Matthieu Latapy and Stephany Rajeh
In IEEE International Conference on Data Mining (ICDM), 2025
Detecting anomalies in link streams that represent various kinds of interactions is an important research topic with crucial applications. Because of the lack of ground truth data, proposed methods are mostly evaluated through their ability to detect randomly injected links. In contrast with most proposed methods, that rely on complex approaches raising computational and/or interpretability issues, we show here that trivial graph features and classical learning techniques are sufficient to detect such anomalies extremely well. This basic approach has very low computational costs and it leads to easily interpretable results. It also has many other desirable properties that we study through an extensive set of experiments. We conclude that detection methods should now target more complex kinds of anomalies.
arxiv url to come
