < 0.5) on 1,000 Pareto and 1,000 normal
samples. We obtain that this probability is equal to zero for
Pareto samples, and is greater than 0.95 for normal samples.
We conclude that our method is able to characterize symmetri-
cal and homogeneous versus asymmetrical and heterogeneous
distributions at a confidence level of 0.95. Moreover, the
addition of some outliers in these distributions produces almost
the same signatures than without outliers, because extremal
values are firstly removed. Therefore existing outliers do not
notably change the characterization.

Let us study the evolution of s(0.5, X) when the sample size
n varies. We generate 1,000 normal and Pareto samples for
each value of n between 3 and 1,000, then compute s(0.5, X)
for each sample, and we finally obtain the quartiles, min and
max of the values of s(0.5, X) at each n. We observe in
Figure 5 that the results converge to zero for the normal

2Other parameters lead to similar results.
3Cauchy, Laplace, some Gamma and Weibull distributions.
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Fig. 5. Quartiles, min and max of s(0.5, X) as a function of n for normal (left) and Pareto (right) distributions.

distribution, and to ≈ 0.3 for the Pareto distribution. Thus,
increasing n should lead to a better characterization.

We verify this hypothesis by evaluating the rate of samples
where s is never p-stable, for 1,000 normal and Pareto samples
for each size n. We observe in Figure 6 that it seems to follow
a fast decrease for normal samples. For n ≥ 37, less than 5%
of normal samples are incorrectly characterized, and less than
5‰ for n ≥ 55. We also observe that it increases with n for
n > 50 on Pareto samples. The minimum is 79% at n = 52, is
around 85% at n = 100, around 95% at n = 240, and above
99.5% for n > 500.

We also evaluate this rate for half-normal and symmetric
Pareto samples. We observe in Figure 6 that it seems to follow
a fast decrease for symmetric Pareto samples, but a slow
decrease for half-normal samples. This result is not surprising
because the theoretical skewness of half-normal distributions4

is ≈ 1, and the skewness decreases slowly when extremal
values are removed one by one. As expected, our method has
unclear results in this case.

We conclude that our methods characterizes samples with
size 100 very well, and is excellent on samples of size
1,000. Our method also considers that the symmetric Pareto
distribution should contain no outlier.

In addition, we study the skewness range where our method
considers s to be p-stable at least once. We vary the shape
parameter of a Gamma distribution (thus its skewness) to
incrementally generate 1,000 samples of 100 numbers for
each skewness value, from Pareto-like samples to normal-like
samples, and compute the rate of s that are p-stable at least
once for each skewness. We remind that s is p-stable if and
only if |s(p′, X)| ≤ 0.5 − p, for all p′ ∈ [p; 0.5]. The result
in Figure 7 shows that s is always p-stable at least once for
samples of skewness below 1.5, and never p-stable for samples
of skewness above.

B. Performance

We study the effect of the sample size on outlier detection
in normal, Pareto, half-normal and symmetric Pareto distri-
butions. We generate 1,000 samples for each distribution and

4γ = (
√
2 · (4− π))/(π − 2)3/2
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Fig. 6. Fraction of samples for which s is never p-stable as a function of the
sample size n, for normal (top left), Pareto (top right), half-normal (bottom
left), and symmetric Pareto (bottom right) distributions.
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the skewness for Gamma samples (shape varying from 0.3 to 20).

size n, then we detect outliers on each sample. Normal and
Pareto samples contain no outlier by definition, so no outlier
should be detected; they are called false outliers.

We observe in Figure 8 that the rate of false outliers is
low, with at most 3% for the normal distribution and at most
5% for Pareto. This rate decreases when n increases to be
less than 1‰ above n ≈ 100 for the normal distribution, and
above n ≈ 500 for the Pareto distribution. We also evaluate the
rate of outliers detected for the symmetric Pareto distribution:
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Fig. 8. Fraction of sample points classified as outlier as a function of n for
normal (top left), Pareto (top right), half-normal (bottom left), and symmetric
Pareto (bottom right) distributions.

reaching 5% at most, it seems to follow a fast decrease when
n increases, to reach 1‰ at n ≈ 1000. For the half-normal
distribution, this rate is between 8% and 12% for n > 100,
and is consistent with the fraction of samples for which s is
never p-stable. We conclude that our method detects few false
outliers on samples of size 100, and almost none on samples of
size 1,000, which is an excellent performance; it rarely detects
outliers on symmetric Pareto samples, which is the expected
behavior regarding the characterization.

Now we estimate the ability to detect true outliers by
generating a sample of size 1,000 composed of a normal
sample of variance equal to 1 and a uniform sample (called
the noise) of size varying from 0.2% to 50% of the total
number of values. We then count the number of noise points
which are classified as outliers and potential outliers. It is the
worst case because the initial skewness is close to zero and
outliers are uniformly distributed around the mean with no
gap between them and the rest of the distribution. This is
also a way to evaluate the robustness of our method against
a problem known as the masking effect [17], occurring when
some outliers are not detected because of the presence of other
outliers close to them.

We generate uniform samples of various ranges (i.e. largest
minus smallest value). The range of normal samples of size
1,000 is roughly 6 and the range of samples of size 106 is
roughly 10, so we select noise ranges larger than this: 10, 50
and 100. We observe in Figure 9 that noise points very close to
the signal points (range 10) are classified as potential outlier.
Larger ranges increase the number of detected outliers. We
also see that the less noise, the higher the power to detect true
outliers. However almost no outlier can be detected with more
than 10% of uniform noise.

C. Regime Changes

Regime changes are change points in time series that are
observed by sudden changes of the mean. When they occur
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we are faced with non-trivial distributions. We study now how
our method deals with them. We simulate a stream of values by
generating two normal samples of size 110 with mean equal to
0 and 3 respectively. t indicates the order of appearance of the
values. Figure 10 shows our method applied dynamically with
a sliding window of size w = 100. The outlier status of values
is unknown at the beginning. At the end, none of them are
outliers but one potential outlier. Our method is hence robust
against regime changes. Notice that 72 values are classified
as potential outliers when our method is applied on the whole
data set at once.

IV. REAL-WORLD APPLICATIONS

A. Dynamics of Internet Topology

We applied our method to data collected with the radar
for the internet [18], which makes possible to observe the
dynamics of the internet’s topology at the scale of a few
minutes. It consists in focusing on the part of the internet’s
topology viewed from a single computer called the monitor.
Periodical measurements of this map, called ego-centered
view, were performed every 15 minutes during several months,
leading to a series of graphs.

The most natural idea to detect events in the dynamics cap-
tured by a radar measurement from a given monitor certainly is
to study the number Ni of nodes observed at each round i. We
plot it for a typical case in Figure 1. Clear outliers appear under
the form of sharp decreases of Ni for some values of i, but
this brings little information because they may be due to losses
of connectivity by the monitor. Except from these statistical
outliers, which are detected by our method, the number Ni of
nodes observed at each round i in Figure 11 is very stable.

We thus compute the number of distinct nodes seen in five
consecutive rounds to avoid the outliers which only reveal
losses of connectivity in one round of measurement. We ob-
serve events in the dynamics shown in Figure 12, where many
decreases existing in Figure 11 have disappeared. Figure 12 is
well centered around a typical value, but still exhibits sharp
increases and decreases. This means that these outliers, which
were also detected by our method, may reveal real events
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Fig. 10. From top-left to bottom-right, evolution of the outlier status of values in a time series of size n = 220, and having one regime change (mean
value changing from 0 to 3). Vertical lines indicate the time window boundaries between what outliers are detected.

in the dynamics of this network. Outliers above the typical
values indicate a sudden appearance of many new nodes in the
network, while outliers below the typical values may indicate
longer losses of connectivity or a sudden disappearance of
many nodes.

Our approach is hence relevant for studying the evolution
of ego-centered views of the internet topology, and for raising
automatic alerts in real-time when significant changes of
connectivity occur.

B. Search Engine Queries

We applied our method on the data set of search queries
captured from a eDonkey server [19]. It consists in textual
queries made by users for lists of files matching certain
keywords. The measurement lasted for 28 weeks. The data
set contains 205,228,820 queries entered from 24,413,195 IP
addresses. Samples and procedure descriptions are publicly
available [19].

In order to study the number of queries related to the film
Harry Potter and the half blood prince, we filtered the queries
to get only those which contain the words ”half blood prince”.
Then for every 10 minutes we counted the number of queries
made during the last hour of measurement. Outliers were
finally detected using a sliding window of size w = 1, 008 (7
days) to capture meaningful events at the scale of one week.
We plot in Figure 13 the number of outliers and potential
outliers observed each day and each week. The scale of a day
seems better for observing fast increases of user queries.

We identify three main events: we observe many values
marked as potential outliers during the week after July 15,
2009, when the film was out in theatres. Then an unknown
event appears from August 23 to 25, when almost all values are
outliers. The last automatically detected event, from October

10 to 12, coincides with the release of a pirated version of the
film on October 10 on BitTorrent, another P2P network, as
discovered by searching on https://thepiratebay.se. We suppose
that this release was made from a promotional DVD, because
the commercial DVD was released on December 7 only; we
observe no noticeable event on this day.

Our approach is hence relevant for studying logs of search
queries, and for detecting bursts of queries related to a same
topic.

V. CONCLUSION AND FUTURE WORK

We proposed the Outskewer method, to detect statistically
significant outliers in samples and time series. It uses a novel
approach based on the study of the distribution skewness. Our
method is easy to interpret because values are classified as
outliers, potential outliers or not outliers. The class of all
values is unknown when the notion of outlier is not relevant
in the considered data set. Our method is also easy to use
because it requires no prior knowledge on the data, and the
only parameter is the size of the time window for time series.
Moreover, it may be used on-line.

We applied it on two data sets representative of many use-
cases: evolution of ego-centered views of the internet topology,
and logs of queries entered into a search engine. We clearly
identify events in the evolution of ego-centered views of the
internet topology as shown in Figure 11 and Figure 12. We
also automatically detect the release of a pirated version of a
film in a P2P system, through the queries entered by users in
the search engine, as show in Figure 13.

This paper opens the way to further investigation of the use
of the skewness to detect multiple outliers in samples, and to
detect events at different time scales in time series. Further
studies may also extend our method to detect regime changes.

https://thepiratebay.se
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