Mobile IPv6 Deployments: Graph-based Analysis and practical Guidelines

Guillaume Valadon, Clémence Magnien and Ryuji Wakikawa

Computer Communications, 32, 2009

The Mobile IPv6 protocol is a major solution to supply mobility services on the Internet. Many networking vendors have already implemented it in their operating systems and equipments. Moreover, it was recently selected to provide permanent IP addresses to end users of WiMAX and 3GPP2. Mobile IPv6 relies on a specific router called the home agent that hides location changes of the mobile nodes from the rest of the Internet. To do so, the mobile nodes’ traffic must flow through the home agent. This mandatory deviation produces longer paths and higher communication delays. In order to solve these problems, we describe a new approach to address deployments of Mobile IPv6 based on graph theory and could be applied to any operator’s network. In particular, we use notions of centrality in graphs to quantify increases of communication distances induced by dogleg routing and identify relevant home agents locations. We evaluate this approach using real-world network topologies and show that the obtained Mobile IPv6 performance could be close to direct paths ones. The proposed algorithm is generic and can be used to achieve efficient deployments of Mobile IPv6 as well as Home Agent Migration: a new Mobile IPv6 architecture using several distributed home agents.