Multidimensional Outlier Detection in Interaction Data: Application to Political Communication on Twitter

Audrey Wilmet and Robin Lamarche-Perrin

CompleNet, 2019

We introduce a method which aims at getting a better understanding of how millions of interactions may result in global events. Given a set of dimensions and a context, we find different types of outliers: a user during a given hour which is abnormal compared to its usual behavior, a relationship between two users which is abnormal compared to all other relationships, etc. We apply our method on a set of retweets related to the 2017 French presidential election and show that one can build interesting insights regarding political organization on Twitter.

Download

RankMerging: a supervised learning-to-rank framework to predict links in large social networks

Lionel Tabourier, Daniel F. Bernardes, Anne-Sophie Libert and Renaud Lambiotte

Machine Learning, 2019

Uncovering unknown or missing links in social networks is a difficult task because of their sparsity and because links may represent different types of relationships, characterized by different structural patterns. In this paper, we define a simple yet efficient supervised learning-to-rank framework, called RankMerging, which aims at combining information provided by various unsupervised rankings. We illustrate our method on three different kinds of social networks and show that it substantially improves the performances of unsupervised methods of ranking as well as standard supervised combination strategies. We also describe various properties of RankMerging, such as its computational complexity, its robustness to feature selection and parameter estimation and discuss its area of relevance: the prediction of an adjustable number of links on large networks.

Download

Applications through human mobility lens

Vsevolod Salnikov

jeudi 4 avril 2019, 14h, salle 26-00/332, LIP6, Sorbonne Université

Slides

In this talk I will present various data-oriented projects we have done recently. The general line will focus on human mobility sensing and different applications of such datasets from more theoretical ones towards extremely applied, which are on the border of research and commercial activities.Moreover we will discuss different stages: from data collection towards models and application as well as the ‘in-the-field’ validation of model predictions. I will propose few ways of data collection, which permitted to get impressive and reliable datasets with almost no cost. These datasets are already used for studies, but I would be also happy to discuss various applications and ways to collaborate!

Modélisation du contrôle des utilisateurs sur leurs données personnelles

Pablo Rauzy

Vendredi 12 avril 2019, 11h, salle 25-26/105, LIP6, Sorbonne Université

Du point de vue d’un utilisateur ou d’une utilisatrice d’un système d’informations, la privacy correspond au contrôle qu’il ou elle peut exercer sur ses données personnelles dans ce système. Cette vision de la privacy est essentielle si l’on veut contribuer au développement de technologies émancipatrices, c’est à dire aux services de leurs utilisateurs et utilisatrices seulement. L’étude et l’évaluation rigoureuse de la privacy offerte par un système nécessite donc une caractérisation formelle de ce contrôle. Nous proposons un cadre formel basé sur des capacités qui permet de spécifier et de raisonner sur ce contrôle et ses propriétés. Nous verrons au travers d’exemples que cela permet notamment la comparaison de mises en oeuvre alternatives d’un même système (un réseau social basique dont nous comparons trois implémentations possibles), et donc la possibilité d’étudier et d’optimiser la privacy dès la phase de conception.

An information-theoretic framework for the lossy compression of link streams

Robin Lamarche-Perrin

Theoretical Computer Science, 2019

Graph compression is a data analysis technique that consists in the replacement of parts of a graph by more concise structural patterns in order to reduce its description length. It notably provides interesting exploration tools for the study of real, large-scale, and complex graphs which cannot be grasped at first glance. This article proposes a framework for the compression of temporal graphs, that is for the compression of graphs that evolve with time. This framework first builds on a simple and limited scheme, exploiting structural equivalence for the lossless compression of static graphs, then generalises it to the lossy compression of link streams, a recent formalism for the study of temporal graphs. Such generalisation builds on the natural extension of (bidimensional) relational data by the addition of a third temporal dimension. Moreover, we introduce an information-theoretic measure to quantify and to control the information that is lost during compression, as well as an algebraic characterisation of the space of possible compression patterns to enhance the expressiveness of the initial compression scheme. These contributions lead to the definition of a combinatorial optimisation problem, that is the Lossy Multistream Compression Problem, for which we provide an exact algorithm.

Comparaison des méthodes de classification pour l’identification des noeuds importants dans les graphes dynamiques

Marwan Ghanem

Rencontres jeunes chercheurs en RI, 2019

De nos jours, nous nous intéressons à la détection d’entités importantes, ceci peut être des mots-clés importants dans un document ou Twitter, ou des individus importants dans un réseau de mouvement. Nous pouvons modéliser ces données sous la forme d’un graphe dynamique et utiliser des métriques de centralité telle que la centralité de proximité temporelle. Malheureusement, cela peut être coûteux. Dans ce travail, nous comparons la précision de plusieurs méthodes de classification supervisée, les unes par rapport aux autres, à la détection de ces nœuds importants. Sur seize jeux de données de natures différentes, nous montrons que ces méthodes réussissent à différencier les nœuds importants de nœuds insignifiants. Nous montrons également que prendre en compte la nature des données diminue la qualité de résultats. Enfin, nous examinons le temps du calcul de chacune de ces méthodes contre le temps du calcul de méthodes exact.

Download

Neighbour-distinguishing decompositions of graphs

Mohammed SENHAJI

Vendredi 15 mars 2019, 14hrs, salle 25-26/105, LIP6, UPMC. 4 Place Jussieu, 75005, Paris.

The main question that we explore was introduced by Karonski, Luczak and Thomason in 2004 : Can we weight the edges of a graph G , with weights 1 ,2 , and 3 , such that any two of adjacent vertices of G are distinguished by the sum of their incident weights ? This question later becomes the famous 1-2-3 Conjecture.In this presentation we explore several variants of the 1-2-3 Conjecture, and their links with locally irregular decompositions. We are interested in both optimisation results and algorithmic problems. We first introduce an equitable version of the neighbour-sum-distinguishing edge-weightings, that is a variant where we require every edge weight to be used the same number of times up to a difference of 1. After that we explore how neighbour-sum-distinguishing weightings behave if we require sums of neighbouring vertices to differ by at least 2. Namely, we present results on the smallest maximal weight needed to construct such weightings for some classes of graphs, and study some algorithmic aspects of this problem. Due to the links between neighbour-sum-distinguishing edge weightings and locally irregular decompositions, we also explore the locally irregular index of subcubic graphs, along with other variants of the locally irregular decomposition problem. Finally, we present a more general work toward a general theory unifying neighbour-sum-distinguishing edge-weightings and locally irregular decompositions.

Minorities in Networks

Claudia Wagner

Lundi 28 janvier 2018, 11hrs, salle 24-25/405, LIP6, UPMC. 4 Place Jussieu, 75005, Paris.

Networks are the infrastructure of our social and professional life andalso of modern information systems where billions of documents andentities are interlinked. However, not all nodes are equal in thesenetworks. Often we observe attributes (e.g. gender or ethnicity) thatdefine the group membership of a node. In this talk I will explore therole of minorities in social networks and information networks, provideempirical evidence for the disadvantage of minorities and discussfactors that may place minorities at a disadvantage.

What graphs can contribute to a more transparent artificial intelligence

Tiphaine Viard

January 17th 2019, 14:00. Salle 24-25/405, LIP6 – UMPC, Sorbonne Université. 4 Place Jussieu, 75005 Paris.

AI and machine learning are commonly described as « black boxes » that are efficient, but opaque. While complete opacity would be an exageration, it is true that many methods for explainability rely on forms of retro-engineering: we try to infer the model from its (partial, intermediary, final) results. These methods are typically based on large-scale, efficient matrix manipulation. Graphs and their extensions have shown to be visualisable and interpretable, even at large scales. In their classical formulation, they are also very similar to matrices. However, few to no machine learning method explored what graphs could contribute to its models.  This is partly due to the fact that graph computations have long been expensive, typically having polynomial running times, which is incompatible with the scale of data in most of today’s machine learning applications. However, the situation has changed: (i) the impact of AI on society makes it no longer acceptable to favour efficiency despite transparency, and (ii) recent advances in algorithmic methods on graphs demonstrates that due to the nature of real-world graphs, even some NP-hard problems become tractable. The aim of this talk is to explore this avenue of research. We will discuss the state-of-the art in learning from graph data, present some recent results showing that structure-based features indeed have the potential to make machine learning more transparent at no extra cost, and finally we will discuss future tracks of research.

Easy-Mention: a model-driven mention recommendation heuristic to boost your tweet popularity

Soumajit Pramanik, Mohit Sharma, Maximilien Danisch, Qinna Wang, Jean‑Loup Guillaume, Bivas Mitra

International Journal of Data Science and Analytics, vol. 7 (2), 2018

This paper investigates the role of mentions on tweet propagation. We propose a novel tweet propagation model SIR MF based on a multiplex network framework which allows to analyze the effects of mentioning on final retweet count. The basic bricks of this model are supported by a comprehensive study of multiple real datasets, and simulations of the model show a nice agreement with the empirically observed tweet popularity. Studies and experiments also reveal that follower count, retweet rate and profile similarity are important factors for gaining tweet popularity and allow to better understand the impact of the mention strategies on the retweet count. Interestingly, we experimentally identify a critical retweet rate regulating the role of mention on the tweet popularity. Finally, our data-driven simulations demonstrate that the proposed mention recommendation heuristic Easy-Mention outperforms the benchmark Whom-To-Mention algorithm.

Download

A Modular Overlapping Community Detection Algorithm: Investigating the « From Local to Global » Approach

Maximilien Danisch, Noé Gaumont, Jean‑Loup Guillaume

16th Cologne-Twente Workshop on Graphs and Combinatorial Optimization, 2018

We propose an overlapping community detection algorithm following a “from local to global approach”: our algorithm finds local communities one by one by repetitively optimizing a quality function that measures the quality of a community. Then, as some extracted local communities can be very similar to each-other, a cleaning procedure is applied to obtain the global overlapping community structure. Our algorithm depends on three modules: (i) a quality function, (ii) an optimization heuristic and (iii) a cleaning procedure. Various such modules can be independently plugged in. We show that, using default modules, our algorithm improves over a state-of-the-art method on some real-world graphs with ground truth communities. In the future we would like to study which combination of modules performs best in practice and make our code parallel.

Download

Pattern Matching in Link Streams: a Token-based Approach

Clément Bertrand, Hanna Klaudel, Matthieu Latapy et Frédéric Peschanski

Petri Nets, 2018

Link streams model the dynamics of interactions in complex distributed systems as sequences of links (interactions) occurring at a given time. Detecting patterns in such sequences is crucial for many ap- plications but it raises several challenges. In particular, there is no generic approach for the specification and detection of link stream patterns in a way similar to regular expressions and automata for text patterns. To address this, we propose a novel automata framework integrating both timed constraints and finite memory together with a recognition algo- rithm. The algorithm uses structures similar to tokens in high-level Petri nets and includes non-determinism and concurrency. We illustrate the use of our framework in real-world cases and evaluate its practical per- formances.

Listing k-cliques in Sparse Real-World Graphs

Maximilien Danisch, Oana Balalau and Mauro Sozio

WWW, 2018

Motivated by recent studies in the data mining community whichrequire to efficiently list allk-cliques, we revisit the iconic algorithmof Chiba and Nishizeki and develop the most efficient parallel algo-rithm for such a problem. Our theoretical analysis provides the bestasymptotic upper bound on the running time of our algorithm forthe case when the input graph is sparse. Our experimental evalua-tion on large real-world graphs shows that our parallel algorithm isfaster than state-of-the-art algorithms, while boasting an excellentdegree of parallelism. In particular, we are able to list allk-cliques(for anyk) in graphs containing up to tens of millions of edges aswell as all10-cliques in graphs containing billions of edges, withina few minutes and a few hours respectively. Finally, we show howour algorithm can be employed as an effective subroutine for find-ing thek-clique core decomposition and an approximatek-clique densest subgraphs in very large real-world graphs.

La sainte famille des Cahiers du cinéma

Olivier Alexandre

Vrin, Philosophie et cinéma, 2018

Plus célèbre revue de cinéma au monde, les « Cahiers » occupent une place singulière dans le domaine de la critique. De crises en renaissances, ils continuent d’incarner un passé élevé au rang de mythe. Leur capacité à marier les contraires, entre gloire et marginalité, sens aigu de l’histoire et rendezvous manqués, révèle la part tragique du critique : ce travailleur sans métier, auteur sans profession, ni cinéaste ni enseignant, pas tout à fait journaliste ni complétement écrivain. À partir d’une enquête auprès de collaborateurs passés par les Cahiers du cinéma au cours des 50 dernières années, ce livre propose une réponse à cette question laissée en suspens depuis leur fondation : qu’est-ce qu’un critique?

L’analyse des opinions politiques sur Twitter : Défis et opportunités d’une approche multi-échelle

Marta Severo and Robin Lamarche-Perrin

Revue française de sociologie: Big Data, Sociétés et Sciences Sociales, 2018

Des blogs et forums aux pages Facebook et comptes Twitter, le récent déluge des données numériques du web a fortement affecté la recherche en sciences sociales. Cette nouvelle catégorie d’information, utile à l’extraction des opinions politiques, se présente comme une alternative aux techniques traditionnelles telles que les sondages. Premièrement, en réalisant un état de l’art des études de l’opinion s’appuyant sur les données Twitter, cet article vise à mettre en relation les méthodes d’analyse utilisées dans ces études et les définitions de l’opinion politique qui y sont suggérées. Deuxièmement, cet article étudie la faisabilité de réaliser des analyses multi-échelles en sciences sociales concernant l’étude de l’opinion politique en exposant les mérites de plusieurs méthodes, allant des méthodes orientées contenus aux méthodes orientées interactions, de l’analyse statistique à l’analyse sémantique, des approches supervisées aux approches non supervisées. Le résultat de notre démarche est ainsi d’identifier les tendances futures de la recherche en sciences sociales concernant l?étude de l’opinion politique.

Caractériser lanalogie entre automates cellulaires déterministes et systèmes physiques

Lionel Tabourier

Lato Sensu, Revue de la Société de Philosophie des Sciences, Vol.5, n°2, 2018

La classification de Wolfram des automates cellulaires déterministes repose sur l’analogie entre le comportement dynamique des automates et celui de systèmes physiques au cours d’une transition de phase. Pour évaluer la valeur scientifique de la classification, longuement débattue, on doit s’interroger sur les caractéristiques de cette analogie. Nous établissons ici quels éléments, présents dans les transitions de phase, n’ont pas d’équivalent dans le domaine des automates. Ensuite, nous discutons la notion de potentiel d’une analogie en la comparant à deux autres exemples de la littérature.

Centrality metrics in dynamic networks: a comparison study

Marwan Ghanem, Clémence Magnien and Fabien Tarissan

IEEE Transactions on network science and engineering, 2018

For a long time, researchers have worked on defining different metrics able to characterize the importance of nodes in static networks. Recently, researchers have introduced extensions that consider the dynamics of networks. These extensions study the time-evolution of the importance of nodes, which is an important question that has yet received little attention in the context of temporal networks. They follow different approaches for evaluating a node’s importance at a given time and the value of each approach remains difficult to assess. In order to study this question more in depth, we compare in this paper a method we recently introduced to three other existing methods. We use several datasets of different nature, and show and explain how these methods capture different notions of importance. We also show that in some cases it might be meaningless to try to identify nodes that are globally important. Finally, we highlight the role of inactive nodes, that still can be important as a relay for future communications.

Download

Quantifying the diversity in users activity: an example study on online music platforms

Poulain Rémy and Tarissan Fabien

SNAMS, 2018

Whether it be through a problematic related to information ranking (e.g. search engines) or content recommendation (on social networks for instance), algorithms are at the core of processes selecting which information is made visible. Those algorithmic choices have in turn a strong impact on users activity and therefore on their access to information. This raises the question of measuring the quality of the choices made by algorithms and their impact on the users. As a first step into that direction, this paper presents a framework to analyze the diversity of the information accessed by the users. By depicting the activity of the users as a tripartite graph mapping users to products and products to categories, we analyze how categories catch users attention and in particular how this attention is distributed. We then propose the \emph{(calibrated) herfindahl diversity} score as a metric quantifying the extent to which this distribution is diverse and representative of the existing categories. In order to validate this approach, we study a dataset recording the activity of users on online music platforms. We show that our score enables to discriminate between very specific categories that capture dense and coherent sub-groups of listeners, and more generic categories that are distributed on a wider range of users. Besides, we highlight the effect of the volume of listening on users attention and reveal a saturation effect above a certain threshold.

Download