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Abstract

The concern of this thesis is the modelling of opinion polarisation. There
is increasing worry that the political debate of today has levels of polarisa-
tion that result in hostility between groups and the obstruction of collective
decision making. One research approach to studying polarisation is opin-
ion dynamics; it consists of the formal mathematical modelling and simu-
lation of the opinions of a population to understand how they might reach
consensus, polarisation, or somewhere in between. Simulating opinions and
understanding population dynamics through scenarios, as well as identifying
tipping points between consensus and polarisation, avoids the difficulty and
complexity of observing a population’s opinions change over time. However,
a drawback is the limited empirical validation of current opinion dynamics
research, which raises questions as to its relevancy in real-world application.
A further shortcoming of the current literature is that the impacts of so-
cial identity and attitudes towards groups are rarely considered, despite the
importance placed on these concepts in the social science literature. These
two research gaps — empirical validation and group identification — are the
subjects addressed in the following work in order to place opinion dynamics
in an improved real-world context.

To answer this research aim, two contributions in the form of two mod-
elling extensions are proposed. First, the perception of groups is incorporated
into an existing opinion dynamics model such that the convergence or diver-
gence of opinions is directly impacted by an individual’s understanding of
others as either in-group or out-group. The second extension seeks to enable
the empirical validation of models by providing a framework that finds plau-
sible model parameters for simulation. This is achieved by a mean-field ap-
proximation of the same model and subsequent numerical simulation, which
allows for the modelling of opinion distributions of populations rather than
the agent-based approach which focuses on an individual’s opinion change.
A set of criteria is then established in order to find simulated distributions
that match behaviour displayed by empirical distributions and so may be
considered plausible.

The findings from the group identification extension reveal that treatment
of out-group is a central part of understanding the eventual polarisation of a
population, while the influence of in-group interactions can temper extreme



opinion shifts or, conversely, fragment groups from within. While the results
of the mean-field extension identify a set of model parameters for which a
given model can plausibly simulate an opinion distribution, which is a step
towards closing the gap between theoretical opinion dynamics and empirical
validation. Together, these findings contribute to ongoing debates surround-
ing the development of polarisation in public and private spheres, as well as
enhancing the relevance of opinion dynamics through connection to social
science theory and empirical validation.
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Chapter 1

Introduction

The interest and disquiet caused by the levels of perceived political polarisa-
tion today have seen responses on multiple fronts. Polarisation has increas-
ingly become a subject for social scientists in Europe and America (Wagner
2021; Finkel et al. 2020), launched large collaborative studies to test inter-
ventions intended to reduce hostility between political groups and antidemo-
cratic attitudes (Voelkel et al. 2024), and been named as the “word of the
year” in 2024 (Merriam-Webster 2024). The response in this thesis will be
to assess the macroscopic emergence of polarisation from the microscopic
opinion dynamics of large social simulations.

Models of opinion change and their study — known as opinion dynamics
— is a research approach to understanding the polarisation of political views
held by individuals. It is a tool that allows for the testing of theories (Geschke
et al. 2019) given that opinion surveys are costly and complex, while also pro-
viding analogies to reflect upon the properties of opinion updating systems
(Olsson and Galesic 2024). This formal mathematical modelling approach
to understanding opinion change has applied statistical physics methods to
social systems, and pointed to possible explanations for agreement and polar-
isation of a population’s opinions by artificially reproducing salient features
and trends (Castellano et al. 2009; Jusup et al. 2022). However, doubts re-
main on the ability of models to connect to empirical data (Flache et al.
2017) and their relevance to social science (Jensen 2019), which leads to the
work presented in this manuscript.

Polarisation is a multi-faceted phenomenon in itself, so an understanding
must be developed. There are multiple types of polarisation: 1) ideological
stances can become distant and clustered (e.g., bimodal) among the public



(ideological polarisation, or attitude polarisation if around a specific issue;
Abramowitz and Saunders 2008; Lord et al. 1979), 2) political or social groups
may develop animosity between them (affective polarisation; Druckman et al.
2021), and 3) individual views on issues may be constrained by views on
other issues leading to high issue alignment (partisan alignment; Jost et al.
2022). The nature of these three types of polarisation varies. Ideological and
attitude polarisation are observations of a state, while affective polarisation
and partisan alignment are states as well as mechanisms that can create
polarisation. Polarisation, as a state, may be considered as a property of
an individual (e.g., for attitude polarisation, if the position of the person
moves away from centrist positions on an issue) or of a population (if the
distribution of the population moves away from the center). Polarisation
may also be considered as a process through which individual or collective
states increase in time (DiMaggio et al. 1996). Finally, there are many ways
to measure polarisation depending on data and desired insight which adds
further complexity to the word (Bramson et al. 2017). Therefore, the term
polarisation refers either to states or dynamical processes, of individual or
collective scope, and of different types (mainly ideological, attitude, affective,
or alignment).

One shortcoming in the current opinion dynamics literature is the lack
of investigation into whether model simulations can produce outcomes (such
as the distribution of a population’s opinions) that resemble empirical data
(Gestefeld and Lorenz 2023). The limited amount of research work address-
ing why models do not reproduce the kinds of opinion distributions seen in
reality — as measured in surveys (Hetherington 2009), or inferred from social
media traces (Ramaciotti et al. 2022) — will be named as the empirical gap.
The missing connection with data can either be considered at the microscopic
level of finding experimental evidence that upholds or disproves existing opin-
ion update rules of the model (Banisch and Shamon 2022); or, at the macro-
scopic level of what models can produce plausible opinion distributions that
match data (Carpentras 2023a) — with opinion update mechanisms that are
motivated by social theory. The search for plausible simulated distributions
is the approach taken up later in this thesis.

A further challenge for opinion dynamics is that there is a disconnect
between the emphasis placed on affective polarisation — characterised by
negative emotion towards other group identities — by social scientists (Iyen-
gar et al. 2019; Robison and Moskowitz 2019; Turner-Zwinkels et al. 2025),
and the individual-level interactions that occur in the agent-based models
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of opinion dynamics (Proskurnikov and Tempo 2017). There are a variety
of regimes for interaction between agents that mimic social interactions be-
tween individuals. Examples, given in Starnini et al. (2025), are one-way
communication of opinion (passive communication) and two individuals dis-
cussing and adapting opinions (pairwise interactions). The common point in
these communication regimes is that they treat each agent, or individual, as
identical atoms without the context or group association that pervades social
behaviour (Tajfel 1974).

Addressing both a lack of group identification and the empirical gap aims
to improve the connection between opinion dynamics and reality. Concerning
group identification, relevant research questions are: what additional insight
on existing opinion dynamics research are gained by including group identi-
fication?, is the inclusion of groups then important for understanding polar-
isation?, and, does understanding dynamics in terms of groups, rather than
individuals, offer a useful lens to analyse results? While questions related
to the empirical gap are: can simulated distributions approximate empirical
distributions?, and, does that give rise to models that are plausible, under
certain parameters and initial conditions, for working with empirical data?
This facilitates the setting of the following research objectives.

Objective One. Obtaining fine-grained temporal data of opinion change
to test and calibrate models is difficult, however it remains possible to test
macro-properties of opinion dynamics models, such as the distribution of
opinions produced. Testing for macro-properties of models necessitates sim-
ulating models under multiple parameter combinations, to find plausible sim-
ulations, which becomes computationally intractable. A mean-field approx-
imation is introduced to arrive at a simpler model which can be simulated
across the parameter space. With extensive simulation now possible, a frame-
work for the potential falsification of models is put forward. The hypothesis
is that the model should be able to produce a simulated distribution that
resembles an empirical distribution under some set of parameters. If simula-
tions are not consistent with the empirical distribution, then it is proposed
that the model is false for this combination of parameters and distribution.
The result is a narrowing of the gap between empirical observations and
opinion dynamics.

Objective Two. It has been identified that treating agents as identical
in the individual-level interactions of models does not allow for the modelling
of social group dynamics. Group formation and influence are perceived as
important in social sciences due to their impact on opinion formation and
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the prevalence of affective polarisation, which relies on groups. As such,
perception of groups and identification with them will be introduced into an
opinion dynamics model. Thereafter, updating of agents’ opinions will be
influenced by identification of other agents as belonging to the same group,
or not. It is then possible to uncover how the treatment of others owing
to group identification, rather than identical treatment as individuals, can
explain the polarisation of opinions. This more nuanced understanding of
how individuals perceive and treat each other connects opinion dynamics
with the significance granted to affective polarisation and group identity in
social science literature.

From these objectives, the following contributions have been made to the
scientific community. The research that answers to Objective One is currently
a pre-print article to be submitted for review to a journal. While the results
for Objective Two appear in an initial article (Cassells et al. 2024b), as well
as a more complete exploration of group identification in agent-based models
that is currently under review (Cassells et al. 2025).

Further contributions with colleagues completed as part of the past three
years of study, but outside of the scope of this thesis, include: an article
assessing the dimensionality of the American political space through social
network data (Ramaciotti et al. 2024); an article presenting a dataset of polit-
ical attitudes of X/Twitter users (Vendeville et al. 2025); and an exploration
of the relationship between international food insecurity and migration as
part of a complex systems workshop (Cassells et al. 2024a).

The structure of the following chapters in this manuscript is as follows.
Chapter 2 is a review of the current literature. The chapter begins by provid-
ing a foundational background, first, on the understanding of polarisation,
and then, on the development of opinion dynamics. The following sections
present state-of-the-art research that addresses the two areas of research that
have been identified to better connect opinion dynamics with reality. Namely,
the inclusion of group identification within models and the closing of the em-
pirical gap between simulations and observed distributions.

Two chapters laying out modelling theory are next; each one will handle
a different strand of the research to draw opinion dynamics closer to reality.
Introducing group dynamics to an agent-based model is in Chapter 3. This
is done by bestowing previously atomised agents with a recognition of group
structure and ensuing differential treatment of other agents dependent on
whether they are perceived as belonging to the same group, in-group, or
belonging to another group, out-group.

9



The second theory chapter focuses on the modelling of distributions rather
than individual agents to close the empirical gap. Chapter 4 therefore enables
the modelling of large populations that can only be represented by distribu-
tions, and the comparison of simulated distributions with empirical distri-
butions. The transition from modelling agents to modelling distributions is
achieved by a mean-field approximation of the model and implementation
with the finite volume method.

The applications of the modelling methods from Chapters 3 and 4 can
be found in Chapter 5. The first half responds to the question of what
effect introducing group identification has on the polarisation outcomes of
the agents’ opinions. The remainder of the chapter is dedicated to providing
a framework that can be used to falsify opinion dynamics models for given
opinion distributions and model parameters.
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Chapter 2

Literature Review

This chapter will discuss the existing knowledge and research relating to the
issue of polarisation of populations and the modelling thereof, into which the
work of following chapters will situate itself. This review will develop by first
presenting the topic of polarisation, after which the development of opinion
dynamics as a tool to study opinion change and resulting polarisation will
be discussed. Following this, current research gaps and challenges for the
application of opinion dynamics will be highlighted — namely, social identity
and the missing link between models and empirical data.

2.1 Polarisation Definitions and Measures

A broad definition of political polarisation is an increase in discord between
the opinions of a population, be that an ideological lack of consensus or an
emotional antipathy to stances. Such disagreement has, of course, existed
and fluctuated over time. Studies have appraised the ebb and flow of po-
larisation (Poole and Rosenthal 1991), as well as secondary effects on the
acceptance of science (Rekker 2021). Today, the predominant worry is the
intensification of polarisation manifesting as a dislike for others rather than
pure issue disagreement (Garzia et al. 2023).

The role and effect of polarisation is a much discussed subject for po-
litical and social scientists (Fiorina and Abrams 2008; Finkel et al. 2020;
Druckman et al. 2021), as well as computer scientists and complex systems
specialist alike (Conover et al. 2011; Bakshy et al. 2015; Waller and Anderson
2021; Falkenberg et al. 2022; Peralta et al. 2024). While there is not an ex-
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pectation that populations should systematically display agreement on most
issues — a level of polarisation may be positive for democracy to challenge
the status quo, or addressing inequalities (Kreiss and McGregor 2024) — high
levels of polarisation are a worry due to their destabilising impacts on public
life, such as eroding national unity (McCarty et al. 2016) and obstructing
collective decision-making, as with recent examples regarding public health
(Gollwitzer et al. 2020). Because polarisation is such an extensive research
topic, the presentation given here does not intend to cover the history of the
research in this area, nor to describe the conceptual richness attached to this
body of knowledge. Instead, the presentation provided in this section aims
at providing an introduction to the topic and, over all, a point of contact
between the main concepts relevant for this thesis and the operationalisation
of terms needed in simulations presented in subsequent chapter. The rest
of this section on polarisation will first provide an overview of the different
types of polarisation, and then discuss how the phenomenon may be mea-
sured, to provide an understanding of polarisation prior to any modelling
and simulation work.

2.1.1 Types

Given the complex nature of polarisation, as well as its wide usage, there are
many categorisations to consider. A first distinction is whether polarisation
is considered as a property of the state of a system or as a system process
(DiMaggio et al. 1996) — either one can study the polarisation of a distribution
(Fiorina and Abrams 2008), or one can study the dynamics of polarisation
(Dandekar et al. 2013; Levin et al. 2021). Both interpretations are important,
a measurement will be understood to address the state of polarisation and
how measurements change over time will address the process of polarisation.
For the purposes of this review, polarisation will be considered as occurring
in an opinion space that can be multi-dimensional, where each dimension
represents an issue and individuals are spread along the dimension according
to their issue stance; that is, ranging from the most negative to the most
positive attitudes towards a policy (e.g., liberalise immigration policy, or
prioritise environmental protection over economic growth). A further high-
level political science consideration is the debate as to the effective scope
of individuals that may be polarised. There is argument between the view
that polarisation should be considered as a population-wide phenomenon
(Abramowitz and Saunders 2008) and the view that polarisation is limited
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to political elites (Fiorina et al. 2008). While this is an important distinction,
it will not feature in the discussion here because a difference between opinion
leaders and lay people does not feature in later modelling, so the assumption
is that it is a mass phenomenon.

Polarisation may manifest in different ways and as such have different
meanings. A recent survey of mechanisms found in the psychology litera-
ture identifies three principal types of polarisation: ideological polarisation,
partisan alignment, and affective polarisation (Jost et al. 2022). Referring
to, respectively: opinion change towards the extremes of the main dimen-
sion of the opinion space, the constraint of the opinion space leading to high
alignment between opinion dimensions (how few dimensions the space can be
represented by, or does an opinion for one topic effectively predict opinions
on other topics), and positive or negative attitudes held by members of so-
cial groups about the groups themselves. Furthermore, the survey highlights
cognitive-motivational mechanisms that push individuals to defend individ-
ual beliefs (“ego justification”), in-group beliefs (“group justification”), and
conservative attitudes that are in favour of the status-quo (“system justifi-
cation”). A partition of the population into two modes is required in most
considerations of the Jost et al. (2022) article, which reflects its US context.
In a European context, opinion distributions are often multimodal (Gestefeld
et al. 2022), and more multidimensional than in the US, which adds further
complexity to understanding polarisation.

Different types of polarisation do not stand alone but may interact to
add complexity. An example of interaction between polarisation types is
partisan sorting; it is as an alignment process acting on a population to
produce groups and thus has knock-on effects on ideological and affective
polarisation (Mason 2015). The knock-on polarising effects may be increased
affective polarisation due to a stronger identification of in-group and out-
group; or ideological polarisation may increase due to individuals vacating
the opinion space between groups for more extreme opinions that align with
the groups. Further complexity can arise with paradoxical situations such
as the experience of attitude homogeneity at an individual level and the
existence of attitude heterogeneity in the social networks of the collection of
individuals (Baldassarri and Bearman 2007), meaning that individuals can
perceive that those attitudes which they observe in their social network are
similar despite the existence of a range of attitudes within the population.

Affective polarisation has become much discussed and typically consid-
ered as particularly important to managing polarisation in a population
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(Iyengar et al. 2019; Kubin and Von Sikorski 2021; Yarchi et al. 2024). It
is concerned with “in-group love” or “out-group hate” (Brewer 1999) and
provides the motivation for implementing group identification into models
for opinion change in Chapters 3 and 5. The increase in ideologically driven
group identification pushing attitudes to extremes (Mason 2018) and the
impact of affective polarisation on democratic systems (Reiljan et al. 2024)
make this type of polarisation the most compelling for research in current
circumstance; motivating the integration with opinion dynamics discussed in
this thesis.

2.1.2 Measurement

There are therefore many meanings to political polarisation, not to mention
the wide range of uses of the term in further disciplines. For an overview of
this multitude of measures, Bauer (2019) presents a summary encompassing
income polarisation, political polarisation, and cultural polarisation, amongst
others. The following discussion of polarisation measurement will centre on
the political opinion context, detailing different approaches and ending with
a presentation of the polarisation measure to be used in later work.

In the scope of this thesis, polarisation will be discussed as a state of
social systems, foregoing the operationalisation of the notion of polarisation
as a process. A first approach to measuring the state of polarisation may be
metrics that provide insight into the population’s distribution of attitudes
towards a topic; for example, the spread of responses (perhaps measured by
the standard deviation) to a question asking individuals to self-position on
a scale measuring attitudes towards income redistribution (Waldrop 2021).
This would be a simple measure of ideological polarisation, although this
misses any idea of the groups that affective polarisation entails (Sieber and
Ziegler 2019). Along this line of thought, DiMaggio et al. (1996) consid-
ers “within-group” polarisation and “between-group” polarisation — opera-
tionalised as dispersion or bimodality and spread between group means or
peakedness of groups, respectively. While this provides a step forward for
understanding a high polarisation scenario as having minimal within-group
spread and substantial differences between groups, a drawback of this ap-
proach is that two measures are needed to assess the state of polarisation
which makes how to compare two distributions unclear. For example, if
standard deviation is used to measure spread and kurtosis is used to mea-
sure peakedness, in the case where a distribution is high in the first measure
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but low in the second measure while another distribution is contrarily low in
the first measure but high in the second measure, then it is unclear which
distribution is more polarised. Furthermore, changes in the two measures
may be more or less indicative of polarisation but this is unclear; a change
of 0.1 in measure one is unlikely to have the same meaning as a change of
0.1 in measure two.

The most commonly discussed methods to measure polarisation are quan-
tifying the dispersion, or spread, of a distribution and description of distri-
bution modes, or peaks, (Bramson et al. 2017). Measures of spread used
in the literature — such as mean absolute deviation, standard deviation, and
disagreement index — have been found to correlate strongly (Gestefeld et al.
2022), so they can be used interchangeably with little difference in results.

Measures of modes, a measure of group identities as represented by a
clustering of opinions in a local maximum of the opinion distribution, offer a
wider variety of approaches. To assess the “peakedness”, or bimodality, of an
distribution DiMaggio et al. (1996) suggests kurtosis. Howver, kurtosis only
measures how extreme the tails of a distribution are (Westfall 2014), and is
therefore not an effective measure of multimodal distributions, at least when
used without another measure (for example, variance) for further context
(Downey and Huffman 2001). An alternative is to use a statistical test for
uni-modality, such as Hartigan’s dip test, to identify the emergence of a new
opinion group, as in (Falkenberg et al. 2022), or the bimodality coefficent
(Freeman and Dale 2013). However, test statistics for uni-modality provide
no insight into multi-modal distributions with no indication of shape or total
count of modes; that is, when there are more than two modes.

Both dispersion and modality provide measurement options that can as-
sess ideological and affective polarisation in the terms defined by Jost et al.
(2022). However, there still remains the third type of polarisation identified
by the authors: partisan sorting. While this type of polarisation is less rel-
evant to European contexts, insight into the dimensionality of the opinion
space and any change to the number of highly pertinent dimensions is valu-
able information to understand polarisation. DiMaggio et al. (1996) suggests
Cronbach’s alpha to measure the constraint of the opinion space.

Further to these measures, the topic of measurement of polarisation is not
settled. There continues to be research that produces novel measurements
(Hohmann et al. 2023), and the understanding of the link between perception
and measurement of polarisation continues to develop (Steiglechner et al.
2025). With no standard practice, apart from the use of a dispersion measure
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such as standard deviation which ignores notions of groups, works continue
to use a variety of measures that fit the authors’ criteria.

The measures of polarisation reviewed here are relevant to opinion spaces,
however it is important to note that researchers have also looked to quantify
polarisation in other types of data. An understanding of these different
types of measures is presented by Musco et al. (2021), defining “statistical
measures” that are functions of an opinion vector and “local measures” which
measure properties of network structure to identify polarisation. Further to
these definitions, the authors also find that group-based measures better align
with perceptions of polarisation in reality, which adds further motivation to
using a measure that account for notions of group. Local network measures
often require labelling of the individuals as groups within the population,
followed by measuring modularity to assess network segregation (Newman
2006). If labels do not exist within the dataset then they may be assigned
by community detection or partitioning algorithms, using algorithms such
as label propagation (Raghavan et al. 2007) or METIS (Karypis and Kumar
1995) to assign clusters, followed by calculating modularity (Conover et al.
2011; Garimella et al. 2018). Further measures, other than modularity, for
assessing polarisation can be found in Garimella et al. (2018). Other types
of data may also be used to quantify polarisation, although this typically
requires a numerical opinion value to be calculated on the data — for text
data, sentiment analysis may be used and then difference in sentiment score
analysed (Gurukar et al. 2020).

For this thesis, the measure used will be the Duclos-Esteban-Ray (DER)
measure of polarisation (Duclos et al. 2006), which returns a single value
assessment of polarisation as a property of a distribution of individuals on
an opinion scale or dimension. It maintains the two aspects of polarisa-
tion as “within-group” and “between-group” set out by DiMaggio et al.,
instead termed as an “identity-alienation” framework, and so incorporates
the importance of groups within polarisation. The measure is derived as
an axiomatic theory that accounts for both local concentration (represent-
ing within-group/identity notions of polarisation) and distribution spread
(representing between-group/alienation notions of polarisation) to give,

rh = [ [s@rese@le - i

where z and 2’ are points in the opinion space, f(x) is the density at z, and
a is a parameter between 0.25 and 1 (further details of the calculation and
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\ Measure H Definition \ Data \ Use \

Standard pp— 5 Vector Opinion
deviation \/Z 2im (i = T) spread.
Mean Opinion
absolute LN v — T Vector P
.. noen spread.
deviation
Disagreement 1 Opinion
index ATy it 1T ] Veetor | read.
L3 (@i—a)*
Kurtosis (l Z(xi_f)g)Q Vector Peakedness.
Identity and
1+a / ! /
DER [ [ fx)ref(a)||2' —z||da’dx | Vector alienation.
Hartigan’s . Multimodal
f F(x) —
dip tost infgey sup, |F(x) — G(2)| Vector tost.

. . 77+1 . .
Bimodality T 3m-1)? Vector Bimodality
coefficient T n-2)(n-3) indicator.
Cronbach’s S o2 Space

m_ (] 2k=1%
alpha m—1 (1 Ui k) Vector constraint.
Modularity, 1 dods Community
Q 15 i (Aij —2F ) 6(ci, ¢j) Network structure.

Table 2.1: Polarisation measures discussed with definitions, data type, and
an intuitive interpretation. The notation is as follows: z; is an opinion of
individual ¢, Z is the mean opinion, n is the population size, o2 is the variance
of opinion, ~ is the skew of opinion, « is the kurtosis of opinion, f(x) is the
density at x, F(z) is the discrete cumulative distribution of observations,
G(z) is the cumulative distribution of the unimodal function that minimises
the maximum difference with F'(x), m is the number of dimensions of the
space, k is a dimension of the space, o7 is the variance of dimension k, 0% is
the sum of the entries of the covariance matrix, F is the number of edges in
the network, A;; is the adjacency matrix of the network, d; is the degree of
node 7, 0(¢;, ¢j) indicates if node ¢ and j are members of the same community.
‘Vector’ refers to a measure of opinion in the opinion space, while ‘Network’
refers to a network representation of the individuals.
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Kurtosis: -0.50 DER: 1.54 Kurtosis: -0.50 DER: 1.73
Std. Dev.: 2.19 Std. Dev.: 2.41

L.

td. Dev.: 2.41

Kurtosis: -0.50
Std. Dev.: 2.53

Figure 2.1: Comparison of DER as a measure of polarisation of a distribu-
tion against the combined use of kurtosis and standard deviation. Density is
bucketed in intervals of size 2 centred at x; = 1, 3, 5, 7, and 9. Kurtosis is
the same across all panels so provides no insight, while standard deviation is
the same for the two right hand panels implying that the two distributions
are equally polarised if using kurtosis and standard deviation to measure po-
larisation. In contrast, DER values measures polarisation as different across
each of the distributions.

implementation, such as approximating the density, can be found in Section
3.4). An increase in « increases the importance of identification within the
identity-alienation framework. Given that this measure has rigourous ax-
iomatic foundations, is comparable across distributions with a single-valued
measure, and takes account of polarisation as both inter- and intra-group,
the DER measure is determined to be the most appropriate measure when
discussing polarisation of opinion distributions and thus selected for later
comparison of simulated distributions as they change over time. A compari-
son of DER with both kurtosis and standard deviation is in Figure 2.1.
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2.2 Opinion Dynamics

The study of models of opinion change developed out of the theory of statisti-
cal physics, with particular focus on the possibility of system-level — complex
— phenomena emerging from the simple pairwise interactions of individuals
(Castellano et al. 2009). The principal methods associated with the models
are the study of system transitions between disorder and order (e.g. from a
spread of opinions to a consensus), the concepts of steady states (do opinions
stay in a consensus?), and agent-based modelling (computer simulations of
individuals in a population under some set of rules).

Early examples of agent-based models, which were unrelated to opinion
modelling and typically termed “cellular automata based models” at the
time, included simplified models of self reproduction by John von Neumann
and Sanislaw Ulam in the 1940s, and the game of life by John Conway in
1970 (Hegselmann 1996). A review of some principles and features of the
complex behaviour emerging from a system of interacting automata/agents
was then presented by Wolfram (1984). Applications of such models in the
context of opinions were also developing, which Section 2.2.1 will discuss.
There are comprehensive reviews of the applications of physical models in
various social settings (Jusup et al. 2022), in the context of political opinions
(Starnini et al. 2025), and in game-theoretic extensions (Szczepanska et al.
2022), providing extensive overview of the field.

Two primary points of value for opinion dynamics models is that they
provide a method that can explain the phenomena produced given the sim-
ple and understandable interaction mechanisms that underly the model, as
well as produce predictions through the lens of scenarios since system state
changes can be induced by altering the model set-up. The combination of
explainability with predictability is a valuable tool for understanding the
world around us in computational social sciences (Hofman et al. 2021). It
is important to hold in mind that the models are ultimately analogies that
provide a trade-off between the “conceptual mileage” of enabling the study
of system properties with new insight, and the “conceptual baggage” of the
limits of modelling assumptions (Olsson and Galesic 2024).

2.2.1 Development of Models

Extensive reviews of a range of opinion dynamics models can be found in
(Proskurnikov and Tempo 2017, 2018). A brief overview of the develop-
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ment of models will be presented here. An initial categorisation of models
is whether they concern agents with opinions that are continuous or discrete
(Noorazar 2020); that is, whether opinions are a binary choice of yes-or-no
agreement or if opinions exist in a space such as a scale running from zero
to one with values in between representing a degree of agreement with either
extreme.

The foundation of continuous opinion models is the idea of social influence
(which also appears in categorical or binary opinion models), whereby an
agent typically updates their opinion by averaging with the opinion of their
neighbours. The precise mechanism of averaging may vary, but the starting
point is a model such as the DeGroot model (DeGroot 1974) which states
that for a vector of agents with one opinion each, z, at time, t, with a
weight-matrix, W, representing the influence between any agent ¢ and j,
then opinions at time ¢ + 1 follow the update rule z;,7 = W - x;. The
closeness-to-reality and usefulness of the model was quickly questioned since
it always converges to consensus if the graph of the influence network between
agents is complete and aperiodic in the case of directed graphs, that is, there
exists a path from one agent to another in the network and opinions to not
propagate around the network in a repetitive manner.

Improvements on the DeGroot model were made in the Friedkin-Johnsen
(Friedkin and Johnsen 1990) — which introduced stubborn agents who do
not change their opinion — and the Hegselmann-Krause (Hegselmann and
Krause 2002) model — implementing a concept of homophily through agents
only updating their opinion when another agent’s opinion is within a limit
of difference to theirs, termed “bounded confidence”. While opinion updates
are synchronous in the Hegselmann-Krause model formulation, a pairwise
implementation of bounded confidence is found in (Deffuant et al. 2000).
Subsequent works build upon these foundations, introducing social psychol-
ogy mechanisms such as biased assimilation (Dandekar et al. 2013), meaning
that agents adopt a tendency to support their initial opinion when faced with
inconclusive evidence. Dandekar et al. shows that if this bias is sufficiently
strong then the opinions will polarise, and that this is not possible under
homophily alone.

Each of the foundational DeGroot, Friedkin-Johnsen, and Hegselmann-
Krause, models consider social influence as a purely positive mechanism, as
a process of opinion assimilation. There is also a body of literature that
considers negative social influence, also known as a backfire effect, which
creates polarised system states (Jager and Amblard 2005; Chen et al. 2021;
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Axelrod et al. 2021). A model of this type, with attractive and repulsive
social influence, is the primary model considered in the following research
sections of this thesis — a complete description can be found in Section 3.2.

Discrete-valued opinion models are not used in the work of this thesis but
for completeness of this review they are listed here. Three model types may
be considered in this context: (1) the Galam model, which treats a binary
agree/disagree opinion space in which agents are shuffled into groups and
each model iteration the majority group opinion is adopted by the group’s
agent (Galam 2008); (2) the Sznajd model, which is an adaptation of the
Ising model from statistical physics (Sznajd-Weron and Sznajd 2000); (3)
the voter model, for which agents chose a neighbour and copy their binary
opinion (Redner 2019). A development to further these discrete models has
been to add a hidden layer of argumentation for each agent which influences
the opinion expressed, known as argument communication theory (Més et al.
2013). For the interested reader, recent applications of these model types can
be found in (Banisch and Olbrich 2021; Vendeville 2025). The choice to not
use a discrete-valued opinion model is to be able to connect models with
opinion scales rather than actions or choices.

2.2.2 Current Challenges

The existing collection of opinion dynamics models still have unanswered
challenges of how to better reflect the observed state of opinions in society
around us (Sobkowicz 2020). That is, there is a disconnect between real-
world opinion distributions that neither resemble consensus nor complete
polarisation but a point between the two extremes, while theoretical mod-
els tend towards these two extremes. What combination of changes to the
modelling process will result in a narrowing of the empirical gap between
theory and observation is an open question, since the need for understand-
ing of collective behaviour remains highly important for policymakers and
regulators that wish to manage social media, recommendation systems, or
content moderation (Bak-Coleman et al. 2021).

Two principal challenges in the opinion dynamics literature (bestowing
agents a group identity and connecting models to empirical data) are the
subject of discussion in Sections 2.3 and 2.4, because they motivate the work
of later chapters, while a brief overview of challenges raised in the literature
is given here.

Some have questioned the fundamental relevance of physics-inspired mod-
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els of opinions and other social phenomena to real social systems has been
questioned, particularly given that individuals are atomised as agents and
considered identitical despite this being far from reality (Jensen 2019). For
instance, age, gender, or education, might determine how individuals process
an interaction with the opinions of others but these are lacking in a model of
identical agents. Further to these individual characteristics, it is known that
indiviudals perceive social systems and incorporate resultant groupings into
judgements of others. One response to this criticism is to bestow agents with
a notion of group identification, which defines how agents relate to the wider
population and influences the interactions with one another. Current compu-
tational implementation and social science grounding of identity is detailed
in Section 2.3.

There is also criticism that many works focus on theoretical variations
and further study of existing models, while connecting opinion dynamics
models with empirical data remains uncommon (Flache et al. 2017). This
is perhaps due to differing goals of theoretical agent-based modelling and
empirical research (Carpentras 2023b), but the additional value of empirical
validation when presenting results to a wider audience is clear. An additional
complication of connecting to empirical datasets is that the rules of agent-
based models often rely on pairwise interactions, which entails computational
time growing quadratically with population size. Given that social systems of
interest are usually large and need multiple model parameter combinations
to be tested, it quickly becomes infeasible to explore agent-based models
for large populations. A solution to this problem is to use a mean-field
approximation to reduce the computational cost of the model, this will be
explored later in the thesis in Chapter 4. Further discussion of existing
literature that connects models to data can be found in Section 2.4.

The functioning of models in a multi-dimensional opinion setting is an-
other frontier of opinion dynamics, although not one that will be treated
in this thesis. Novel scenarios can be tested in the multi-dimensional case;
for example, if an individual is anti-immgration on an immigration opinion
dimension and pro-environmental protection on an environmental opinion
dimension and this individual encounters another with anti-immigration and
anti-environmental stances, then it is unclear how they interact. The indi-
viduals could update their opinions dimension-wise or simultaneously across
both, and the knock-on effect on partisan sorting (alignment) of the opin-
ion space is a key area to understand — with particular relevancy in multi-
dimensional European systems.

22



2.3 Group Dynamics

The domain of this thesis is computer science, however research into group
identification requires a foray into interdisciplinarity — more precisely, into
social sciences — in order to encourage relevancy of model applications. In this
section, social science grounding of group identification is presented, followed
by connections to computational models and group/community detection
concepts from computer science.

2.3.1 Social Identity and Social Boundaries

In the realm of social psychology, a seminal text on social identity theory
is Tajfel (1974), explaining how social class, religion, and nationality, define
group memberships that are used by individuals to categorise themselves
and others. The resulting categorisation can spawn in-group favouritism and
prejudice for out-groups. From the emergence of the theory, group iden-
tity has spawned many works and thus making it a central consideration to
intra- and inter-group processes (Hornsey 2008). For example, research has
considered the potentially dangerous implications of depicting an in-group
as “virtuous” while an out-group is considered as a “threat” (Reicher et al.
2008). The authors identify a cycle whereby inhumane acts to others are ac-
cepted after a cohesive in-group is formed and then an out-group is excluded
and considered as dangerous to the uniquely virtuous in-group, perversely
giving moral strength to those that punish others. Furthermore, identifi-
cation with a group may introduce a set of norms that are expected to be
shared within the group, such as values or behaviours, that influence indi-
viduals” own perception of those values, thus having relevant consequence for
how agents might perceive the opinions of others (Masson et al. 2016).
More broadly in social sciences, groupings also have an important role
in the literature. They may be formalised as a symbolic boundaries used
by actors to conceptually distinguish between objects, people, and practices,
(Lamont and Molnar 2002). For example, structures defining the similarites
and differences between male and female genders constrain and form their
behaviours and attitudes (Gerson and Peiss 1985). Social boundaries can
exist across many issues, characteristics, and lifestyle choices creating poten-
tially complex social identities, but there is evidence that mechanisms such
as homophily can reinforce alignment between lifestyle choices and political
ideology to result in well-recognised identities, such as the infamous “latte
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liberal” displaying a stereotyped affinity between hot beverage choice and
ideology in the US context (DellaPosta et al. 2015), creating simplified iden-
tity structures from the convergence of multiple groups (Roccas and Brewer
2002). Furthermore, cleavage theory defines divides within a population —
such as GAL (green, alternative, libertarian) on one side and TAN (tra-
ditionalist, authoritarian, nationalist) on the other — along which political
opinions show clear divergence (Marks et al. 2020), as socially structured
opinion groups underpinned by a functionalist logic. Because perceptions of
groups hinge on social cues related to social divisions, identity is not lim-
ited to lifestyle choices and physical manifestations, it may also be expressed
in virtual contexts (Santagiustina et al. 2025) and therefore has potential
impact on social media debate. This connection with digital environments
makes grouping relevant to one of the most promising empirical domains for
agent-based simulations: social media.

Ultimately, identification with a group is a precondition for the emergence
of affective polarisation of political opinions, in the multiparty systems of
Europe (Wagner 2021) as well as the well-known US case (Iyengar et al.
2012). Evidence further points to the influence of prior attitudes and beliefs
(formed by a social identity) influencing the evaluation of new information
(Taber and Lodge 2006), the modelling of which provides further impetus to
include a notion of group identification in opinion dynamics.

2.3.2 Computational Approaches to Groups

The importance of group identification in opinion formation and communica-
tion, have led to research interest into how to develop opinion dynamics mod-
els to operationalise the concept. One approach has been to extend pairwise
interactions between two agents to higher-order interactions by considering
a hyper-edge that connects multiple agents at once (Battiston et al. 2020).
This has been implemented, and labelled as group interactions, in an opinion
dynamics context (lacopini et al. 2022; Pérez-Martinez et al. 2025), however
the result is that agents consider dynamics at a widened local level rather
than identification with a group that might not be topologically bounded (in
principle, a individual may identify another one as in-group, regardless of the
shortest path length between them).

Existing computer science techniques such as clustering of data points
(Rodriguez et al. 2019) and community detection within networks (Fortu-
nato 2010; Schaub et al. 2017) developed without a social science motivation
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but the goal of identifying groupings, or patterns, within a dataset/popu-
lation operationalises a similar notion on either geometrical grounds for an
opinion space, or topological grounds for a network structure. Given the
differing motivation, however, caution should be taken to ensure that this
analogy is appropriate in each social setting. This will be the object of care-
ful consideration in Chapter 3.

Using a computational group recognition method to define groups within
a population and then apply this identity for an opinion dynamics model is
yet to be widely investigated, and this avenue of research will be taken up
in Chapter 3 to extend an existing opinion dynamics model in the research
that follows. An alternative to clustering/community detection is presented
by Salzarulo (2006), who uses the difference between the average opinion of
close-proximity neighbours against those neighbours that are outside of close-
proximity to define group identities, and Yang et al. (2021) follows a similar
line of thought; both methods require agents to reference a prototypical av-
erage opinion of an evolving group. Modelling evolution of social identity
through pairwise agent interactions is another option (T6rnberg et al. 2021),
but does not rely on perception of the population.

2.4 Empirically Grounded Simulations

The second challenge identified within the discussion of opinion dynamics was
the perceived empirical gap: research work tends to cover simulations of the-
oretical models while lacking a connection to data that represents opinions.
This section will first cover existing work that makes the connection between
models and data, and then discuss methods to use large datasets with exist-
ing models which will provide a preliminary discussion for modelling theory
found in Chapter 4.

Agent-based models typically make connections to the real world by util-
ising scenarios: if model parameter x increases, which represents real-world
phenomenon y, then polarisation of opinions occurs. When connection to
datasets is made, it is to those with small population sizes, such as surveys,
given that resources needed to simulate agent-based models tends to scale
badly with increasing population sizes. This unfortunately discounts the use
of large online datasets of interest, and relies on expensive surveys for which
it is difficult to follow on consistent population over a period of time to have
accurate data about opinion changes of individuals.
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The desire to add empirical weight to the theoretical models of opinion
dynamics is an ongoing process, presenting difficulties that will be further
discussed in this section. A wider outlook on linking data with theory in
network science can be found, for instance, in the work of Peel et al. (2022),
while the survey of Peralta et al. (2022) treats opinion dynamics in social
networks. Calibrating existing models with experimental data is one area of
focus, while providing evidence supporting the relevance of mechanisms that
justify their inclusion in computational models and simulation is another.
The focus on validating mechanisms provides insight into whether the model
is relevant to social systems, or not.

The foundation of many opinion dynamics models is social influence,
which understands individual opinion change as a result of the observation of
other individuals’ opinions through social interactions. There is evidence to
strongly support the claim that a social influence mechanism exists and is a
process by which ideas or opinions can spread within a population (Moussaid
et al. 2013; Carpentras et al. 2022). Further results confirm that similarity in
opinion does induce attraction (positive opinion change towards the opinion
of another) between agents, while support for negative influence (increasing
distancing between opinions) at the pairwise level is inconclusive in the work
of Takécs et al. (2016). However, there is evidence that negative influence, or
divergence, does occur in political establishments and on social media from
colleagues in social sciences (Liu and Srivastava 2015; Bail et al. 2018). Given
that models typically take initial inspiration from social psychology princi-
ples, it is promising confirmation that the mechanisms are indeed observed,
despite some uncertainty on negative influence at the pairwise level within
the opinion dynamics community. Attention is now shifted to validation
of model outputs, rather than validation of the functions and mechanisms
within them.

2.4.1 Calibrating and Validating Models

Validating opinion dynamics models with experimental data is not a straight-
forward task, with challenges arising from both the nature of models and the
availability of data. On the modelling side, determining the extent to which
inclusion of certain parameters increases the realism of the model is difficult.
Parameters in models can take on several different roles. One parameter may
represent some combination of processes: a parameter governing the magni-
tude of opinion change each iteration in a model represents a simplification
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of a complex process. Another parameter role is as a proxy for a mechanism;
such as a parameter governing how agents of different opinions are exposed
to each other, which may be considered as a proxy for a simple recommen-
dation algorithm. Finally, some parameters represent abstract concepts such
as open-mindedness, which can be difficult to operationalise into a measure
since it is unclear how an individual’s level of tolerance or acceptance of
different opinions can be measured in practice.

On the data side of the validation task, the difficulty of parameter mea-
surement hints at the problems related to finding appropriate datasets where
fundamental questions arise such as: is an opinion measurable, how can a
given population be measured consistently over time, and how can empiri-
cally measured opinions be mapped into an opinion space?

General methods of incorporating data into agent-based models, non-
specific to opinion dynamics, is presented by Windrum et al. (2007) and
Bruch and Atwell (2015), while the measurement error of opinions in rela-
tion to opinion dynamics is discussed by Carpentras and Quayle (2022). In
the case of argument-based models, Banisch and Shamon (2022) and Ban-
isch and Shamon (2025) present a validation framework in which the authors
calibrate parameters for a model grounded in argument communication the-
ory by using survey experiments centred on arguments and debate related
to electricity generation and the climate. A related example for modelling
attitudes and calibrating with data is provided by Brousmiche et al. (2016).
Both of these strands of research use models with foundations in psychology
and so the model calibration becomes evident with a theoretical structure
explaining how arguments are evaluated to result in an attitude.

However, such frameworks do not readily extend to models where opinions
are represented by a continuous variable with no underlying argument ap-
praisal process. The distinction between methods that calibrate small-scale
mechanisms and those that test model predictions of opinion distributions is
discussed further by Starnini et al. (2025).

Surveys are possible form of data with which to test models since indi-
vidual responses are followed and at a small population size that maps well
to the number of agents in an agent-based model. A promising approach
to bridging the gap between discrete survey responses and continuous opin-
ion variables is presented by Carpentras et al. (2023). In their experimental
design, participants were asked to indicate agreement or disagreement with
a statement, as well as their certainty on a scale from 1 to 10. This cer-
tainty score serves as a weight, transforming the binary judgement into a

27



graded scale that ranges from strong disagreement to strong agreement. The
mapping provides responses that more closely resemble the continuous scale,
opening a path to calibration when survey responses are collected under dif-
ferent scenarios or over time. The drawback here is that the size of survey
experiment populations is usually small and that surveys are costly, and so is
not appropriate for large, online, datasets. Finally, a fundamental drawback
of survey-based research is that it is exceedingly difficult to link survey re-
sponses with individuals for whom there is data on exposure to each other’s
opinions and longitudinal assessment of opinion change.

Finally, another method to incorporate data is to ask if an opinion dy-
namics model can reproduce observed distributions. It is then possible to
assess by goodness-of-fit measure whether the model comes close to reality,
or not (Gestefeld and Lorenz 2023). The limiting factor in this approach is
it requires search of a parameter space which is computationally costly for
agent-based models. A solution to the computational cost is presented in
this thesis, by using approximation and numerical simulation methods — an
overview of which is presented next.

2.4.2 Using Large Datasets

The reliance of opinion dynamics on agent-based models means the inheri-
tance of several limitations of agent-based simulations. Principally, the re-
quirement to follow individual agents and each of their interactions becomes
resource-intensive as population sizes grow, which poses a problem when
applying the models to large socio-informational networks. The resulting
simulations are slow because of the huge number of agent-agent interactions
that the model calculates since the number of interactions scales quadrat-
ically with the number of agents, which makes it difficult to calibrate or
validate models for a broad parameter space. This problem also arises in
the field of statistical physics — for example, attempting to model individual
gas particles becomes intractable as the number of particles increases — and
has led to the development of tools such as mean-field approximation and
numerical simulation methods to treat large systems. The resulting object of
study for these methods is an opinion distribution and its evolution, rather
than the evolution of an individual’s opinion. Linking between a discrete
number of agents and a continuous distribution representing a population is
achieved by considering how the system behaves as the size of the population
tends to infinity, or what is the average behaviour. The goal of being able to
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model distributions is then to enable comparison to real-world populations
at a macro scale (Kozitsin 2022).

Using a mean-field approximation for large populations of interacting
agents has been studied for a bounded confidence model to provide analytical
insight (Dubovskaya et al. 2023), the Deffuant model (Fennell et al. 2021),
and to infer an interaction kernel (how individuals holding different opinions
interact and impact each others’ opinions) for the model (Chu et al. 2024).
In fact, the work of Chu et al. (2024) finds that the error in the inferred
interaction kernel decays as the dataset is enlarged, which points to the
value of treating large populations. A general formulation for the mean-field
limit of opinion dynamics models relying on some interaction function exists
(Ayi and Duteil 2021).

Some existing research suggests that the size of a system has a role in the
eventual dynamics of that system (Toral and Tessone 2006) and so by taking
a large population limit these effects are ignored. More precisely, the authors
take the case of a finite agent-based Galam model which has a critical value
that determines transition between polarisation and consensus and show that
the critical value varies with population size. The criticism is valid, however
it is only relevant for the case of modelling a specific system rather than the
general case that mean-field limits imply, with the criticism also standing for
the arbitrary number of agents selected for an agent-based model since the
population size will influence precise thresholds.

The averaging of behaviour across large populations does have the draw-
back of losing the detail of the complex and finite interactions that are a fact
of social systems. Therefore these approaches do not replace agent-based
models but they provide an approach to handle large datasets and thus pro-
vide novel results that agent-based models fail to achieve, particularly for
simulating the large populations present in social media datasets. Full de-
tail for the theory and implementation of the mean-field approximation and
numerical simulation will be discussed in Chapter 4.
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Chapter 3

Group Dynamics in
Agent-Based Models

3.1 Motivation

Group dynamics in online polarisation has received significant attention in
recent years. Identification as part of a group is integral to the concept of
affective polarisation and therefore prominent in the polarisation research of
political science (Iyengar et al. 2012). Similarly, the role of social identity —
influenced by group identification — in opinion communication and formation
is well accepted in social sciences and social psychology (Tajfel 1974; Lamont
and Molnar 2002), which has a resulting impact on the opinion polarisation
of a population. However, most existing work in agent-based models focuses
on pairwise interactions or higher order interactions and ignores the notion of
group identification at a population-level. It is therefore an open and highly
relevant question as to how group identification fits into opinion dynamics.
To address this problem, an existing opinion dynamics model is chosen and
then extended to bestow agents with a concept of group identification that
will influence how the population interacts by recognition of others as either
in- or out-group.

Out of the numerous existing opinion dynamics models that were detailed
in Chapter 2, the Attraction-Repulsion Model (ARM) (Axelrod et al. 2021)
is selected for the work that follows. The allowance of the model for inter-
actions that may be either positive or negative accommodates studies such
as the surprising results of Bail et al. (2018) that negative interactions may
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occur when cross-cutting content conveying different opinions is presented.
It is therefore desirable that an agent may be drawn towards an opinion (at-
traction) that is observed or become further entrenched in their own opinion
by distancing themselves in the opinion space (repulsion). Furthermore, the
model parameters allow investigation of three behavioural aspects: exposure
(are distant opinions frequently observed?), tolerance (are distant opinions
attractive or repulsive?), and responsiveness (are opinion changes incremen-
tal, or large?); each with their own impact on polarisation. This enables
investigation, in the terms of the model, into questions pertaining to exist-
ing research that suggests exposure to different content can challenge held
views (Pettigrew and Tropp 2006), or even lead to compromise (Mutz 2002),
alongside analysis of model simulation results.

The extension of the model to include a group identification that, in
turn, influences agent interaction continues a strand of polarisation research
which finds that prior attitudes or knowledge influences evaluation of new
information (Taber and Lodge 2006). While the Attraction-Repulsion Model
is the chosen model for this work, it should be noted that the framework
introduced to bestow group identification upon agents is not exclusive to the
model. The implementation adapts model parameters so that agents use
either an in-group version or an out-group version, depending on how they
recognise the other agent with which they are interacting. This manner of
including group identification is therefore not unique to the chosen model and
could be used on the parameters of alternative opinion dynamics models.

3.2 Model Description

There are three elements to the model: (1) an exposure rule determining
how the opinions of agents are exposed to each other; (2) an opinion update
rule on the pairwise interactions which determines the change in opinion of
an agent; and (3) a group identification rule by which agents are assigned
a group label. The group identification rule is the extension to the existing
model by Axelrod et al. (2021) in order to create a framework to study
affective elements of polarisation. When each rule is presented, it is done
so from the perspective of an agent ¢. That is to say, the rules answer the
following questions: how does agent ¢ interact with others?, how does agent
1 update their opinion, and how does agent i get a group label?

Before defining the three rules that govern how the system changes over
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time, the population of agents must be defined. Each agent ¢ € {1,..., N}
has an opinion z; that lies on a continuous scale between 0 and 1. In
real world context, this may be conceptualized as an agent’s position on an
Authoritarian-Libertarian scale. The vector @ is also defined, having opin-
ion x; in the i-th position. For the modelling purposes presented here, the
opinion space will be one-dimensional but the model may be easily extended
to a d-dimensional space R? to explore multi-dimensional problems.

Unless explicitly stated otherwise, the opinion difference between agents
i and j refers to the L?-norm of x; minus z;, written ||z; — x;||. The opinion
difference is used to preferentially interact with agents having opinions that
are closer to their own (smaller opinion difference) in the exposure rule, as
well as to decide whether the interaction is attractive or repulsive and if the
magnitude of opinion change in the opinion update rule.

Three parameters are included in the model by Axelrod et al. (2021) —
exposure, F; tolerance, T'; and responsiveness, R — that are adjusted with
resulting effects on the opinion polarisation of the agent population; precise
details are given below. It is on these model parameters that the impact of
group identity is tested. Each parameter is taken in turn and split into two
sub-parameters, with one sub-parameter reflecting the treatment of another
agent that is identified as in-group and the other sub-parameter used when
the other agent is identified as out-group.

By systematically splitting one of these parameters into separate values
for in-groups version and out-groups, while maintaining that the other two
parameters are blind to group labels, there are three parameter sets created
for the model. The first set, { Eiy, Fous, I, R}, considers the case when agents’
exposure to in-group and out-group differs while tolerance and responsiveness
remain constant. The second, {E, Ti,, Tou, R}, considers when agents are
more, or less, tolerant of opinion difference dependent on group recognition.
The final, {E, T, Rin, Rout }, is the case when agents have stronger, or weaker,
responses when faced with an opinion that is in-group or out-group.

3.2.1 The Exposure Rule

The probability of agent 7 is exposed to the opinion of agent j, w;;, is inversely
related to the opinion difference between those agents. In other words, expo-
sure becomes more likely when z; is closer to ;. Probability of interaction is
1 when ||z; —z;|| = 0, the probability then decreases as opinion difference in-
creases. This reflects the concept of homophily whereby individuals are more
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likely to interact with those that they are similar to, widely acknowledged as
a factor of exposure in the literature (McPherson et al. 2001). However, it is
still possible for any agent to to be exposed to any other agent, albeit only a
very small chance under certain model conditions, which reflects scenarios in
reality such as the possibility of chance encounters or forced connection via
family or workplace. The scalar value of 0.5 is kept from the original model,
changing it would change the rate of decay as chance of exposure decreases
with opinion difference increasing.

wi; = 0.5 —wl/E, (3.1)

The exposure parameter, E, in Equation 3.1 acts as a shape parameter
on the interaction probability; the parameter controls whether an agent is
relatively more or less likely to interact with other agents that have more
dissimilar opinions. A large value for exposure increases the likelihood that
agent i is exposed to an agent with which there is a large difference in opinion.
The influence of E on interaction probability is shown in Figure 3.1 for a
range of parameter values. If the opinion difference is equal to E, then
agents should interact once in every two possible interactions (an interaction
probability of 0.5); if opinion difference increases to be equal to 2E, then
there is an interaction probability of 0.25; in the other direction, an opinion
difference equal to F/2 is an interaction probability of 0.71.

In the model, w;; is treated as a probability with which exposure occurs
rather than as an edge weight on a complete graph between the agents.
The difference is that in the model simulation procedure interaction either
happens or not, while under a different formulation w;; could be considered
as an influence weight on the outcomes of interactions between agents in a
fully connected network. It is a modelling choice, and the binary outcomes
forced by considering w;; as a probability of interaction occurring or not at
all, is the method chosen here, as well as in the original implementation, to
reflect the real world nature of interactions.

3.2.2 The Opinion Update Rule

Once an interaction occurs, the opinion of agent ¢ is updated by the func-
tion ¢(x;, x;), where both R and T are model parameters and the opinion
difference between agents ¢ and j is again used. The opinion update may be
attractive or repulsive: either the agent’s opinion will become more similar
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Figure 3.1: The probability that agents ¢« and j interact as a function of
the opinion difference between them, under different values of the exposure
parameter F.

to the opinion z; observed (reducing opinion difference) or less similar (in-
creasing opinion difference). This allows for the possibility that agents may
experience a ‘backfire’ effect, as well as the traditional averaging to consensus
effect.

o, 2;) — R(x; —x;),  for |jz; — x| < T,
—R(zj; —x;), for ||z; — ]| > T.

Examples of the two interactions are presented in Figure 3.2.

Tolerance, T', is the parameter that controls whether the interaction is
attractive or repulsive. Opinion differences below the tolerance threshold
result in opinion x; moving closer to opinion z;, while the opposite occurs
when the opinion difference is above the threshold 7". Note the order of z; —x;
in Equation 3.2 to ensure the correct direction of opinion change. If 7' =1
then interactions will always be attractive since the difference between the
extremes of the opinion space is within the threshold. As T decreases, agents
become less tolerant and so the range of opinions with which they disagree,
causing repulsion, increases.

The second parameter in the update rule is responsiveness, R, which
controls the fraction of the opinion difference by which the updating agent

(3.2)
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i will change opinion. Consider a case in which |z; — x;|| < T, then the
two extremes of behaviour for agent ¢ are either to completely adopt z;
(R = 1) or to completely ignore the observed opinion despite being within
the tolerance threshold (R = 0). In the repulsive case, this same logic is
applied although it is impossible to ‘adopt’ opinion z; since the opinion
change is in the opposite direction. Responsiveness may be considered as the
speed with which opinions change.

. Example values:
Xj= 0.1, }(J' =0.2, XK= 0.4,
r=0.2

R (x-x)| [R(x-x)

Do
Do
>—e

T

Figure 3.2: Illustrative example of the possible interactions between agents.
The interaction between agents ¢ and j is attractive since the opinion dif-
ference is 0.1 and so is within the tolerance threshold of 0.2. While the
interaction between agents ¢ and k is repulsive since the opinion difference is
0.3 and so is greater than the tolerance threshold.

3.2.3 The Group Identification Rule

Identifying groups in social systems and operationalising them in an agent-
based model is a complex and novel problem. In the context of the model,
agents are defined by their opinion positions and so this attribute is used
to determine agents’ perceptions of each other. Perception of groups on the
bases of variable values (in this case, opinion positions) intuitively resembles
the notion of spatial clusters. So, through the lens of a computer scientist,
the problem becomes clearer in that it can be approached as a clustering
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problem. Therefore the approach taken in this work is to apply an exisitng
clustering method, HDBSCAN (McInnes et al. 2017), to the opinion distribu-
tion. The method is dependent on the shape and density of the distribution
to which they apply, so agents positioned in, or close to, a dense part of
the opinion space are identified with the same group label. A discussion of
the implications of implementing group identification in this manner, and
possible alternatives, may be found in Section 3.3.

Given that the group identification rule and the exposure and opinion
update rules, of Equations 3.1 and 3.2, depend on the opinion distribution,
the question arises as to possible interdependence between the three rules.
Opinions influence the exposure of agents to other agents, and exposure then
influences how opinions update, while opinions also determine group iden-
tification which influences agent interactions. All rules depend on opinions
and hence there is some interdependence between the rules but they are not
the same since each rule treats opinion in a different manner. As an exam-
ple of the difference between the rules, consider that agents ¢ and j have
the same group label but are situated at either edge of the spread of the
group’s opinion, then it is possible that the opinion difference between them
is above the tolerance threshold T'. At the same time, another agent £ may
exist that has a different group label but the opinion difference with 7 is less
than the tolerance threshold. This possible scenario occurs in the case of
Figure 3.3, which shows an example clustering by HDBSCAN. Finally, the
exposure rule can expose agents to others across the opinion space even if
they are not in the same group. The present work takes the first step into
models that consider the dependence of groups on opinion, future work may
consider a further variable, in addition to opinions, upon which identification
would hinge.

Identification by clustering, using HDBSCAN;, centres on finding patterns
in the data based on local density. It works by first finding the distance to the
k-th nearest neighbour for each agent (where k is the minimum group size),
named as the core distance for a parameter k, which is akin to transforming
the space to reflect density. The next step in the method is to calculate a
so-called mutual reachability distance, defined as

dmreach—k(a, b) = max{corex(a), corex(b), d(a,b)},

where d(a,b) is a metric distance between a and b (also used to calculate
the cores). Once dpreach— is calculated for all data points, then a minimum
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spanning tree is constructed on those measures. From the connected com-
ponents shown by the minimum spanning tree, a hierarchy of the connected
components is built. To better imagine this, consider a dataset with a few
dense clusters, points inside clusters will have small mutual reachability dis-
tances to the other data points in the cluster but at some point the cluster
becomes connected and the next edge of the minimum spanning tree will
be out-of-cluster, where the new out-of-cluster edge will be a significantly
larger distance. If the edges of the minimum spanning tree are ordered by
distance, it is possible to cut the tree into clusters by cutting at edges which
have larger distance values, creating a hierarchy. Finally, the hierarchy is
manipulated to return clusters. It is a flexible method that does not require
the number of clusters, or groups, to be specified and the method detects
clusters of different shapes and densities.

The clustering procedure is repeated throughout the model simulation at
each iteration. This modelling choice ignores the persistence or “stickiness”
mechanisms of groups. It would be impossible to observe phenomena such
as group fragmentation or consolidation without changing group labels over
time, so it is necessary to avoid static grouping. As consequence, group con-
figuration exists in social systems in a continuum between immutability and
potential reconfiguration at each temporal step. The choice presented here
sides with the latter option to dispense of the modelling complexity related
to group persistence in the proposition of the first model for the co-evolution
of groups and opinions. The next section deals with these considerations in
more detail.

Outliers, or edge cases, in the distribution are not assigned a group by
HDBSCAN because they do not meet a critical level of likelihood for being
part of a cluster. The agents that are not assigned a group are treated
as out-groups by other agents that have a group identification but consider
other outliers as in-group. Treatment of outliers is a difficult choice, on
the one hand they have not been identified as a cluster so in-group identity
seems illogical, while from another perspective to ignore an outlier identity
and a potentially emergent group would be to disregard the solidarity of
marginalised agents. In the example of Figure 3.3, two groups are successfully
identified from a bimodal distribution and the agents at the edge of the modes
are labelled as ‘No Group’ Agents with the same label (‘Group A’, ‘Group
B’, ‘No Group’) treat each other as in-group and any others as out-group.
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Figure 3.3: An example assignment of group identification using HDBSCAN
on a bimodal distribution in the opinion space. The method identifies two
groups and leaves edges cases with no group assignment, which aligns with
an intuitive reading of the distribution.

3.3 The Consequences of Group Identifica-
tion

Regarding the implementation detailed above, the first issue to note is that
group labels given by the group identification rule are determined solely by
the opinion distribution of agents. However, in reality, multiple political and
social dimensions form group identity; the constituent parts may be asso-
ciated political parties, ethnic groups, professional groups, age groups, just
to name a few (Bodenhausen et al. 2012). Reducing identity labelling to
just opinion similarity (in closeness and density) is clearly a significant sim-
plification of the group identification process, but it is necessary to avoid
introducing further variables, and therefore complexity, into a first proposi-
tion of a model. Given that opinions evolve over time in the model, it follows
that group identification should evolve over time as well; it would be strange
for the opinions of agents to reach consensus without also reaching one group
identitification. Group identification is updated every iteration in this work’s
implementation, however a more complex model could aggregate identifica-
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tion over a number of previous iterations and thus adjust the “stickiness” of
group identification.

By splitting each model parameter, £/, T', and R, into sub-parameters
that depend on group label, there is an implication that group identification
plays a role in the perception of others for each parameter. At a broad
level that can be applied to all of the parameters, if the aspect of exposure
operates both intra-group and inter-group then biases for in-group favoritism
and out-group discrimination will apply (Tajfel 1974). More specifically, the
existence of group-dependent exposure has been shown to exist in digital
spaces (O’Callaghan et al. 2015; Bakshy et al. 2015; Gonzélez-Bailén et al.
2023), as well as in physical spaces (Novelli et al. 2010); while perceived
similarity with others, or consideration of others as in-group, has been found
to increase the likelihood of sharing information (Baek et al. 2025). For
tolerance, there is work showing a negative relationship between positive
identification of the other as out-group and the positive evaluation of out-
group arguments (Eschert and Simon 2019) — that is, agents identified as out-
group are less likely to have their arguments reacted to positively. Finally,
for responsiveness, there is evidence that people are more likely to respond
to in-group opinions (Masson et al. 2016) and that feeling close to another
increases assimilation of content shared by them (Balietti et al. 2021).

The clustering methods used for the group identification rule produces a
global consensus across the population of agents. As such, the agroupment
of the population assumes that agents have knowledge of the distribution of
opinions which is clearly not realistic, although members of the public do
make estimations about the beliefs of the population (Fields and Schuman
1976). The method employed in the rule also assumes that all agents agree on
the definition of groups, so the labelling of in-group/out-group is symmetric
for both agents in an interaction; however this is not necessarily the case, and
that is without mentioning how people with multiple social identities might
interact (Roccas and Brewer 2002). Despite these drawbacks the clustering
example using HDBSCAN (Figure 3.3) returns a useful labelling of groups.

Other options for a group identification rule may be considered. There
is a range of alternative clustering algorithms that could be used instead
of HDBSCAN. However, most alternatives face the same issues of assuming
population agreement and population-wide observation of opinions. Further-
more, most require pre-determination of the number of clusters present in the
data which is a drawback since the number of groups may evolve during sim-
ulation experiments.
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A different framework to clustering algorithms that can decide social
boundaries between groups is presented by Yang et al. (2021). The method is
motivated by reasoning from an agent’s perspective (as opposed to the pop-
ulation perspective of clustering). Each agent follows an error minimization
process at an individual-level and at a group-level. First, for an agent 7, the
error between actual opinion difference and expected opinion difference given
group boundaries is minimized; where expected opinion difference is either
0 when agents ¢ and j are of the same group, or, when they are of different
groups, the opinion difference between the mean opinion of agent i’s group
and the mean opinion of agent j’s group. Then, at a group-level, the agent ¢
compares group boundaries with other group members and each moves their
respective boundaries to minimize error between each one’s boundary defini-
tion until consensus is reached within the group, so this step is minimizing
global error for the group — this is akin to group members agreeing with
others on a boundary. The result of the method (named here as MinError)
can be seen in Figure 3.4, and full details of the method can be found in the
original article by Yang et al. (2021). The principal drawback of the Min-
Error method is that it is necessary to specify the number of groups prior to
identifying the groups, and a secondary drawback is that all group members
must agree on a boundary as in HDBSCAN. So, while the MinError method
is motivated by social cognition, and therefore seemingly more fitting for a
social process (group identification), HDBSCAN remains preferable.

Finally, to address the issue of group-wide agreement on boundaries, I
developed an Ego-Centric group identification method whereby each agent
has their own definition of group identification because there was not an
appropriate solution to this problem given the novelty of how group iden-
tification is introduced to an agent-based model here. The starting point
for the Ego-Centric method is to make use of the extended capabilities of
HDBSCAN to provide a fuzzy, or soft, clustering to the population, rather
than a hard category as in the group identification rule detailed above. As
a result, each agent i is assigned a vector of probabilities dependent on their
opinion ~y(x;), for which the k-th element is the probability that the agent
belongs to cluster k. By comparing y(z;) and 7(z;) for agents ¢ and j, it
is possible to distinguish a fringe member of a cluster from member whose
opinion is close to the mean opinion of the cluster. Therefore fuzzy method
identifies areas of relative high density, as in the standard usage, then gives
a value to where an agent is in relation to these densities. By calculating
lv(z;) —v(z;)| across x;, x;, it is possible to determine a likelihood of agent
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Figure 3.4: An alternative group identification method motivated by social
cognition: the MinError Method (Yang et al. 2021). Two groups are iden-
tified and only agents in the middle of the opinion space are labelled as
‘No Group’ However the process requires prior knowledge of the number of
groups.

1 considering agent j as in-group.

The probability of being considered in-group should also strictly decrease
as opinion difference increases, since those agents that are further away in
the opinion space should not be considered as more similar in terms of group
identification. It can happen that if the opinions of ¢ and j are on either
side of a mode then ||y(x;) —v(z;)|| is smaller than if j’s opinion were at the
mean of the mode, despite j’s opinion being further away in opinion space.
To ensure the probability is strictly decreasing, the set of agents M; ; that are
those agents whose opinions lie between z; and x; in the opinion space. It
is then stipulated that the probability that ¢ considers j as in-group cannot
exceed that between ¢ and any member of M; ;.

P(i considers j in-group) = Vn?elil\% (L= [lv(@s) = v(zm))-
57

The clustering for three example agents can be seen in Figure 3.5. Each
agent has clearly different understanding of which other agents are to be
considered as in-group. An ‘Extremist’ on the left-hand-side of the space
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Figure 3.5: A second alternative group identification method for which in-
dividuals have their own unique group definitions: the Ego-Centric Method.
Three example profiles from the opinion distribution are shown which each
treat different parts of the population as in-group: the ‘Extremist’ considers
16% of the population as in-group, for the ‘Group Member’ it is 39%, and
for the ‘Centrist’ it is 22%. The underlying histogram is coloured accord-
ing to in-group/out-group identification, with the probability of considering
another agent in-group shown by the green curve as a function of opinion
difference.

considers most of the nearest mode to be in-group, while the ‘Group Member’
considers almost all of the mode to be in-group (not quite all of the mode since
chance of being in-group is a strictly decreasing probability). The ‘Centrist’
sits between the two modes and treats them equally as either those to the
left, or right, may be considered as in-group. Ultimately, this method is not
employed in the model due to the extra layer of complexity it adds when
trying to extract population-level behaviour for agents. The method could
be usefully employed in future exploration of groups in agent-based models.

3.4 Simulation Procedure

The three rules that make up the Attraction-Repulsion Model with the group
identification extension — the interaction, opinion update, and group identifi-
cation rules — provide all that is needed to run simulation experiments upon
a population of N agents. To begin an experiment, the opinions, x;, of the
agents are distributed according to a starting distribution. Simulations pre-
sented for results in Chapter 5 will start with a bimodal distribution in order

42



to ensure a group dynamic, given that group influence is the focus of the
results. Next, the group identification rule is run and labels are assigned to
the agents. The exposure rule is next, so agent ¢ observes the opinions of the
population, then agent 7 + 1 will observe the opinions of the population, and
so forth. Once all opinions have had the opportunity to be observed, agents’
opinions are then updated by the opinion update rule. Finally, the iteration
count is incremented as the model cycles from the group identification rule
onward again.

All opinion updates are synchronous, so agent 7 updates their opinion
at the same time as agent j updates their opinion, and then the next it-
eration of the simulation begins so group identification is evaluated anew,
followed by potential observation of the newly updated opinions in the pop-
ulation according to the exposure rule, until opinion update happens once
more. Given that the exposure rule is not deterministic, the simulations are
executed twenty times to obtain average behaviour for the system.

For the given model parameters E, T', and R, an experiment consists of
selecting one of the parameters to split into an in- and out-group version
and searching the parameter space of the group-dependent parameters while
the non-group-dependent parameters are kept constant. For example, F =
0.1, 73, € [0,1], Ty € [0,1], R =0.1.

Algorithm 1 lays out the procedure for simulation, note that the rules
of the model are referred to by name rather than detailed, since they are
already explained in Section 3.2.

The convergence of the population’s opinions to some steady state is key
to knowing how long to run the model for. Each simulation is run up to
a maximum of one thousand iterations, by which time the opinions of the
population have come to a steady state; although a simulation may stop
early if opinions have not changed over one hundred consecutive iterations
(T'= 100 in Algorithm 1). Figure 3.6 shows how the polarisation of opinions —
assessed by the Duclos-Esteban-Ray measure, detailed in the next paragraph
— evolves over the course of iterations. By three hundred iteration steps, the
simulations approach a stable state. Iterations are allowed to continue to
confirm that simulations are indeed stable.

Polarisation of the opinions of the agents at each time step is assessed by
the Duclos-Esteban-Ray (DER) measure (Duclos et al. 2006). This measure
provides a continuous single-valued, and therefore easily comparable, index
of polarisation according to what the authors term an “identity-alienation”
framework. The reasoning behind this is to represent two important aspects
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Algorithm 1 Simulation experiments under the ARM for some set of pa-
rameters follow these steps.
{x1,..., x5} + starting distribution
iterations <— 0
while iterations < iterations limit do
GroupldentificationRule to assign group identity to agents
for z; in « do
InteractionRule(z;)
for z; in « do
OpinionUpdateRule(z;)
assign & updated opinion synchronously
iterations +=1
if {x1,..., 25} unchanged over the T previous iterations then

break

Average DER for Simulations - Iterations to Convergence
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Figure 3.6: Convergence trajectories under different model parameter com-
binations. R = 0.01 means that opinion change is slow and hence the system
takes longer to reach a steady state than when R is higher, so these are slow
examples of convergence. Exploration of the implication of DER values for

certain parameter sets is found in Chapter 5.

of polarisation: how dense modes in the data are (identity), and how spread
the distribution is (alienation). The formula, as previously stated in Chapter
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where x and 2’ are points in the opinion space, f(x) is the density at x,
and « is a parameter that is set to 0.5. In order to use the measure on the
discrete observations returned by the simulation, f(x) is approximated by
kernel density estimation and the sample based estimator for P, (f) is used,
as described in Section 4 of Duclos et al. (2006). For a bimodal starting
distribution, such as that in Figure 3.3, the value of DER is 0.21, which
represents mild polarisation. The minimum value of 0 is achieved at total
consensus and the maximum value of 0.5 is achieved when half of the popu-
lation is at one extreme of the space with the other half at the other extreme.
When DER values are provided for end-states of the experiments, it is an
average of the final one hundred iterations.

3.5 Illustrating Group Identification

The Attraction-Repulsion Model will be extensively tested in Chapter 5 to
gain insight into how group identification affects the evolution of polarisation
in the agent population. In this section, a first glimpse is given to illustrate
how the dynamics of the model change when group identification is present.

The first steps of the opinion change for a simulated population can be
seen in Figure 3.7 for the case where group identification is present in the
simulation and for the case where no group differentiation is made by agents
and all are treated equally. In the group identification example tolerance of
opinions of those agents belonging to an out-group is lower than tolerance
towards in-group agents, therefore repulsion between agents of the two groups
occurs and moves the population towards polarisation while opinions within
each group are consolidated towards an in-group consensus. When no group
identification exists, each agent is treat the same so T' = T}, = T,. In this
no group example, the original in-group tolerance is adopted globally as so
the population arrives at consensus given most interactions are attractive —
the opposite behaviour to polarisation found in the group identification case.
The example here assumes in-group treatment is applied to all other agents
when no group identification is present, the general T' could be calculated
in a different manner but the consideration and treatment of groups clearly
results in different behaviours.
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Figure 3.7: Comparative model simulation over initial time steps with and
without group identification. In the group case, parameters are Tj, = 0.5,
Toww = 0.2, E = 0.1, R = 0.01. When group identification is not present,
and each agent is considered as an equal individual, the parameters are T' =
T = Toww = 0.5, E = 0.1, R = 0.01, resulting in consensus rather than
polarisation. The consideration and different treatment of the out-group
leads to a considerably different outcome for the agents’ opinions.

The development of average group opinions over time can be considered
alongside the development of individual agents’ opinions. This presents a
novel level of analysis for the model. Group size, group mean opinon, and
group opinion spread, can all be visually assessed by a alluvial diagram, as
seen in Figure 3.8. Each rectangle of the visualisation shows group size and
mean opinion as rectangle length and vertical position, respectively. Group
opinion spread could be added to the alluvial diagram, represented as rect-
angle width or replacing group size as rectangle length, for legibility it has
not been included currently, thus prioritising group size and group opinion
mean as represented dimensions. The colour of the rectangle ranges from
dark blue/red at the extremes to light grey at the opinion space midpoint.

This view of the behaviour allows categorisation of types of dynamics in
the model at a broad level by considering whether groups diverge, converge,
or remain static. For the example case, the groups drift towards complete
polarisation resulting in both groups being pushed towards the extreme of
the opinion space. Full characterisation of polarisation types achieved by the
model is discussed in Chapter 5. It is not possible to compare with the case
of no group identification, since the group labels are necessary to create the
diagram.
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Figure 3.8: Evolution in time of the groups observed in a simulation for pa-
rameters T3, = 0.5, Ty = 0.2, E = 0.1, R = 0.01. Each rectangle represents
a group and is centred at the mean opinion of the group. The length of
the rectangle represents group size, which is equal and unchanging in this
simple example but more complex behaviours see splintering or combining
groups which change the rectangle size. The starting position of the groups
is unstable, as they drift to the extremes of the opinion space.

3.6 Complexity of the Agent-Based Model

For each iteration of the model the computational complexity is analysed in
order to assess how the model scales with increasing the size of the agent pop-
ulation. The implication is then how would the model handle large empirical
datasets built from real-world data, for example, empirical populations of
social media users with information subscriptions networks linking them and
inferred positions on continuous opinions scales (Ramaciotti et al. 2022).
Time complexity of the agent-based model, presented in Algorithm 1,
with n agents is as follows: assigning opinion is O(n) since the assignment
operation is applied to each of the agents, group identity as identified by
HDBSCAN is O(nlog(n)) (McInnes and Healy 2017), interactions are O(n?)
given that every agent has the possibility to talk to all other agents, then the
worst case scenario of the number of updates is an each agent has interacted
with all other agents so O(n?), finally the history check is O(n). Therefore
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overall time complexity of the model is O(n?), driven by the exposure rule
and the update rule. Note that removing the step of identifying groups would
not actually reduce complexity.
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Figure 3.9: Increasing computational time is needed for larger populations.
Model simulations were run five times for different population sizes n, with
constant parameters T}, = Ty = £ = R = 0.2, to provide average experiment
runtimetime; a quadratic curve is then fitted to the average length of time,
matching with the described O(n?) complexity.

The space necessary to run the model depends on the number of agents n
but also the number of time steps that are saved as history — this is denoted
by h. Space needed for the model history is O(h-n) as all agents’ opinions are
saved. The initial opinion assignment has complexity O(n). The comparison
against previous iterations for convergence is implemented by a comparison
against the previous iteration’s opinions, then a counter is incremented if ¢
and ¢t — 1 are identical (up until the limit 7"), and then iteration t replaces
t—1 in memory for the comparison check of the next iteration, so complexity
for this step is O(n). All interactions and therefore possible updates in an
iteration are temporarily saved to be updated at the end of the iteration,
as such this step uses O(n?) auxiliary space given that each of the n agents
could interact with all of the other (n — 1) agents. The model is then ei-
ther O(n?) or O(h - n) if h < n or h > n, respectively. The interactions
between agents and opinion updates are the points necessitating the most
computation, therefore to improve efficiency of the model these steps must
be changed or approximated. The interaction
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In its current state, the model is one-dimensional however if it were ex-
tended to a d-dimensional space — that is agents hold multiple opinions repre-
sented as a d-dimensional vector and compare their own vector against those
that they interact with then the complexity would increase to O(d - n?).

In the worst case, an agent will interact with all n — 1 other agents — and
this becomes increasingly likely as the population moves towards consensus.
To gain further insight, it is useful to consider the expected number of inter-
actions for an agent, which will depend on the distribution of opinions and
the exposure parameter.

Expected Number of Interactions

To address the question of the number of expected interactions across agents,
first consider the case for agent ¢. The probability that agent ¢ observes agent
j’s opinion is (the same as Equation 3.1):

wij = 0.5llzi—zill/E.

Then the expected number of interactions of agent ¢, or the expected number
of other agents j that are observed, is the sum of these probabilities since
each possible observation is a Bernoulli random variable:

E[din(i)] = Y wi.

J#

Each agent j is possibly observed in turn and then effectively removed from
the set of possible interactions for an iteration, so who agent ¢ observes is a
series of Bernoulli trials with probability w;; and it is not necessary to count
the number of ways that agent j could be chosen as a neighbour because each
j is trialled only once for each 7. If all agents are at consensus and have the
same opinion, then each w;; = 1, so the expected number of interactions of
agent 7 is n — 1, which is the worst case for model complexity as previously
stated. At the other extreme, as w;; tends towards 0 (for example, in the
case where E tends towards 0), then the expected number of interactions of
agent 7 is 0.

The random variables z; and z; may be considered as independent and
identically distributed (i.i.d.) following a known continuous probability dis-
tribution p(x) — certainly, at ¢ = 0 this is true, and a distribution may be
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approximated by Gaussian kernels for each subsequent time step. The ex-
pected number of interactions of an agent ¢ with opinion x in the continuous
distribution is:

Eldin(7)|2] = E,

Z wij] = Z E, [wij],

ji ji

by the linearity of expectation. Since the random variables x are i.i.d., each
[E, is identical and so the summation can be simplified to:

Eldin(i)|2] = (n = 1) - By wy].

With z and another agent’s opinion z’, an evaluation of the expectation, for
some p(x), can be written:

Eldi,(1)]z] = (n — 1) - /01 0.51==l/E . p(a"Yda' (3.4)

Notice that the expected number of interactions is a factor of n, the
complexity of interactions is therefore confirmed as O(n?) since this is the
expected number of interactions for each of the n agents. Equation 3.4 may be
evaluated numerically or considered for special cases such as = ~ Beta(a, ).

Furthermore, it is possible to find the average number of interactions
across all x:

B Bld(lel] = (- 1) [ 1 / 051V L p(af) - pla)de'da.

For numerical insight at this point, a Beta distribution can be substituted
in the place of p(x), and evaluated to give the average number of interactions
for a distribution of z as a function of the parameter E. If « = 8 = 1, then
this is equivalent to a uniform distribution on the [0,1] interval.

Figure 3.10 displays the numerical evaluation of the average degree under
a uniform distribution (special case of the Beta distribution) for different
values of the exposure parameter with n = 100 agents. When F = 1, E[d;,| =
79.6, falling to 24.4 for £ = 0.1.

50



80

60

E [\din}

20

0.0 0.2 0.4 0.6 0.8 1.0

E

Figure 3.10: Expected number of interactions for z ~ Beta(1, 1), while vary-
ing . As FE increases so does the expected number of interactions for some
agents ¢ in the Attraction-Repulsion Model.
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Chapter 4

Empirical Distributions in
Opinion Dynamics

A possible next step for the agent-based model is to connect to real-world dis-
tributions of opinions — for example, an opinion distribution estimated from
social media data (Ramaciotti et al. 2022), which would lead to ground-
ing the model in a wider context outside of traditional simulation scenarios.
However, the volume of computations necessary to scale the model to the
many agents present in large populations arises as a limiting factor (see the
complexity analysis presented in Section 3.6). With large N and a large
parameter space for models, the computational resources (both time and
processing power) necessary to evaluate the models and calibrate parame-
ters to fit empirical distributions becomes intractable. Furthermore, it is an
open question as to how a distribution of opinions may be translated into
the opinions of a population of N agents.

The agent-based model of the previous chapter is a useful tool, however,
the issues of how the process could cope computationally when the number
of agents, N, becomes large, and how to rigorously translate empirical distri-
butions into the functions that define the exposure and opinion update rules,
limit the capabilities of the model.

Scaling micro-level dynamics to assess macro-level populations, and the
complexity problems that are incurred, is also found when modelling collec-
tions of particles, such as gases, in physical contexts. A classic approach to
addressing these challenges is to take the mean-field limit of the system as
the number of agents, IV, tends to infinity (Braun and Hepp 1977). Under
this approach the focus changes from following individual agents and their
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positions to knowing the distribution of agents within the population. The
probability of observing an agent with opinion z at time ¢ is defined as p,(z),
and this becomes the quantity to model (rather than change of an agent).

4.1 Mean-Field Limit of Attraction-Repulsion
Model Equations

Prior to deriving the mean-field limit, it is necessary to clearly state the
equations for the model that is being approximated. A general formulation
of an agent-based opinion dynamics model with N agents that interact in a
pairwise manner may be written as:

d N, 1 N v
- (0 —Nzwij¢(xi (1), 2N (1)), (4.1)

where 2V (t) € R, d > 1 is the opinion of agent i at a time ¢ and ¢(-)
is the interaction function determining opinion update. Furthermore, this
formulation includes an interaction weight w;; € R which can moderate the
effects of interactions. Here, w;; represents the potential network structure of
interactions between agents, or in the context of the previous section it could
be a probability of interaction between agents ¢ and j, or reflect a different
interaction weighting. While it is conceivable that w;; could be subsumed
into ¢ in the case that the interaction weight depends solely on the opinions
x; and x;, there are cases when interaction between agents ¢ and j may not
depend on solely opinions at time ¢t. For example, the network structure
governing interactions between agents may be static or develop at a different
rate to opinions.

For the case of the Attraction-Repulsion Model, the opinion update rule in
Equation 3.2 maps to the interaction function (that is ¢(z;, x;) = +R(z; —x;)
when ||z; — 2| < T, or ¢(x;,2;) = —R(z; — z;) when ||z; — x;|| > T); and
the exposure rule of Equation 3.1 can either be considered for the interaction
weight (w;; = 0.5127=l/E) " or subsumed into ¢(z;, ;) given that both are
a function of x; and x; — in which case, w;; would be a constant or free
to represent further network structure. The purpose of w;; is to represent
network structure, as such the original exposure rule may be considered from
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two perspectives: either it defines a weighted network between agents, or it
is a weight on the exchange of opinions. Given that the exposure rule evolves
over time and is a function of opinions, it will be subsumed into ¢(x;, x;) for
the modelling presented later.

To develop the equations governing the behavior of the mean-field ap-
proximation, the mass distribution of individuals in the opinion space at a
time ¢, u¥(z), and its limit as N tends to infinity, u;(z), must be defined.
For a discrete case of N agents, this quantity can be expressed as the sum of
Dirac functions at the positions of the agents,

@)= 5 30 b o). (12)

This probability is the sum of the observations at opinion z divided by the
size of the population. As N tends to infinity this yields the continuous
distribution, so limy e pl¥ () = ().

There is now a key distinction to make: either the system (population of
agents) is exchangeable, or it is non-exchangeable. If two agents in the system
can be exchanged without changing the dynamics of the other particles then
they are exchangeable. The system is exchangeable if there is no network
structure, w;; = 1 in Equation 4.1, since it is possible to shuffle the labels
of all agents without impacting the dynamics of the system. If agents are
exchangeable, they may also be called indistinguishable or unlabelled.

However, the exchangeable case presents a flaw when used to model social
systems. Particles being indistinguishable may be suitable for modelling the
reality of gases, but fails to capture important aspects of social systems.
At this point, the analogy between particles and persons becomes strained.
When an individual is interested in a population, it is likely that there is
some information — perhaps demographics or group identity — that would
be of interest to track through simulation, this is only possible in the non-
exchangeable context.

The development of the mean-field approximation will follow the exposi-
tion detailed in Ayi and Duteil (2024). It is useful to begin with the more
straightforward case (and classic case in physical contexts) that treats agents
i and j as exchangeable (w;; = 1). Considering the derivative with respect
to time of the integral across the domain of a test function f € C(R?),
i.e. a smooth/infinitely differentiable compactly supported function, then
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the following derivation provides a path towards a solution.

T
<
-+

he chain rule]

N N

= 3z 2o 2 e (0,27 (1) V)

i=1 j=1

[by substituting Equation 4.1, with w;; = 1]

/R/ 6 (x,y) - VF(@)dpu (@)dp (y),

[by moving from discrete to continuous context]

for which the solution to u for an exchangeable system is deduced as a
solution to the Vlasov-type equation; note that a Vlasov-type equation de-
scribes the evolution in time of a distribution function (Dobrushin 1979). To
be clear, an equation of Vlasov-type is

O + V- (Ve pae) = 0, Vip(z) = /Rd w(||z —yl))(y — 2)dus(y).

Relating this to the case presented here, the solution is:

o) + 5+ ([ ottt ) ulo)| =0 (43)

R4

The Equation 4.3 is the solution for an exchangeable system, showing how
() evolves over time.

Next, attention is turned to the solution for the non-exchangeable system.
As mentioned, under the non-exchangeable condition the agents maintain
an identity so cannot be considered as equivalent, which results in a longer
derivation and increased mathematical complexity. It is necessary to redefine
¢(x) which is currently the probability of finding an agent that has opinion
x at time ¢, no matter which agent. In order to capture the individuality of
agents, an identity parameter £ € [0,1] is introduced so that the quantity
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Figure 4.1: A bimodal distribution of opinions with two identity parameters,
¢ and (. The normalized sum of two Gaussian distributions centred at 0.25
and 0.75, both with standard deviation 0.1, represents the distribution of a
population’s opinions. In simulation it is possible to model the progression
of both modes by defining an identity for each.

of focus becomes uf(x), the probability of finding an agent with a labelled
identity &£ at opinion z at time ¢.

It is useful to consider £ in the context of taking the graph-limit, or
graphon, of the graph that describes the edges present in the system (Lovasz
2012). So as the size, N, of a graph, Gy, tends to oo, the edge weight
between one identity £ and another ( is defined as

{1 if (6,¢) €[5, &) x [, 4) and (i,4) € E(Gy),

w(§7 C) = .

0 otherwise.

This provides a definition for the edges that construct the graph between
the population, if an edge exists between ¢ and j in the original graph then
the edge is mapped between their respective labels in the graphon. The
definition may be broadened for w € R, to consider weighted edges. An
intuitive understanding of the identity £ is to consider it as one of a set of
average profiles within the population, please see Figure 4.1 for an example.
A discussion and explanation of the extension to graph limits for opinion
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dynamics may be found in Prisant et al. (2024).

The graph structure stipulated by w means that taking the limit of the
graph as N tends to infinity must be possible. A condition for this is that the
graph must be dense, that is, the number of edges grows proportionally to the
square of the number of vertices. Although there are alternative graph limit
formulations from recent results to define the limit of a graph sequence which
is sparse, such as LP-graphons and graphops (Borgs et al. 2019; Backhausz
and Szegedy 2022), as explained in Ayi and Duteil (2024). For the current w
formulation, the density requirement means assuming the global structure of
the graph when the size becomes large. Two examples can be seen in Figure
4.2, where rules for the graph function are given in terms of the population
size N. Further details on convergence criteria can be found in Lovasz (2012).

Circular Graph I . Subgraphs Graph

A

Figure 4.2: Pixel representations of the adjacency matrix of example graphs
that could be have a limit taken and be represented by w, w(§,() = 1 is
coloured black. On the left, a circular graph where agent ¢ is connected
to neighbours i — a,...,i — 1,i+1,...,i 4+ « for « = N/8. On the right,
there are three subgraphs that are themselves complete, the boundaries of
the subgraphs are at nodes N/4 and 3N/4.

; ) ;

A consequence of introducing the parameter £ is that, when modelling the
evolution of the system in Section 4.2, it is possible to follow the development
of not just the distribution as a whole but also average profiles of individuals
that constitute the population. From a deterministic viewpoint, p; (A& x Ax)
represents the mass of agents with labels in A¢ and positions in Ax at time
t.
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Recent works (Ayi and Duteil 2024; Jabin et al. 2025) show that in the
setting of ,uf the solution for an inexchangeable mean-field limit of the system
is

oni(o)+ V.- | ([ [ e ot mianic) i) <o, (1)

where € is the domain of the interval, typically [0, 1]. Despite the increased
difficulty presented by including identities, reflected in the relative novelty
of solutions when compared to exchangeable versions, the non-exchangeable
system is used for the modelling that follows given its preferable nature for
social contexts.

4.2 Finite Volume Method for Attraction -
Repulsion Model

Commonly applied in Physics and Applied Mathematics, the finite volume
method is a framework to discretise differential equations for the purpose of
numerical simulation, that has its roots in modelling physical phenomena.
The crux of the method is the use of the divergence theorem to transform
volume integrals that have a divergence term into surface integrals. Then
changes to the studied quantity of interest may be evaluated as fluxes only
at volume surfaces rather than flux across an entire volume. Simply put, the
flux into a volume depends on the flux out of the adjacent volumes — what
goes out of one volume, must go into its neighbouring volume.

For the finite volume method, there are two features that make the
method attractive to use. The first is that the method is locally conser-
vative so all flux is accounted for in the method, critically this aligns with
Equation 4.4 which is a conservation law — that is, the population is neither
created nor destroyed during simulation. While a second advantage is that
the mesh of finite volumes may be unstructured, which provides flexibility in
model construction.

Aside from the finite volume method, the finite difference method and the
finite element method also exist as methods to discretise differential equations
by splitting €2 into intervals. Neither of the two alternatives conserve fluxes
unless additional constraints are applied, so they are avoided for use with
the conservation law discussed.
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[ will now give a brief overview of the finite volume method, then place
it in the context of the Attraction-Repulsion Model used earlier. Following
this, I will provide some validations demonstrating behaviour of the model
prior to using it for simulations.

4.2.1 Method Overview

The finite volume method provides the framework for moving from the con-
tinuous space of the mean-field approximation into the discrete space used
for computation and simulation of conservation laws that govern a continu-
ous quantity, g. The quantity is typically energy or mass, but in the context
of this work it is the distribution of agents with identity £ along an opinion
scale, that is ,uf. It will then be possible to approximate the solution for
15 () forwards in time for t > t,, where t is a starting time (Eymard et al.
2000).

A general statement of a conservation law at a point in space, x, and a
time, ¢, may be written as

Oq(x,t) + V- F(z,t) = f(x,1). (4.5)

Where 0;q(x,t) denotes the partial derivative of the quantity with respect to
time, V- F = g—i +---+ g—fz is the divergence of the flux F along each of the
d dimensions of the space, and the function f is a “source term” that allows
for the possibility of density loss or creation. The terms on the left-hand side
of Equation 4.5 are the change in the quantity over time and the force acting
on the quantity for each point x at time ¢. In this work, the source term, f,
is set to 0, so the overall size of the quantity remains constant and as such
the divergence of flux, F, accounts for all changes in the quantity, ¢, over
time. From this continuous description, it is necessary to explicitly discretise
both space, x, and time, t, as follows.

For space discretisation, a mesh of cells (the finite volumes) is introduced
on the domain € of the opinion space in R?. Starting with a one-dimensional
case, consider a grid of points x;,7 € {0,..., M + 1}, such that

0:1‘0<...<IZ’_1<1’Z‘<$Z’+1<...<I‘M+1:1.

A cell C; for i € {1,..., M} is then defined by reference to the mid-points,
Tit1/2, of the original grid of points, z;.

C; :]%4/2,55”1/2[7 Tiy1/2 = (ZUz + 517i+1)/2, Ax; = Tit1/2 — Li—-1/2-
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This may be generalized to d dimensions, however the modelling that follows
remains in one-dimension so this is not discussed here.

Time discretisation is achieved by introducing time steps that constitute
an increasing sequence t,, n € Ny (the set of nonnegative integers) with
to = 0. The time steps may be defined as constant and regular by letting each
time step be At € Ry and thus t,, = nAt. Or, as is done in the simulations
that follow, the time steps may be variable to ensure convergence as rates of
change of the modelled quantity change over time. The n + 1 time step is
defined by the Courant-Friedrichs-Lewy (CFL) condition which depends on
the size of the flux betweens cells:

tpe1 = t, +min 4.6
+1 i (max{|)\i_1/2, Aiy1s2l} o)

where (8 is the Courant number, set to 0.49 in later simulations to ensure
convergence, and A;1/2 is the wave speed calculated at z;4,/2 — the precise
definition in the model context is found in Section 4.2.2, but the wave speed
may be considered as the flux at x;,/, unweighted by the quantities ¢; and
gi+1 on either side of the cell boundary, such that F is of the form \;V¢.

n
: : S
: // : : : : // i
[ 7/ I I I 7/ 1
Zo Xz ! xX; '/I.H»% L1 .1"I-+% .I,‘A\H»% Tp+1

NI

Figure 4.3: Discretisation of the simulation domain for the implementation of
the finite volumes method. Schematic representation of the mesh cells with
grid points, x;, quantities being simulated, ¢;', and fluxes, F\ ; between cells.

The shaded zones at the extremes of the domain show the region between
the ghost points and the edge of the space covered by cells, C;, that is not
simulated.

In light of both discretisations, the following notations for the discretised
quantity and flux are also adopted: ¢! = q(x;,t,), F* = F(x;,t,). See Figure
4.3 for a visual representation of the discretised space. Note that the cells
C; cover the opinion space between x5 and w112, therefore there is half a
cell at each extreme which is not covered. In other words, there are as many
cells, C;, as there are grid points, x;, that are not on the edge of the opinion
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space. The points zy and x;,; are then ghost points. With sufficient M,
this does not pose a problem in simulation as the size of the ghost interval,
Ax;/2, decreases.

Implementing the time and space discretisations into Equation 4.5, set-
ting the source term to 0, and using the divergence theorem on the flux
divergence term, yields

qn""l — qﬂ
/ ZA—ZdI + / F! - ne,(x;)dy(z;) = 0. (4.7)
1% 2 aC;

where n¢, (x;) is the unit normal vector to the surface C; at point x; outward
to the cell C;, At, = t,11 — t,, and dv is the integration symbol for (d —
1-dimensional) Hausdorff measure on the considered boundary. In a one-
dimensional setting, the surface is the boundary between cells along the scale
and so the unit normal vector points either consistently up the scale or down
the scale, since that is perpendicular to the cells.

To continue, the one-dimensional case is taken for clarity and ease; as
such the finite volume scheme for solving Equation 4.7 is of the form

qn""l — qn

L dr = —/ F! - ng, (x;)dy(z;)
/Q. At, aC;
A’xi n+1 n n n
A_tn (C]i e Qi) = - ( i+1/2 Fi—1/2)

n n Atn m m
q; = 4 — A_ZBZ ( i+1/2 Fz‘—1/2) ) (4.8)

which provides a value for the quantity in cell C; at the next time step t,.1
given knowledge of the system at the current time step. This is the central
part to the scheme — it allows the simulation to move forward in time.

The boundaries of the interval are key points to consider since the mass
must be conserved with no loss of opinions outside of the domain of the
opinion space. This may be written as

@/ ¢ (z)dx = 0.
Q

By integrating Equation 4.5 over the domain of the opinion space €, a rela-
tionship with the flux can be stated:

Ot/ ¢ (x)dx + / V -F(z,t)de = 0.
Q Q
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Then, applying the divergence theorem, the equation becomes

@/q?(x)dx%—/ F(z,t) -ndx=0.
Q o0

To ensure that mass is conserved, it must be that F(z,t) - n = 0 at the
boundary, 092. If F is of the form \;V¢]" (as it is in the implementation that
follows), there are two ways to achieve mass conservation, either the wave
speed causing the flux is forced to be equal to zero or the derivative of the
quantity, ¢/, is equal to zero. The simpler approach is impose that )\; is zero
at the boundary, rather than approximating the gradient of the quantity at
the boundary. Hence the boundary condition is imposed such that the wave
speed, and therefore flux, is zero at the boundary to conserve mass.

A consequence of the chosen boundary condition is that once mass hits the
boundary it then cannot leave. In a real-world context this would mean that
once some part of the population hits such extreme opinions, the opinion will
not change (sometimes termed as ‘stubborn’ in opinion dynamics models).
It is shown later that despite the stickiness of the boundaries, the model
reproduces the behaviour found in an agent-based model.

The final part needed to fully describe the finite volume method is to
determine the value of the flux at the boundary of each cell of the mesh.
That is, calculating F}' | /2 given the fluxes, F}*, I}, that are already known.
There are several existing methods that can be used to define the numerical
flux at the boundary and in this work the Rusanov flux is chosen as it is
relatively simple (Bouchut 2004) which makes it computationally efficient.

Therefore,
|A

z+1/2’ n
F+1/2 = >‘z+1/2 %+1/2 9 (qi+1 - q:l) : (4.9)
where A, » is the wave speed discussed earlier (the effect of interaction at

Tiy1/2 without the weight of quantities ¢, ¢f',;) — what this means in the
opinion dynamics model will be precised in the next section. An intuitive
understanding of the Rusanov flux is that there are two parts: the centred
flux at ¢}, , /o which is the main flux term for a smooth solution, while the
(q{ﬁrl — qf) term accounts for numerical dissipation. Dissipation is essentially
smoothing if the difference between ¢, ; and ¢}’ is large in order to stabilise
the scheme near discontinuities. This completes the overview of the method,
it now remains to connect it with the mean-field limit of the Attraction-
Repulsion Model.
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4.2.2 Method Implementation

The finite volume method must now be placed in the context of the mean-field
solution (Equation 4.4), this section details how the numerical simulations
of the continuous version of the discrete agent-based model can be achieved.
An inspiration, although in a different context and with different fluxes, may
be found in Audusse et al. (2016).

As well as the time and space discretisation previously described, the
identity & must be discretised. This is achieved in much the same way as
the space discretisation of z by defining ¢;,j € {1,..., P} grid points on the
domain Q with &;11/2 = (& + &41)/2, and A = a2 — &

Therefore, by substituting the notation of the mean-field limit in Section
4.1 into Equation 4.8 which provides a value for the quantity in cell C; at the
next time step t,.1, the solution to the finite volume method can be written
as

&in+1 o &in Atn &imn &imn
p = = Az, <F¢i1/2 - Fz'il/2> ; (4.10)
where uij’nﬂ is the probability of finding an agent in cell C; with a labelled
identity &; at time ¢,41, and Ffil% is the flux at the boundary between cells
C; and C; 4 1 for agents with labelled identity &; at time n.
The Rusanov flux is defined as,

Aol
5’7’”’ n 5 | 7‘+1/2 g’:’”’ f'vn
F¢i1/2 = )‘i—&—l/QMij,_l/z - B <Mifi-l — g’ > ) (4.11)
where the flux speed, A7, /2 exerted at the x;1/, edge of cell Cj, and the
interpolated boundary mass “51711/27 are
it1/2 = Z Azpi1/2A& - Wit1/2:0(Tiv1)2, $k+1/2)uiljrn1/27 (4.12)
k,l
&imn &imn
&im Hit1 + 1
Wil = (4.13)

The Equation 4.12 for flux speed can be understood as a discretisation of the
integrand in the solution for an inexchangeable mean-field limit (Equation
4.4) multiplied by the associated discretisation weights Axj1q/o and A&.
The interaction function ¢ that will be focused on is the Attraction-
Repulsion Model defined in Axelrod et al. (2021) and used in the previous
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agent-based model (Equation 3.1, 3.2), for completeness, that is,

R(x; — x;)0(x;i, z;), for ||z, — x;|| < T,
—R(x; — 24)0(xy,7;5), for [|o; — ;]| > T,

(25(371‘7 xj) = {

where 0 is the exposure rule,

O zy) = (1/2) 7.

The tolerance, T responsiveness R, and exposure E, parameters are thus
all included in the interaction function. The weights between identities, w,
are initially set to 1 for simplicity given that # is akin to an edge weight
based on opinion for a complete graph. An alternative formulation would be
to mediate exposure between identities rather than opinions, thus varying
values of w for £. (, and is a future avenue of work.

The flux at the boundaries is imposed as being equal to zero to ensure
mass conservation, as discussed in the method overview, this happens at
i=1/2andi= N —1/2.

4.3 Finite Volume Simulation Procedure

The simulations in Sections 4.4 and 5.2 were run using a Fortran code imple-
menting the finite volume scheme of the mean-field approximation. The For-
tran implementation was developed at Inria and Sorbonne Université (Labo-
ratoire Jacques Louis Lions) by Nathalie Ayi, Francesco Cornia and Jacques
Sainte-Marie. Additional details can be found in a forthcoming publication.

The Fortran code was then adapted to the specificities of the Attraction-
Repulsion Model. Precisely, the interaction function ¢ was changed to im-
plement the exposure rule as in Equation 3.1, the opinion update rule as in
Equation 3.2, as well as Attraction-Repulsion Model parameters (tolerance
T, responsiveness R, and exposure F). Initial conditions were also coded
in Fortran to implement different distributions of opinions, such as a Uni-
form distribution and a bimodal distribution as the sum of two Gaussian
distributions.

The Fortran model was then put in a Python wrapper to facilitate multi-
ple model runs under sets, .S, of model parameter combinations and different
starting distributions. This framework allows for the finite volume method
model to be easily deployed by Python, while maintaining the performance

64



benefits of Fortran for the computations to simulate the opinion distribution
in time.

When running simulations, parameter sets of interest are defined in a
Python wrapper, which also creates output files for simulation data, and
the wrapper then calls the routine in Fortran. The simulation procedure is
described in pseudo-code in Algorithm 2.

Algorithm 2 Simulation procedure for the finite volume method under the
ARM with parameter sets, S, of E, T', R, model parameters.

Compile Fortran model
Begin Python wrapper
for each s € S do
Pass s(E, T, R) to Fortran input file
Create simulation output file
Call Fortran model with input file
while t < t,,., do
Compute time interval, At,
Compute fluxes, Ff_il"ﬂ

Implement boundary conditions

Update density, ufj "+ and save

4.4 Finite Volume Simulation Validation

Now that the method and its implementation have been described, it must
be tested to ensure its usefulness for simulating social systems. A complete
verification of the stability of the finite volume method would require pro-
ceeding analytically — that is, functional analysis verifying that the functions
are conservative and that errors are not propagated through the simulation
process. While another approach is to conceive a number of settings in which
there are concrete expectations as to how the simulation should behave. This
is the approach taken to validate the model, which will test for the pres-
ence of expected behaviours in controlled settings. The expected behaviours
are informed by the understanding of the Attraction-Repulsion Model from
Chapter 3 and the original analysis in Axelrod et al. (2021). These controlled
experiments will show that the model is behaving as expected under a variety
of conditions, and so providing confidence in the results of applications.
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Validation Objective Expected Behaviour Starting Param.

Experiment Distribution| Values

(1) Baseline Baseline case | Change in the model | Uniform T = 0.25,
from Axelrod | should be smooth. R = 0.25,
et al. E=01

(2) Response || Testing R Lowering R will slow | Uniform T = 0.25,
the rate of change, R =0.05,
and outcome remains E=0.1
as in (1).

(3) Exposure | Testing F Lowering E will slow | Uniform T = 0.25,
the rate of change, R =0.25,
and change the out- E =10.02
come of (1).

(4) Consensus || Testing attrac- | Increasing 7' will col- | Uniform T = 1.0,

tion for T’ lapse the distribution R =0.25,
to consensus. E =01

(5) Extremes || Testing  repul- | Lowering 7" will push | Uniform T = 0.05,

sion for T’ the population to the R =0.25,
extremes of the space. E=0.1

(6) Groups Consistency of Groups will remain in- | Bimodal T = 0.25,

groups tact but distinct from R =0.25,
each other EF =01

Table 4.1: Validation protocol for the finite volume method. The stated experiments test if
the fundamental behaviours of the model are as expected in order to demonstrate the model’s
validity.

Table 4.1 details the protocol for validation, while the six experiments
constituting the protocol are shown in Figures 4.4-4.10. The figures are
presented as snapshots of the simulations over time up until ¢ = 200, which
is not sufficient time for convergence of all simulations but instead provides
well-spaced snapshot times to check simulation behaviours. Snapshots are
taken at the closest evaluation point to t = 0, 40, 80, 120, 160, 200; this may
be at t = 39 rather than 40 because the flux speed A}, /2 I an experiment
is different depending on the parameter values, and so the CFL condition
of Equation 4.6 determining ¢,,; changes, which results in different time
step evaluations for stable simulations. The vertical axis of each snapshot
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is w(z) = 5 Ele pfj (x) where P = 2, which is the probability of opinion

x — on the horizontal axis — at time ¢. Each validation experiment begins
with a uniform distribution, except the final experiment which necessitates
a bimodal distribution. The space discretisation is set such that M = 200,
and therefore there are 200 evenly spaced z; in the opinion space.

For a baseline experiment, the default values of parameters T, R, and F,
from Axelrod et al. (2021) are selected. Parameter values need not necessarily
map between their work and the finite volume method model but top-level
behaviour should be the same; and, in fact, some level of polarisation occurs
as in the original article. This experiment is ‘(1) Baseline’ in Table 4.1, and
the first of the series of validation figures presented — Figure 4.4.

Changing responsiveness, R, the outcome is as expected: opinion change
happens at a slower rate but in the same manner. This can be seen in Figure
4.5 since it is a slower version of the baseline experiment in Figure 4.4. Note
that R is one fifth of the default value from baseline experiment (1), and the
distribution in experiment (2) takes five times the amount of time to reach
the same shape (comparing ¢ = 200 in Figure 4.5 with ¢t = 40 in Figure 4.4).
For clarity, this validation experiment would fail if the expectation was not
met, i.e. rate of opinion change was not slower.

Validation experiment (3) tests exposure, E. Resultant behaviour is more
complex than for experiment (2) since lowering E slows the experiment and
changes the behaviour. For an opinion z, relative exposure to opinions that
are increasingly different reduces as the parameter also reduces. Figure 4.6
displays behaviour that is attractive in the local vicinity of an opinion and
is not exposed to opinions that would result in repulsion. Local attraction
dominates since the weight under the exposure rule (Equation 3.1) at an
opinion difference of 0.25, where interaction flips from attraction to repul-
sions, is 0.0002 for £ = 0.02 — significantly different to 0.1768 for the default
E=0.1.

The last parameter to test is tolerance, T', by checking that what should
be either predominantly attractive or repulsive interactions are reflected as
such in the experiments. Validations (4) and (5) investigate 17" by first in-
creasing tolerance for total attraction across the opinion space and then de-
creasing the parameter to divide the population towards the extremes. Both
cases behave as expected in Figures 4.7 and 4.8. In the case of low tolerance,
when most of the population is repulsed by each other, one might expect to
observe the mass at x = 0.5 to remain unchanged since the repulsion felt
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from either side of this point should be balanced. However, this is not what
is observed in Figure 4.8. The lack of a stationary middle point is clear
when considering Equation 4.8, the addition of the flux terms is non-zero
since Fy, p = =1, /o I this symmetric experiment and so the density will
change. Closer inspection of the changes to the distribution under repulsion
at the start and the end of the experiment are in Figure 4.9. The closer in-
spection reveals that the uniform distribution does not remain flat as might
appear in the zoomed-out Figure 4.8. The curve of the distribution is ex-
pected, as x is more distant from 0.5 the imbalance of repulsion experienced
in a direction becomes greater and so more mass is lost. Finally, The sudden
jump in the distribution is at « = 0.05, which is where repulsion is only felt
in one direction.

The final validation is to test that groups are consistent, and the results
can be seen in Figure 4.10. The two modes quickly collapse to two distinct
points, and then slowly move apart as they are repulsed by each other, which
is exactly the desired behaviour.

To summarise the validation experiments, they provide evidence that the
equation, the scheme, the implementation, and the simulation, are consis-
tent with the expected behaviours, as informed by the understanding of the
Attraction-Repulsion Model from Chapter 3 and the original analysis in Ax-
elrod et al. (2021). The validations provide sufficient confidence with which
to extend simulation work into considering applications of the method and

having trust in the validity of the results and findings of the work pursued.
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4.5 Complexity of Finite Volume Method for
Attraction-Repulsion Model

For a grid of points on x consisting of M cells, the flux between each point
on the grid and every other point (Equations 4.11, 4.12) is calculated and
therefore has a time complexity in O(M?). The flux calculation is also made
across each of the identities, &, of which there are P. Since each identity is
compared to the others, the time complexity from this operation is in O(P?).
Equation 4.13 to interpolate the density at the boundary is also necessary to
execute in the model, however it does not effect the overall complexity since
the operation is in O(M) time complexity because it requires one pass over
the grid of points of size M. A dynamic group identification process, as in
Chapter 3, is not currently implemented for the finite volume method model
so no other steps need to be considered. Overall complexity is therefore in
O(P? - M?), representing each identity ¢; comparing to the other identities
and the flux between each x; being calculated. This holds for both time and
space complexity.

Mapping between complexity inputs for the agent-based model and the
finite volume method model is a complex problem because they measure
different things. Therefore a formal link between the number of n agents
and an approximation by M mesh cells and P identities is not clear and not
provided here.

One approach to providing an effective complexity comparison between
the models is to consider survey methodology. It is common for surveys to
use scales (such as Likert scales) to divide the opinion space into a grid of
options, ranging from five to eleven options. In the case of eleven options
within the opinion space, the implied discretisation of the interval [0, 1] would
be approximately 0.091. If an eleven-step Likert scale is considered sufficient
to capture the opinions of a population of N = 10,000 agents then this
implies M > 11 is equivalent. In the simulations of Sections 4.4 and 5.2, M =
200 and so intervals are far smaller than the equivalent eleven-point survey
scale that is deemed sufficient for N = 10,000 agents. This approximate
comparison does not consider the density of individuals per cell for the survey
or the simulation so should not be considered as a rigorous comparison.

The key advantage of the finite volume method model is that the com-
plexity does not depend on the number of agents n, but on M and P. The
bottle neck in the agent-based model is at the interaction and updating stage
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which introduces O(n?) complexity and this is avoided in the finite volume
method model. The resulting model for large populations is still of squared
complexity, but it is dependent on the precision of the grid of points in x and
¢ rather than the size of the population. Therefore providing a framework
with which to model large populations that an agent-based model could not
manage. So, when the number of agents n is no longer manageable for simu-
lation then the finite volume method model enables simulation to continue.

A further advantage of the finite volume method model is that it is de-
terministic so it only needs to be run once, while the agent-based model
is stochastic in the exposure rule and so must be averaged over multiple
experiment runs.

The efficiency improvements in the finite volume method allow for mod-
elling much larger populations that are represented as distributions rather
than individuals. One application is then the possibility of modelling large
social media data or survey data; while the method also enables extensive ex-
ploration of model parameter space that is computationally infeasible under
the associated agent-based model. In Section 5.2 the finite volume method
will be employed to enable simulation across the Attraction-Repulsion Model
parameter space in order to identify if the model can produce behaviour that
is plausibly similar to that of empirical distributions.
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Uniform Distribution: T 020 R=0.25 E=0.1

t=0 =80
™ ‘ f\x/\J/\ kJ&‘l
= t=120 t=160 t=200
0.0 10 00 10 00 1.0

T

Figure 4.4: These are the default parameter values given in Axelrod et al.
(2021). As the finite volume method considers the mesh on z rather than
individual agents, it is not necessary that behaviour at parameter values
exactly align. However, the variance of the distribution at ¢ = 200 is 0.20,
which is approximately the same as in their results.

Uniform Distribution: T=0.25, R=0.05, F=0.1
t=0 t=39 t=81

E

Z =120  t=159 =200
3
0.0 10 00 10 00 1.0
X

Figure 4.5: Lowering responsiveness results in a slower version of the baseline
experiment in Figure 4.4. Shape and evolution of the distribution follow a
similar behaviour.
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Uniform Distribution: T=0.25, R=0.25, £=0.02
—0 #=39 =81

|

=120 t=159 =200

()

o

0.0 10 00 10 00 1.0
xT

Figure 4.6: Lowering exposure slows the experiment, but also changes the
behaviour. There is little evidence of the repulsion that causes the central
mode in experiment (1) since exposure to ‘distant’ opinions is relatively more
rare. Instead, the distribution at the limits bunches to local points.

Uniform Distribution: 7=1.0, R=0.25, £=0.1
t=0) t=40 t=80

=

= =120 +=160 =200
=
0.0 10 00 10 00 1.0
X

Figure 4.7: High tolerance results in the distribution collapsing to a shared
consensus point at x = 0.5. The whole distribution is attracted to itself:
initially creating two sub-groups, seen at ¢ = 40 and then a sole group con-
centrated at a single opinion.
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Uniform Distribution: T=0.05, BR=0.25, £=0.1

t=0 t=40 =80
= t=120 t=160 t=200
=
0.0 10 00 10 00 1.0
T

Figure 4.8: With low tolerance the population is pushed to the extremes.
Please see Figure 4.9 for closer inspection of what happens to the density
that lies between the extremes of the space.

Inspection of Uniform Distr.. T'=0.05, R=0.25, E=0.1

1.02 7 .

! — t=0 ;

P t=10.5 N

L) S —
E 0.00
T 10
0.5

0.0 ' . ‘ '

0.0 0.2 0.4 0.6 0.8 1.0

xr

Figure 4.9: An inspection of certain time steps in Figure 4.8. Mass is lost from
the centre of the distribution to the extremes. Mass is lost quicker as = moves
away from the mid-point of the range, which reflects an increasing imbalance
in repulsion between left-hand-side and right-hand-side, until attraction at
the extremes of the space.
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Bimodal Distribution: T=0.25, R=0.25, E=0.1
=0 =40 =80

= t=120  t=160  ¢=200
=4
00 10 00 10 00 10
X

Figure 4.10: A bimodal starting distribution using the same parameters as
in the baseline experiment (1) of Figure 4.4. The two groups collapse to their
respective consensus points and then slowly separate to the extremes.
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Chapter 5

Applications

This chapter presents results from the application and simulation of the two
methodologies that have been described in Chapters 3 and 4. The two vari-
ations of the Attraction-Repulsion Model address two gaps in research, de-
tailed in Chapter 2, within opinion dynamics relevant to a disconnection with
social theory and a lack of empirical relevance, respectively.

First, the modified Attraction-Repulsion Model with group identification,
presented in Chapter 3, will be treated. The purpose of including group
identification in an opinion dynamics model is to reflect the importance of
social identity in theory (Tajfel 1974) and to address the disquieting increase
of affective polarisation (Garzia et al. 2023), which relies on in-group and
out-group perception. This framing of group, rather than individual, offers
a fresh perspective for opinion dynamics.

Simulations from the group identification model will be used to answer
research questions: (a) where does different treatment of in-group and out-
group result in opinion evolution tending towards polarisation or consensus,
(b) is a recognition of in-group and out-group important for understanding
polarisation, and (c) does the shift from a focus on individuals to groups
impact existing framing of opinion dynamics research? Building on the high
relevance of affective polarisation and group identity in the social science
literature, this is an important exploration of the impact on existing models.

The second method, taking the mean-field limit of the original Attraction-
Repulsion Model and applying the finite volume method as presented in
Chapter 4, allows for the treatment of large populations (as represented by
opinion distributions), in a step towards closing the empirical gap of opin-
ion dynamics. More precisely, the empirical gap is the missing connection

75



between the well-developed theoretical understanding of models and limited
experimental validation (Carpentras et al. 2022). This greatly impinges on
the usefulness of the models when trying to draw conclusions that speak to
modelling real-world questions of opinion distributions.

Application on the finite volume method will be focused on considering
the falsifiability of models, otherwise stated as considering what the plausible
parameter space of the model is — are distributions that result from simulation
approximately similar to what is observed in the real world? The principal
question of the application is then, is a framework provided by which opinion
models can be falsified or deemed plausible for empirical data?

5.1 Group Dynamics of Polarisation

5.1.1 Experimental Protocol

Simulations of the group-dependent ARM, detailed in Chapter 3, will be
undertaken with various parameter combinations to assess the impact of
group identification within the model. The initial conditions of the model
will be constant across simulations: the number of agents will be set to
N =100 as in Axelrod et al. (2021); the starting distribution of opinions will
be bimodal (as in Figure 3.3) on the assumption that group identification is
already present in the population and that a question for the model is the
degree of exacerbation of polarisation under parameter combinations. For
initialising the bimodal distribution, half of the agents draw opinions from
a Normal distribution N (uy,0%) with gy = 0.33 and o7 = 0.05, while the
remaining 50 agents draw opinions from a Normal distribution N (puz,o3)
with ps = 0.67 and o9 = 0.05. An alternative initialisation of opinions could
be a unimodal or uniform distribution, however these cases would reflect
one group or no group presence in the population; this is of less relevance
when questioning the relevance of in-/out-group interaction differences. Note
that the initial distribution of opinions is always randomly drawn for each
simulation run of the model.

From this shared starting point for simulations, each parameter (tolerance
T, responsiveness R, and exposure E) is taken in turn and split into an in-
group and out-group version. The group-dependent parameters are varied
in twenty 0.05 increments from 0.05 to 1.0, while the non-group-dependent
parameters are kept constant at values within the same [0.05, 1] range — this
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is named as one experiment. Fach simulation run within an experiment lasts
up to one thousand iterations or is terminated early when opinions have not
changed over one hundred consecutive iterations, and each simulation run
is repeated twenty times in order to arrive at average behaviour given the
non-deterministic nature of interaction choices between agents.

Nine experiments are then run for each group-dependent parameter pair
to investigate the range of system behaviours. In other words, when toler-
ance is group-dependent how does the role of the group-dependent parame-
ter change when responsiveness is low/medium/high and when exposure is
low/medium /high. The precise set of parameters explored for experiments
are:

« Group-dependent tolerance (GDT) simulations:
T € [0,1], Toue € [0,1], R € {0.01,0.1,0.25}, E € {0.01,0.1,0.25};

« Group-dependent responsiveness (GDR) simulations:
T € {0.01,0.1,0.4}, Ry, € [0,1], Rout € [0,1], E € {0.01,0.05,0.25};

» Group-dependent exposure (GDE) simulations:
T € {0.01,0.1,0.4}, R € {0.01,0.05,0.25}, By € [0,1], B € [0, 1].

Once the experiments of simulations have run, the level of polarisation
within the population is determined by the DER measure averaged over
the final one hundred iterations (Equation 3.3) and used to report on out-
comes. The application of the group-dependent model will be unfolded by
first discussing behaviours possible in simulations, and then diving into what
conditions produce different levels of polarisation within experiments.

5.1.2 Group Polarisation Behaviours Achieved by the
Model

It is useful to qualitatively address the typical dynamics that can be found
during model simulation by proposing a typology of combinations of some
group properties of the system. The four dynamics displayed in Figure 5.1 are
discerned from the range of simulation experiments found in the remainder
of this Section 5.1, since they explain how the simulations arrive at their
final states of polarisation. Convergence of the agents’ opinions to consensus
(Figure 5.1a) or divergence to complete polarisation (Figure 5.1¢) are primary
behaviours found in many works on opinion dynamics. Further to these two
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Figure 5.1: Representative simulation of four macro-scale types of group
dynamics arising from the simulation of the group-dependent Attraction-
Repulsion Model, achieved with different values for the parameters of the
model: in-group and out-group tolerance, responsiveness, and exposure. The
four group behaviour types are groups converging (consensus), groups re-
maining separate with a constant distance between them (stable polarisa-
tion), groups diverging from each other (group drift), and groups splintering
into sub-groups (fragmentation).
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polar opposites, the model also displays stable but not complete polarisation
(Figure 5.1b) and an unstable polarisation that is characterised by group
fragmentation (Figure 5.1d) — a unique understanding of model behaviour
afforded by the lens of group identification dynamics.

Consensus in Figure 5.1a is achieved when agents are exposed to opinions
belonging to another group and they are sufficiently tolerant of the difference
with out-group opinions, the resulting interaction is attraction. This process
repeats until the population eventually arrives at a shared opinion and two
groups become one.

Stable polarisation in Figure 5.1b is a result of low out-group exposure.
If the opinions of an out-group are rarely observed then in-group interactions
become the only important dynamic within the model. As such, the groups
neither repel nor attract, but remain polarised to an extent which does not
become more or less extreme as they remain in their own bubble.

Unstable polarisation can also occur within the model simulations. The
first kind of unstable polarisation is group drift, seen in Figure 5.1c, in which
groups move towards the extremes of the opinion space as they are exposed
to out-group opinions that are above the tolerance threshold and so result in
repulsion.

The second kind of unstable polarisation is group fragmentation, which is
only understandable with a group identification framework such as that sug-
gested in this group-dependent model extension. Figure 5.1d displays groups
splitting from within as driven by in-group repulsion. Given that agents are
not tolerant of the spread of in-group opinions, the group fragments and re-
sults in smaller groups of agents floating between the extreme groups. The
splinter group agents may then evolve to rejoin the previous group through
attraction/repulsion, join a new group, or remain in the middle of the opin-
ion space. With multiple groups, the maximum level of opinion polarisation
is never achieved since not all agents will reach the extremes of the opinion
space.

5.1.3 Group-Dependent Tolerance Experiments

The experiments for the case of introducing group-dependent tolerance into
the model can be found in Figure 5.2, each pixel on each heatmap panel
experiment of the three-by-three grid is the average final DER polarisation
of the agents’ opinions across twenty simulation runs for a combination of
(Tin, Tous, R, E)). Depending on the combination, resulting polarisation is
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somewhere on the DER measure scale between 0 (low: consensus) and 0.5
(high: complete polarisation). Heatmaps representing experiments will be
compared to each other, then insight into the group-dependent roles of T},
and Ty, will be discussed.

When the responsiveness parameter, R, is fixed (comparing heatmap pan-
els vertically), higher exposure tends to raise the out-group tolerance thresh-
old, T4y, at which low polarisation occurs. Thus with relative increased
exposure to agents with greater opinion differences, agents need a larger tol-
erance of out-groups for opinion consensus to occur.

10
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Figure 5.2: Group-dependent tolerance (Ti,/T,y) experiments. For deter-
mining polarisation outcomes of the simulation, T, is the more important
parameter. Tolerance towards the out-group decides whether two groups will
be attracted to each other or separate, although exposure E must be high
enough that out-group opinions are observed often enough to impact the in-

group.

If the exposure parameter, E, is instead considered as fixed (comparing
heatmap panels horizontally), then increasing responsiveness results in in-
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creased polarisation. With high responsiveness, agents explore the opinion
space quickly and find the extremes at 0 and 1, from positions at the ex-
tremes of the opinion space it is difficult for an agent to be attracted to any
out-group opinion unless T;,; tends towards 1. Similar results to these find-
ings for ' and R are reported by Axelrod et al. (2021) in the original work
without groups.

Changing focus to the in-/out-group parameters, T}, /7oy, out-group tol-
erance is a more influential parameter than in-group tolerance. The vertical
boundaries between areas of high polarisation and low polarisation — for ex-
ample, in the (R = 0.01, £ = 0.1) experiment where T, > 0.3 — tend to
define system behaviour transitions between groups merging or groups di-
verging. So, tolerance of out-group is a key predictor of the resulting opinion
distribution from a simulation.

In-group tolerance can still impact polarisation outcomes if it is suffi-
ciently low that it causes in-group fragmentation. This effect can result in
multiple groups spread between the extremes meaning that maximum polar-
isation is not achieved. An example of parameters for which in-group frag-
mentation occurs can be seen at T}, = 0.05 with T, < 0.5 in the (R = 0.01,
E = 0.1) experiment, where DER is approximately 0.3. For higher R val-
ues, in-group fragmentation still occurs early in the simulation but higher
responsiveness results in larger opinion changes meaning that middle ground
agents are able to arrive at the extremes of the opinion space and break out
of the middle ground.

Some experiments in Figure 5.2 — such as the (R = 0.25, £ = 0.1)
experiment for 0.5 < T, < 1.0 — show non-smooth transitions between
final polarisation states when changing parameter values (this also occurs
later, in Figures 5.3 and 5.4 for group-dependent responsiveness and group-
dependent exposure). This non-smoothness will be termed as pizelation. It
is due to volatility in the final DER measure of the polarisation of the agents
across the twenty simulation runs, which is caused by one of two reasons:
(1) First, group fragmentation may occur which results in different possible
configurations of middle ground agents and thus a variety of possible DER
values. (2) The second cause of pixelation is that under certain parameters
the simulation has several possible stable states, or “local minima”, that are
arrived at with non-negligible probability and so the average outcome for
simulations is less predictable.

An example of the second cause is the experiment with parameters 7T}, =
0.6, Tows = 0.4, and (R = 0.1, E = 0.1); seventeen out of the twenty simu-
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lations end with DER over 0.40 which is equivalent to the agent population
being split between the two extremes of the opinion space in approximately
equal group sizes. While the other three simulations end in less polarised
(stable) distributions, the extreme being one simulation with a 0.25 DER
value due to eighty-four agents having opinion 1 and the rest having opinion
0. This range of simulation outcomes is due to parameter combinations that
can result in large opinion changes for agents each iteration, making the sys-
tem less predictable. An alternative consideration of this cause, is that the
standard deviation of final state DER polarisation across the twenty simula-
tions is higher in the regions of Figure 5.2 where pixelation is more present.
A further reflection of this is the sharp boundary in polarisation outcomes
when varying T, at R = 0.01, since low responsiveness causes only small,
gradual, changes in opinion for agents.

5.1.4 Group-Dependent Responsiveness Experiments

The group-dependent responsiveness parameter, explored in Figure 5.3, gov-
erns the magnitude of attraction or repulsion when agents update their opin-
ion in response to interactions. Low values of R mean slow convergence or
divergence of opinions, while high values result in agents pushing to the ex-
tremes of the opinion space quickly when repulsed, but it can also result
in agents under attraction overshooting the opinion that they are attracted
towards. An example of overshooting would be if an agent were to observe
a different opinion value twice with R > 0.5 while not observing other opin-
ions; the agent would change their original opinion by over half of the opinion
difference twice and so overshoot the referenced new opinion. Although over-
shooting is unlikely in real settings, it is presented here for a full exploration
of the model.

When exposure is low, £ = 0.01, (the lower horizontal band of three
experiments in Figure 5.3) there is a tendency for polarisation to decrease as
tolerance increases, no matter the level of R;,/Roy¢. In the experiments where
T € {0.1,0.4}, there is a smooth transition between higher polarisation for
R;, > 0.5 and lower polarisation for R;, values below 0.5. The understanding
for this is that increasing R;, results in strong agent reactions to the frequent
interactions that are occurring within a group, akin to increased energy in a
system, so that the population’s opinions do not settle to a constant value.

For intermediate exposure levels, £ = 0.05, large out-group responsive-
ness (Rout > 0.5) brings polarisation, although this is less certain an outcome
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Figure 5.3: Group-dependent responsiveness (Ry,/ Roy) experiments. In con-
trast to the sharp behaviour boundaries of (7j,/T,y) experiments, the mag-
nitude of attractive or repulsive response results in gradual changes to the
final polarisation of the population. Responsiveness to out-group opinions
Ry is more influential than treatment of the in-group.

as tolerance increases. For in-group responsiveness, pixelation makes it un-
clear if low R, results in lower polarisation in experiments 7" = 0.1,0.4,
however it is the case that lower R;, reduces polarisation for the 7" = 0.01
experiment.

Under high exposure, F = 0.25, only simulations with low out-group
responsiveness (Roy < 0.2) and high tolerance (7" = 0.4) result in low po-
larisation, which arises from agents neither reacting strongly to repulsive
out-group nor overshooting attraction to out-group. However, in most sim-
ulations frequent exposure to agents with greater opinion differences results
in polarisation.

Generally, increasing in-group or out-group responsiveness will increase
the polarisation of the agents’ opinions, with the exception of the (T' =
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0.4, E = 0.25) experiment under low out-group responsiveness. The group-
dependent responsiveness experiments do not exhibit the same sharp be-
haviour transitions as the group-dependent tolerance experiments, reflecting
that responsiveness is a gradual change in magnitude of opinion update rather
than the sharp threshold of attraction/repulsion governed by tolerance.

5.1.5 Group-Dependent Exposure Experiments
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Figure 5.4: Group-dependent exposure (Ej,/Eoy) experiments. Polarisation
is more likely for increased out-group exposure E,,;, when the polarising ef-
fect of repulsion to different out-group opinions is not tempered by either high
tolerance T or larger exposure to in-group Ei,. The case of over-exposure to
in-group opinions and under-exposure to out-group opinions can be consid-
ered as a similar scenario to filter bubbles.

Preferential exposure towards in-group agents over out-group agents re-

sembles some aspects of a recommender system in social media settings,
hinting at the much discussed topic of filter bubbles, while also emphasising
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classic social dynamics such as homophilly. Of course, a recommender sys-
tem may also include content-based recommendations or data on behavioural
traces (e.g. clicks, likes, and shares, on a social platform), which are not
present in group-dependent exposure.

For low tolerance experiments (7" = 0.01) in Figure 5.4, an increase in
FEo results in an increase of repulsion between groups as out-group repulsive
interactions are more common. As tolerance increases, low polarisation final
states become possible, and low polarisation are more likely arrived at when
responsiveness is low too.

E;, can act as a balance to E,, when responsiveness is low. In this
case the increased repulsion from increased exposure to out-group opinions
that are different is countered by increased attraction to in-group opinions,
and thus the net effect of the repulsion is reduced by the increased in-group
attraction to the increased group average opinion.

The (R = 0.01, T = 0.4) experiment is the only experiment in Figures
5.2, 5.3, and 5.4, that reaches consensus for all combinations of the group de-
pendent parameter. This shows that sufficient tolerance with small opinion
changes from iteration to iteration lead to a stable, and predictable, consen-
sus.

Across the group-dependent exposure experiments, when polarisation is
possible, an increase in F,,; increases the polarisation of the population’s
opinions. In a similar manner to group-dependent tolerance, it is clear that
treatment of out-group is important to understand the potential for polari-
sation within the model.

5.1.6 The Impact of Groups in Opinion Dynamics

Introducing group identification to agents changes how the dynamics of a
model may be understood. Rather than being focused on dynamics at the
level of the individual, populations can be analysed by how they are struc-
tured by groups and how these structural elements combine or diverge to
produce consensus or polarisation, as in Figure 5.1. This is a new direction
within opinion dynamics that can provide further insight in future research.

Treatment of out-group is raised as a key factor in understanding polar-
isation outcomes of the population. Ultimately, relationship to out-group
determines whether opinion consensus or polarisation occurs due to groups
being attracted to or repulsed by one another. This finding sits alongside
the current emphasis placed on affective polarisation by colleagues in social
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sciences that understands the level of out-group hate as a central part of
polarisation.

In-group dynamics also provide insight into population behaviours. If a
group’s spread of opinion is larger than in-group tolerance then the group
will fragment from within, resulting in an increase in polarisation. There is
also the balancing effect of more in-group exposure than out-group exposure
which can reduce potentially polarising effects.

The relative roles of tolerance T', responsiveness R, and exposure F, have
been discussed. Tolerance ultimately decides the eventual movement towards
consensus or polarisation by an agent’s attraction to, or repulsion from, other
agents. Responsiveness has the role of introducing uncertainty of outcome
under the non-deterministic model where large opinion changes can influence
subsequent levels of polarisation. Exposure determines whether an agent ob-
serves relatively more different opinions or not, with the result that polarisa-
tion cannot occur when exposure outside of similar opinions does not occur
(which is approximately similar to a filter bubble).

Considering the initial research questions posed on the relevance of in-
troducing group identification for agents, it is clear that in-group/out-group
differentiations can explain polarising behaviour and also present a promising
lens with which to connect individual agents and an understanding of groups
from social theory.
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5.2 Falsification of Opinion Dynamics Models

The mean field approximation of the Attraction-Repulsion Model paired with
the finite volume method now renders it feasible to search the parameter
space of an opinion dynamics model such as the Attraction-Repulsion Model.
Given the significant efficiency improvements explained in Chapter 4, simu-
lation for the three-dimensional (7', R, E) parameter space of the model can
be assessed rather than two-dimensional slices where one parameter is kept
constant, as in Axelrod et al. (2021).

Broad exploration of the model parameter space produces a lot of ev-
idence which can then be analysed to approach the potential falsification
of the model or discover realistic behaviour. The definition for realistic be-
haviour that will be used here is that the opinion distribution can change a
little from iteration to iteration but it is almost stable given that real-world
opinion change is slow moving (Smith 1994) and attitude changes are typi-
cally long-term trends (Charlesworth and Banaji 2022) — this property will
be termed quasi-stable.

The hypothesis for potential falsification is thus: The opinion dynamics
model is useful if the model is able to produce a quasi-stable distribution
that resembles the initial distribution under a set of parameters. Evidence, to
potentially falsify the claim that the Attraction-Repulsion Model (the opinion
dynamics model in question here) is useful, is produced by simulating the
model and analysing the properties of these simulations for quasi-stableness.
If the simulated distribution is similar to the initial distribution then the
simulation will be considered plausible.

5.2.1 Experimental Protocol

The falsification procedure is presented in the following three steps: (1) all
(T,R,E) combinations are simulated until they are stable, which is up to
t = 600, (2) a stopping time ¢. < 600 for the simulation is found, which will be
referred to as the critical stopping time, when the rate of distribution change
is small (precise criterion below), and (3) the difference between the starting
distribution po and the quasi-stable distribution at the critical stopping time
e is calculated and compared to find what parameter combinations result
in stable simulated distributions that resemble the initial distribution.
Simulations will begin with a bimodal distribution that is the sum of
two Gaussian distributions centred at 0.25 and 0.75, both with standard de-
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viation 0.1. The bimodal distribution provides an already mildly polarised
opinion distribution which has similarities to distributions of interest in the
real world. Further simulations for a unimodal and uniform starting distribu-
tion can be found in Appendix A. This starting distribution is similar to the
modified agent-based model simulations of Section 5.1, however in that case
the two Gaussians are centred at 0.33 and 0.66 with standard deviation 0.05.
The resulting difference is that the boundary for behaviour change between
consensus and polarisation is at 7" = 0.5 in Figure 5.10, while it appears
around 7Ty, = 0.33 in Figure 5.2 reflecting the different distances between
modes of the initial distribution. The number of identities P is equal to two,
but this does not feature as a factor in the falsification procedure currently,
future work could consider what is realistic behaviour for identities. The
number of cells M is 200, and therefore 200 evenly spaced z; in the opinion
space.

The results presented here are part of ongoing work, there may be future
improvements to the complex task of determining what criteria reflect realis-
tic behaviour. While alternative models to the Attraction-Repulsion Model
could also be considered within the analysis pipeline by adjusting the interac-
tion function ¢ in the general formulation of an agent-based opinion dynamics
model (Equation 4.1). Therefore, while only the Attraction-Repulsion Model
is analysed here, the process can be easily adapted to consider the plausibility
of further models.

5.2.2 Plausibility and Falsification of Simulation

To begin, it is necessary to precisely define what a plausible simulation is by a
real-world property. Not withstanding some external shock such as war, ob-
served opinion distributions typically change by small amounts while main-
taining consistency with previous observations (Fiorina and Abrams 2008;
Richter et al. 2024). So, it seems that if a simulated distribution remains
broadly similar over time then it is realistic. Replicating this property of-
fers a definition for the plausibility of a simulation when compared to reality.
There are two traits that characterise this property: the first is quasi-stability
from iteration to iteration during simulation, and the second is a non-large
deviation between the quasi-stable distribution and the initial distribution.
To put these two criteria into operation, a measure of difference between
distributions must be chosen since it is necessary to compare fy and g, as well
as determine quasi-stability iteration to iteration. The Wasserstein distance
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is chosen to measure the difference between distributions because it measures
distribution difference as a combination of shape and location, 7.e. do the
distributions have similar spread and are the respective means or modes at
similar points of the domain.

The metric is otherwise known as the earth mover’s distance. It gained
this alternative name due to an intuitive explanation of the measure: if two
distributions a and b are represented by two distributions of piles of earth
(soil), then the Wasserstein distance is the minimum work done to move earth
in distribution a such that it now represents distribution b. The Wasserstein
distance has been used previously to compare opinion distributions, but in-
stead as a measure of polarisation by way of comparison of the observed
distribution to a reference distribution with all mass split between the ex-
tremes of the opinion space (Lee and Sobel 2024).

Other measures of difference, or distance, between distributions are the
Kolmogorov-Smirnov test statistic and Jensen-Shannon distance. The Kol-
mogorov-Smirnov approach compares cumulative distributions rather than
mass distributions (such as an opinion distribution) and relies on calculating
the point of maximum difference between cumulative distributions, therefore
only considering the point of greatest difference between cumulative distri-
butions rather than the comparative shapes. The Jensen-Shannon distance
is a metric from information theory which does take into account the relative
shapes of the distribution which could be alternatively used to compare the
simulated opinion distributions. Wasserstein distance is preferred because it
is well-defined in the case of the distribution being a Dirac delta function
while the Jensen-Shannon distance is not — the relevancy being that con-
sensus would take this shape for a continuous distribution of opinion so the
Jensen-Shannon distance is avoided in the discrete simulated case too (Gibbs
and Su 2002).

Using the Wasserstein distance, the metric to determine the plausibility
of a simulation is W (o, i1.). If the Wasserstein distance between the initial
distribution and the quasi-stable distribution is less than 0.1 (meaning that
the distributions are similar) then we will say the simulation is plausible,
while if the distance is large then the model simulation must be false with
regards to the realistic behaviour criteria.

The critical stopping time t. at which the simulated distribution is con-
sidered quasi-stable, and compared to the initial distribution, must also be
defined. An unchanging stable distribution, as observed at the end of simu-
lation for t = 600, is unlike the desired slow distribution change observed in
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reality; however, a rapidly changing distribution is also unrealistic. Therefore
a threshold k for the value of the Wasserstein distance between iterations ¢,,_;
and ¢, must be decided upon to determine the condition for quasi-stability.
The n + 1 time step is defined by the CFL condition in Equation 4.6 which
is dependent on the wave speed, potentially affecting the temporal evolution
of metrics. The quasi-stable distribution g, is found at the first observa-
tion time t,, such that W(uy, ,, e, ) < k. This leaves the possibility that
W (g, _,, tu,) could increase above k in the future, but similarity from one
observation to the next observation is chosen as the desired criteria in this
case.
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Figure 5.5: Evolution of the Wasserstein distance between p;, , and puy,
up to t = 600. Note that the plotted lines are smoothed with a moving
average of window size five to improve legibility, the smoothing is not used
in following results. The critical distribution pu. is found at the first instance
where W (g, ,, pt,) < 0.01, marked horizontally on the figure. Curves are
for R = 0.1, while (T, F) € {0.1,0.5,0.9} x {0.1,0.5,0.9} to present a range
of possible (T, F') combinations. Time snapshots of the curves labelled with
‘A’ and ‘B’ can be found in Figure 5.6

The critical threshold k is set equal to 0.01 with the desire that pu. is
relatively stable but still changing. Figure 5.5 displays how W (u, ., t4,)
develops over time, with the threshold £ = 0.01 marked. All shown simula-
tions are with R = 0.1 since smaller R results is slower change of simulations,
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so they are the simulations for which ¢, will be larger. At k = 0.01, the sim-
ulations are settling into stability while further change is still possible, thus
matching the desired behaviour for real-world similarity and being a suitable
threshold for quasi-stability.
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Figure 5.6: Time snapshots simulations for curves ‘A’ and ‘B’ from Figure
5.5 for (T, R, E) parameter simulations equal to (0.1, 0.1, 0.1) and (0.9, 0.1,
0.1), respectively. Curve ‘A’ represents a polarising simulation, while curve
‘B’ is a simulation that results in consensus. The grey curve in each panel is
the initial distribution pg for reference.

There is not a guarantee that the quasi-stable distribution . has not
changed significantly from the initial distribution pp in the time up until
t.. The initial plausible simulations will be inspected if they are found —
this is the approach taken here since the amount of the parameter space
producing plausible simulations is small — and discounted as being plausible
if the distribution deviates to no longer resemble the initial distribution before
arriving at p.. In future work, a continuous check throughout the simulation
procedure could be implemented such that if W (uo, p,) is too large for any
t, then the simulation is no longer plausible, although this would require
precising a second threshold value along with k.

Time snapshots of W (s, ,, ut,) curves labelled ‘A” and ‘B’ from Figure
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5.5 can be seen in 5.6. The ‘A’ case maintains lower W (g, ,, ue,) values
over time but arrives at t. later than the ‘B’ case. This can be seen in the
snapshots where simulation ‘A’ appears to have changed less than simulation
‘B” at t = 150.
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Figure 5.7: Comparing the initial distribution po with the quasi-stable dis-
tribution g, for simulations within the (7', R, EY) parameter space. Two-
dimensional slices of the cube are provided to provide further insight into
the space. Model parameter combinations produce plausible simulations
where W (o, pte) is towards 0, such as the regions (T" = 0.15, R = 0.05,
02< E<0.35) and (T'<0.15, R<0.1, E =0.05).

Now that g, is defined for each (T, R, E') simulation, W (uo, t.) can be
measured across the parameter space to assess where model simulations are
plausible and where they appear to be false with regards to the criteria set
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out in this work. The plausible simulation space is specific to po given that
the initial distribution is the base comparison for the Wasserstein distance
with ..

Figure 5.7 displays W (uo, ttc) across the model parameter space. Some
structural elements are present throughout the two-dimensional slices, such
as the boundary at 7' > 0.5 where consensus will occur and the region where
(T < 0.15, E < 0.2) which produces neither complete consensus nor polar-
isation. Comparison with the final polarisation state of simulations can be
found later in Figure 5.10.

The two regions with the lowest W (o, pe) — (T = 0.15, R = 0.05, 0.2 <
E < 0.35) and (T < 0.15, R < 0.1, £ = 0.05) — both have a p,. that is
found quickly (see Figure 5.8 for snapshots of . with relevant critical times
t. for these two regions, and Figure 5.9 for ¢, of the full space), within the
first few iterations. With u. found quickly, the simulated distribution does
not deviate away from the initial distribution and return to the shape so the
concern of discounting plausibility is not borne out.

In the long-run the simulations in these regions converge to different dis-
tributions, but they produce plausible distributions in the early time steps of
simulation while the model under different parameters does not. Short-term
plausibility of the model is relevant to real-world distributions where similar-
ity from one observation to the next observation is desirable. The simulation
for (T, R, E') = (0.1,0.05,0.05) is plausible over a far longer time, although
this is due to low R and E meaning not much change in the distribution.

Of the two low W (uo, ftc) zones, the short-term plausible (7" = 0.15,
R =0.05, 0.2 < F < 0.35) is the more interesting region since interaction
occurs between different parts of the opinion distribution and some balance
between attraction and repulsion occurs, it seems that low responsiveness is
also key to this possible outcome.

Where W (po, i) is approximately equal 1, in the (7" < 0.1, £ = 0.15)
region of Figure 5.7, the simulations follow a process of flattening from the
initial bimodal distribution since the low tolerance spreads the distribution
and exposure is high enough that repulsive interactions take place with reg-
ularity. At p. in this parameter region the distribution has mass at either
extreme of the opinion space and less peaked modes in their approximate
initial positions. Following the simulations through to their final distribu-
tion results in a number of point masses at intervals along the [0, 1] opinion
space. For example, under (7" = 0.1, R = 0.5, F = 0.15) six point masses,
including at z = 0 and x = 1, are found in the opinion space at ¢t = 600.
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Figure 5.8: (T, R, F) simulations that achieve low W (uo, 1) evaluated at
t = 0,t.,100. Some simulations are short-term plausible meaning that they
are initially quasi-stable but move away from the initial distribution over
time. Other simulations are long-term plausible meaning that after the quasi-
stable simulation they remain similar to the initial distribution, typically due
to low exposure and responsiveness so opinion change is minimal.

In Figure 5.9, the time ¢ at which u. is achieved is shown for the model
parameter space. For most simulations pu,. is found for ¢ < 100, while low
exposure (E = 0.05) paired with either low responsiveness (R = 0.05) or
low tolerance (7" = 0.05) can result in slower convergence to the quasi-stable
distribution. The exception is for the two plausible simulation regions where
L is arrived at quickly.

The majority of the model parameter space produces simulations that
converge to quasi-stable distributions u. but they do not resemble the initial
distribution pg. So they are not useful under the conditions set out here and
the model can be determined as false for these parameters.

Results for alternative starting distributions, such as the Uniform distri-
bution or a unimodal distribution generated from a single Gaussian distribu-
tion, can be seen in Figures A.1 and A.2 in Appendix A with varying regions
of plausible simulation — highlighting that the model is falsified with respect
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Figure 5.9: Critical time . at which pu. is achieved within the (T, R, F)
parameter space. Low exposure E paired with either low tolerance T or low
responsiveness R tend to result in slower time of arrival to the quasi-stable
distribution p., apart from for the two low W (uo, p.) regions identified in
Figure 5.7.

to parameters dependent on the initial distribution.

5.2.3 Polarisation of the Parameter Space

Polarisation outcomes, as measured by the DER measure, evaluated when
simulations are run to convergence up until ¢ = 600 for the original model
without group-dependent extension can be seen in Figure 5.10. The po-
larised /non-polarised regions of the space correspond to the expected be-
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Figure 5.10: Polarisation outcomes of the three-dimensional parameter space
of the Attraction-Repulsion Model without group-dependent extension, ini-
tialised with a bimodal distribution. Tolerance T and exposure E structure
the space with boundaries between lowly and highly polarised regions, while
responsiveness R influences rate of opinion distribution change but does not
impact the final distribution as seen in identical two-dimensional slices across
R values.

haviour of the model as found in Axelrod et al. (2021) and discussed, albeit
with the additional model element of group identification, in Section 5.1.
There is a sharp boundary at which tolerance changes opinion distribution
outcomes from consensus to polarisation at 7' = 0.5. Low exposure values can
limit polarisation in the case where £ < 0.1 by limiting the scope of repulsive
interactions. While responsiveness is a rate of change parameter for the
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distribution so has no impact on final state polarisation outcomes, as seen in
the identical two-dimensional slices of the three-dimensional parameter space
for different R. The simulation is now deterministic so the increased noise
of high R in the non-deterministic agent-based model is not a factor in this
case.

The exact boundary position between polarised and non-polarised regions
is dependent on the initial opinion distribution, however relative structure
of the regions is constant. For example, low T and high E will produce
polarisation while high 7" and high F will produce consensus, but while low
T in Figure 5.10 is T' < 0.5, the threshold for what is considered “low T is
variable with the initial distribution.

Given that interaction is no longer a binary outcome between agents, the
pixelation observed in Figures 5.2, 5.3, and 5.4, does not occur in Figure
5.10. More precisely, since the exposure rule is an interaction weight in the
finite volume method model, rather than a probability as in the agent-based
model, increasing R does not have the effect of making polarisation outcomes
less predictable as discussed in Section 5.1.3.

0 100 200 300 100 500 600
Timesteps, ¢

Figure 5.11: Convergence of DER values over simulations up to ¢ = 600.
Curves are for R = 0.1, since these are slow simulations, while (T, FE) €
{0.1,0.5,0.9} x {0.1,0.5,0.9}, the same as in Figure 5.5. The convergence
curves for the agent-based model can be found in Figure 3.6.

Evolution of the DER measure over time can be observed in Figure 5.11.
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The same set of parameter simulations is plotted as in Figure 5.5, again
setting R = 0.1 for all shown simulations due to the slower convergence rate
under lower responsiveness. By maximum simulation time (f = 600) the
polarisation of the distribution is stable across parameter combinations.
Efficient simulation of opinion distributions rather than agents from the
modelling techniques of Chapter 4 allow for exploration of the polarisation
outcomes of the full three-dimensional model parameter space rather than
the two-dimensional exploration in the previous work of Axelrod et al. (2021).

5.2.4 An Approach to Close the Empirical Gap

It has been discussed that the majority of opinion dynamics research focuses
on the emergence of macro-properties — typically consensus or polarisation of
the population — from the simulation of agent-based models. This is princi-
pally due to the difficulties of collecting consistent data over time and making
an appropriate link between empirical observations and model mechanisms.
The application of the theoretical techniques detailed in Chapter 4 opens a
new approach for opinion dynamics whereby models can be falsified as well
as used as a tool for the explanation of macro-level scenarios, as they are
currently.

If the simulations produced by the model do not resemble the initial
distribution at the point at which they are quasi-stable then this is taken
as evidence that the model under these parameter conditions is false. The
alternative is that the model is plausible if the quasi-stable distribution pro-
duced through simulation is similar to the initial distribution. It is possible
to change the criteria by which the model is falsified if different evidence
were to be required to deem simulations realistic. This approach provides
a step towards closing the current empirical gap by providing a framework
to describe realistic distributions rather than the extremes of consensus and
polarisation.

The initial distribution presented here is the sum of two Gaussian dis-
tributions with separate means, thus it is a bimodal distribution. While it
is a constructed distribution, it is an appropriate starting point to represent
an already polarised distribution that may be found in reality. The same
analysis can be undertaken with further distributions to potentially falsify
the model for those distributions in the future.

For the bimodal example, regions of plausible simulations were identified
to then be discussed. The framework can be adapted to real world settings
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by changing po from a constructed bimodal distribution to an empirical dis-
tribution. This straightforward use of empirical data allows models to be
falsified in an empirical setting and presents a potential fruitful avenue of
future research in closing the current empirical gap in opinion dynamics.
Therefore the framework detailed here provides a method by which models
can be falsified or deemed plausible for empirical data.
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Chapter 6

Conclusions

This thesis has demonstrated two complementary techniques that bring opin-
ion dynamics closer to social reality: group identification and empirical fal-
sification. Both strands of work stress the importance of placing opinion
dynamics in real-world context, rather than remaining as theoretical models
of opinion change that treat individuals as atoms (Jensen 2019). The pur-
pose of this contextualisation is to produce more insightful models for the
polarisation of opinions, which has been an increasing subject of interest in
recent years (Finkel et al. 2020; Wagner 2021; Peralta et al. 2024).

The Attraction-Repulsion Model used in Axelrod et al. (2021) was taken
as the opinion dynamics model of focus due to its incorporation of positive
and negative social influence (Bail et al. 2018) and homophily in exposure to
others (Barbera 2015). Two methodological approaches extended the model
to place it in improved real-world context, with new functionality that an-
swers to the call for the inclusion of groups and empirical validation.

The addition of group identification to determine opinion updates differ-
ently as a result of the perception of others as in-group or out-group facili-
tated a reflection on the importance of affective polarisation (Iyengar et al.
2012) and social identity (Tajfel 1974) for opinion modelling. While the
application of a mean-field approximation and numerical simulation by the
finite volume method facilitated the modelling of opinion distributions to re-
duce the empirical gap between models and validation with data (Carpentras
2023a).

Research objectives of the thesis were stated in Chapter 1. The first
objective was to test for macro-properties of opinion dynamics models, such
as similarity of simulated distributions to initial distributions, in order to
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determine a framework that assesses models as plausible or false for a certain
set of parameters and initial distribution. Macro-properties were chosen over
micro-properties (such as model mechanism calibration) due to the difficulty
of obtaining fine-grained temporal data of opinion change.

The second research objective was to present a model that allowed for
research into social group dynamics. The purpose for doing so was to address
a lack of modelling that asks how the treatment of others according to group
identification can explain the polarisation of opinion; particularly since classic
models rely on pairwise interactions with identical individuals (Starnini et al.
2025).

This manuscript began with an Introduction and Literature Review in
Chapters 1 and 2 that (a) presented current shortcomings of opinion dynam-
ics, (b) developed an understanding of opinion polarisation, and (c) identified
research objectives to productively build on top of existing work. The under-
lying theory to address the research gaps was explained in Chapters 3 and
4; treating group dynamics and opinion distributions, respectively. Finally,
the applications and results of the extended opinion dynamics models were
explored in Chapter 5.

First results of the research conducted were focused on advancing mod-
elling techniques. The Attraction-Repulsion Model can now approach ques-
tions pertaining to the group identification of individuals with group percep-
tion enabled by the application of HDBScan and the use of group-dependent
parameters in the opinion update rule and the exposure rule. The second con-
tribution to modelling theory is the presentation of a framework by which the
Attraction-Repulsion Model can treat opinion distributions. It is key to note
that neither type of model extension is unique to the Attraction-Repulsion
Model, therefore both modelling advances should be applicable to any similar
agent-based opinion dynamics model.

Further results were applications of the theory developed. When con-
sidering the work on the group dynamics of polarisation, the treatment of
an out-group was identified as a central determining factor in a population’s
eventual level of polarisation — which aligns with understanding in social sci-
ence (Yarchi et al. 2024). On the other hand, in-group dynamics were shown
to potentially fragment a group from within if the group’s spread of opinions
was too large.

Results relating to the finite volume method model identified regions of
plausible simulations in the model’s parameter space for an initial bimodal
distribution. The judgement of plausibility relies on criteria defined by quasi-

101



stable simulations and resemblance to the initial distribution, as measured by
the Wasserstein distance. The impact of this is a step forward with research
into whether models can reproduce empirical distributions.

The broad implications of these findings are two-fold. Reducing the em-
pirical gap has been a principal concern of the opinion dynamics community
in recent years (Flache et al. 2017). Therefore the results relating to the
modelling of opinion distributions enable the opinion dynamics community
to move towards empirical validation of the many existing models and their
variations.

While the other broad implication is to place opinion dynamics in greater
context and contact with social theory. It was noted that group identification
in modelling of opinion change is particularly relevant to affective polarisation
(Druckman et al. 2021). Accordingly, the research approach is an interdisci-
plinary effort to bridge the gap between social sciences and the mathematical
modelling of opinion dynamics. One that integrates a salient feature of social
influence (group perception and identification), and thereby highlights a key
aspect of polarisation dynamics.

There are some limitations to the work presented. The criteria for plausi-
ble simulations are experimental and an early attempt at such a falsification
process. Realistic behaviour is complex, potentially situation-dependent, and
therefore hard to define. Future work could look to define plausibility and
quasi-stability by different conditions. The difficulty of assessing realistic be-
haviour also reflects on the current implementation of group identification;
future improvements could be made to the identification process since the
use of the clustering algorithm to define groups is not socially motivated and
assumes population-wide agreement of group identification. Initial steps were
made towards this end, with alternative group identification methods being
presented alongside the eventual implementation, and could be developed
further. Incorporating social environment sensing in models is a developing
and relatively underexplored research avenue that can offer a valuable contri-
bution to existing models of social systems (Galesic et al. 2021), suggesting
fruitful future development in this area.

Furthermore, the identities established as part of the inexchangeable
mean-limit provide a future opportunity to include analysis of group identi-
fication within the empirical validation framework enabled by the numerical
simulation of the model. This next step would be a unifying piece of work
between the research objectives related to group dynamics and closing the
empirical gap with opinion distributions to be able to provide even more
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detailed findings and real-world context.

It was mentioned that the modelling techniques are not unique to the
Attraction-Repulsion Model, future research could employ different models
from the opinion dynamics model inventory (Proskurnikov and Tempo 2017).
The models would likely produce some variation of behaviours found here and
perhaps provide further insight as a result. Finally, application of the tech-
niques to datasets could provide further new insight. While representative
distributions taken to reflect reality (such as unimodal, bimodal, and uni-
form distributions) are useful, an application with a dataset would close the
empirical gap even further.

The central message of this thesis is that opinion dynamics modelling
must continue to strive forward in its push for empirical validation while
maintaining a connection to key parts of social theory in order to produce in-
creasingly relevant results. This work has contributed to this effort — demon-
strating the importance of out-group treatment for polarisation outcomes
and establishing search criteria for plausible simulations — thus extending
the opinion dynamics and polarisation literature to provide a foundation for
future research that further bridges theory and empirical evidence.
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Appendix A

Appendix

The W (po, ttc) and final-state DER for the finite volume method model, as
appearing in Figures 5.7 and 5.10, are presented here under a different initial
distribution py. In Figure A.1, g is a single Gaussian distribution centred
at 0.5 with a standard deviation of 0.05 with support on the interval [0, 1].
While in Figure A.2, g is the Uniform distribution on the interval [0, 1].

The parameter regions for which simulation is plausible (W (uo, 1) < 0.1)
are different for the three different initial distributions, which highlights that
the model is plausible under the parameter combinations and the initial
distribution. The final-state polarisation measured by DER is also dependent
on model parameters and the initial distribution — for example, consensus
occurs for 7' > 0.2 in the unimodal case of Figure A.1 while consensus occurs
for T' > 0.5 in the bimodal case of Figure 5.10.
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Figure A.1: The same methodology as in Figures 5.7 and 5.10, instead with
1o as a single Gaussian distribution centred at 0.5 with standard deviation
0.05 and support on the interval [0, 1].

Figure A.2: The same methodology as in Figures 5.7 and 5.10, instead with
o as a Uniform distribution with support on the interval [0, 1].
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