Computing communities in large networks using random walks

By Pascal Pons and Matthieu Latapy

Journal of Graph Algorithms and Applications (JGAA) vol. 10, no. 2, pages 191-218, 2006. Extended abstract published in LNCS, proceedings of the 20-th International Symposium on Computer and Information Sciences ISCIS'05, 2005, Istambul, Turquie


Dense subgraphs of sparse graphs (communities), which appear in most real-world complex networks, play an important role in many contexts. Computing them however is generally expensive. We propose here a measure of similarities between vertices based on random walks which has several important advantages: it captures well the community structure in a network, it can be computed efficiently, and it can be used in an agglomerative algorithm to compute efficiently the community structure of a network. We propose such an algorithm, called Walktrap, which runs in time O(mn²) and space O(n²) in the worst case, and in time O(n² log n) and space O(n²) in most real-world cases (n and m are respectively the number of vertices and edges in the input graph). Extensive comparison tests show that our algorithm surpasses previously proposed ones concerning the quality of the obtained community structures and that it stands among the best ones concerning the running time.

This entry was posted in Papers and tagged ,