Continuous Average Straightness in Spatial Graphs

Vincent Labatut

Laboratoire Informatique d'Avignon – LIA UPR 4128 vincent.labatut@univ-avignon.fr

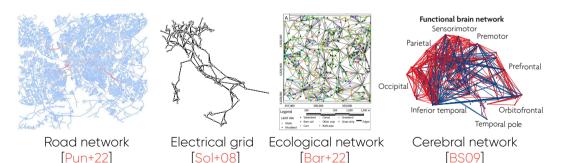
Séminaire de l'équipe Complex Networks – LIP6 12 mai 2023

Outline

- Spatial Graphs & Straightness
- 2 Continuous Average Straightness
- 3 Empirical Assessment
- 4 Conclusion & Perspectives

Spatial Graphs & Straightness Spatial Graphs

- Spatial graphs [Bar11]: vertices have a spatial position, edges have a length
- Used to model systems in which spatial constraints affect the topology



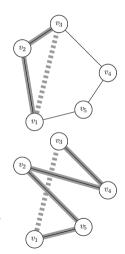
Spatial Graphs & Straightness Straightness Measure

- Specific topological measures leverage spatial information [Bar11]
- Straightness [VLD05; PCL06]:

$$S(u, v) = \frac{d_E(u, v)}{d_G(u, v)}$$

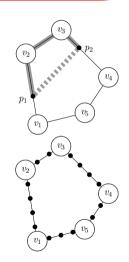
- Characterizes a pair of vertices
- ullet Ratio of the Euclidean (d_E) to the graph (d_G) distances between them

 - 1: completely straight path
- Interpretation: how efficient the graph is in providing the most direct path from one vertex to the other
- Alternative names (sometimes for the reciprocal): Circuity [OM96], Directness [Hes97], Tortuosity [KT01], Route Factor [GN06], Detour Index [LJB13]...



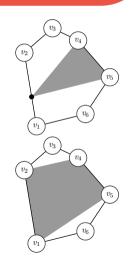
Spatial Graphs & Straightness Averaging the Straightness

- Generally averaged in the literature:
 - Single vertex vs. rest of the graph [PCL06]
 - Subgraph: module [KT01], sample [Hes97; LE09]
 - Whole graph [KT01; VLD05; GN06; LJB13]
- Vertex-to-vertex vs. point-to-point routes
 - V2v: subway, airways...
 - P2p: soft transport transit
- Standard approach: discrete approximation
 - Segment edges, adding extra vertices
 - 2 Compute Straightness for all vertex pairs
 - 3 Average these values



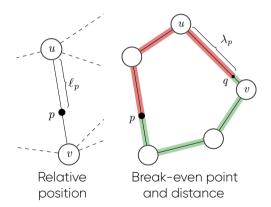
Spatial Graphs & Straightness Proposed Approach

- Issues with the standard approach:
 - Computational cost (both time and memory)
 - Quality of the discrete approximation?
- Proposed approach: continuous average
 - First integration: between a point and an edge
 - Second integration: between two edges
 - Sum over all pairs of edges



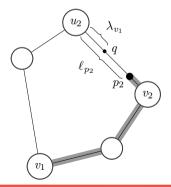
Reformulation of the Measure Notations

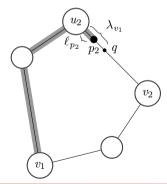
- Which variable of integration?
 - \rightarrow Relative position ℓ_p
 - = Position of p relative to the first vertex u of its edge (u, v)
 - \neq By opposition to its absolute position (x_p, y_p)
- Constants:
 - Absolute position of vertices
 - Graph distance between vertices
- How to reformulate S as a function of ℓ ?
 - Straightforward for the Euclidean distance
 - → More complicated for the graph distance



Reformulation of the Measure Vertex-to-Point Graph Distance

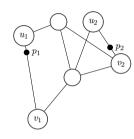
- ullet Graph distance between vertex v_1 and point p_2 :
 - \rightarrow Graph distance between v_1 and u_2 or v_2 + segment length on (u_2, v_2)
- Which path is the shortest?
 - ightarrow Depends on the position of p_2 w.r.t. the break-even point q

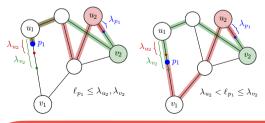


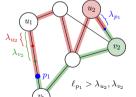


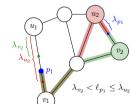
Reformulation of the Measure Point-to-Point Graph Distance

- Starting from a non-vertex point p_1
- We first want λ_{p_1} (BEP of p_1):
 - Depends on the position of p_1 relative to λ_{v_2} and λ_{u_2}
 - → Must consider 4 situations



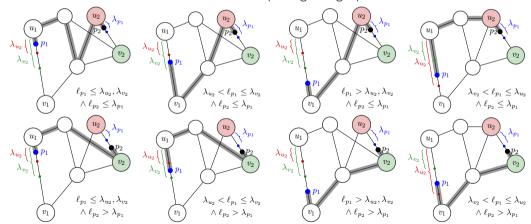






Reformulation of the Measure Point-to-Point Graph Distance

- ullet Next, leverage λ_{p_1} to characterize the position of p_2
- → Total of 8 cases to consider when computing the graph distance



Continuous Average Straightness Point-Oriented Variants

Straightness expressed as $S(p_1, p_2) = f(\ell_{p_1}, \ell_{p_2})$

Average Straightness between a point and an edge

Let $p_1 \in P$ be a point and $(u_2, v_2) \in E$ an edge. The average Straightness between them is

 $S_{u_2v_2}(p_1) = \frac{1}{d_E(u_2, v_2)} \int_{(u_2, v_2)} f(\ell_{p_1}, \ell_{p_2}) d\ell_{p_2}.$ (1)

Average Straightness between a point and the graph

Let G be a graph and $p_1 \in P$ one of its points. The average Straightness between them is

$$S_G(p_1) = \frac{1}{\sum_{(u_2, v_2)} d_E(u_2, v_2)} \sum_{(u_2, v_2)} \int_{(u_2, v_2)} f(\ell_{p_1}, \ell_{p_2}) d\ell_{p_2}.$$
 (2)

Continuous Average Straightness Edge-Oriented Variants

Average Straightness between two edges

Let (u_1, v_1) and $(u_2, v_2) \in E$ be two edges. The average Straightness between them is

$$S_{u_2v_2}(u_1, v_1) = \frac{1}{d_E(u_1, v_1)d_E(u_2, v_2)} \int_{(u_1, v_1)} \int_{(u_2, v_2)} f(\ell_{p_1}, \ell_{p_2}) d\ell_{p_1} d\ell_{p_2}.$$
(3)

Average Straightness between an edge and the graph

Let G be a graph and $(u_1, v_1) \in E$ one of its edges. The average Straightness between them is

$$S_G(u_1, v_1) = \frac{1}{\sum_{(u_2, v_2)} d_E(u_1, v_1) d_E(u_2, v_2)} \sum_{(u_2, v_2)} \int_{(u_1, v_1)} \int_{(u_2, v_2)} f(\ell_{p_1}, \ell_{p_2}) d\ell_{p_1} d\ell_{p_2}.$$
(4)

Continuous Average Straightness Overall Average

Average Straightness for the whole graph

The Straightness averaged over the whole graph G is

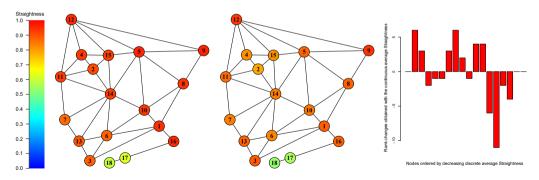
$$S_G = \frac{1}{\sum_{(u_1, v_1)} \sum_{(u_2, v_2)} d_E(u_1, v_1) d_E(u_2, v_2)} \sum_{(u_1, v_1)} \sum_{(u_2, v_2)} \int_{(u_1, v_1)} \int_{(u_2, v_2)} f(\ell_{p_1}, \ell_{p_2}) d\ell_{p_1} d\ell_{p_2}.$$
 (5)

Computational notes:

- ullet Closed form of the first integral o hard-coded
- Not for the second one → numerical approximation

Empirical AssessmentToy Networks

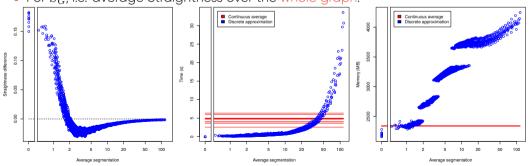
- Data: regular graphs and small manually designed graphs
- Qualitative comparison between the discrete version and $S_G(u)$, i.e. average Straightness between a vertex and its graph:



Empirical Assessment Random Planar Graphs

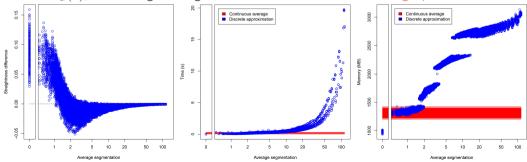
- Data: benchmark of random planar graphs
- Considered aspects:
 - ullet Difference between the continuous average S and its discrete approximation
 - Computational time
 - Memory usage

• For S_{G_i} i.e. average Straightness over the whole graph:



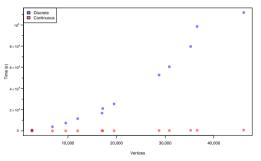
Empirical Assessment Random Planar Graphs

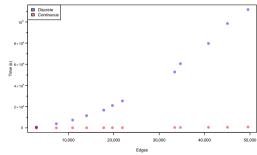
- Data: benchmark of random planar graphs
- Considered aspects:
 - Difference between the continuous average and discrete approximation
 - Computational time
 - Memory usage
- For $S_G(u)$, i.e. average Straightness between a vertex and its graph:



Empirical AssessmentReal-World Road Networks

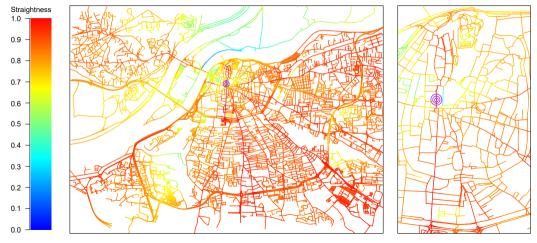
- Data: real-world urban networks retrieved from OpenStreetMap
- Computation time vs. network size (# vertices and # edges)
- Discrete version and $S_G(u)$, i.e. average Straightness between a vertex and its graph:





Empirical Assessment Real-World Road Networks

Example : Avignon, average Straightness between the city hall and each edge $(S_{u_2v_2}(p_1))$



Conclusion & Perspectives

- Takeaways: continuous approach to average the Straightness
 - → Faster, requires less memory
 - → More reliable Straightness value
 - → Definition of 5 distinct average variants of the measure
- Resources
 - Paper: V. Labatut. "Continuous Average Straightness in Spatial Graphs".
 In: Journal of Complex Networks 6.2 (2018), pp. 269–296. DOI:
 10.1093/comnet/cnx033
 - Source code: https://github.com/CompNet/SpatialMeasures
- Perspectives
 - Apply the same principle to other spatial measures
 - Generation of networks optimizing straightness (and other criteria)

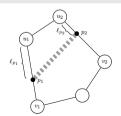
Euclidean Distance Between Two Points

Lemma 3.1 (Euclidean distance between two points)

Let $p_1 \in P$ be a point lying on an edge $(u_1, v_1) \in E$ at a distance ℓ_{p_1} from u_1 , and $p_2 \in P$ be a point lying on an edge $(u_2, v_2) \in E$ at a distance ℓ_{p_2} from u_2 .

The Euclidean distance between p_1 and p_2 can be written in terms of ℓ_{p_1} and ℓ_{p_2} , as:

$$d_{E}(p_{1}, p_{2}) = \left(\left(x_{u_{2}} + \frac{\ell_{p_{2}}}{d_{E}(u_{2}, v_{2})} (x_{v_{2}} - x_{u_{2}}) - x_{u_{1}} - \frac{\ell_{p_{1}}^{\prime 1}}{d_{E}(u_{1}, v_{1})} (x_{v_{1}} - x_{u_{1}}) \right)^{2} + \left(y_{u_{2}} + \frac{\ell_{p_{2}}}{d_{E}(u_{2}, v_{2})} (y_{v_{2}} - y_{u_{2}}) - y_{u_{1}} - \frac{\ell_{p_{1}}}{d_{E}(u_{1}, v_{1})} (y_{v_{1}} - y_{u_{1}}) \right)^{2} \right)^{1/2}.$$
(6)

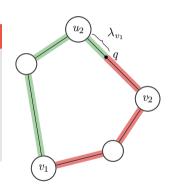


Break-Even Distance for a Vertex

Lemma 3.2 (Break-even distance for a vertex)

Let $v_1 \in V$ be a vertex and $(u_2, v_2) \in E$ an edge such that $v_1 \neq v_2$ and $v_1 \neq u_2$. The break-even distance of (u_2, v_2) for the vertex v_1 , noted λ_{v_1} is:

$$\lambda_r = \frac{d_G(v_1, v_2) - d_G(v_1, u_2) + d_E(u_2, v_2)}{2}.$$
 (7)



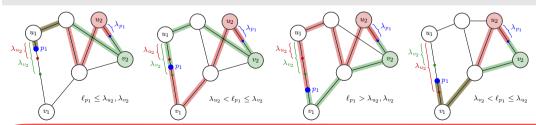
Break-Even Distance for a Point

Lemma 3.4 (Break-even distance for a point)

Let $p_1 \in P$ be a point lying on an edge $(u_1,v_1) \in E$, at a distance ℓ_{p_1} from u_1 , and $(u_2,v_2) \in E$ be a distinct edge (though they can have one common end-vertex). Let the break-even distances of (u_1,v_1) for u_2 and v_2 be λ_{u_2} and λ_{v_2} , respectively. The break-even distance λ_{p_1} of (u_2,v_2) for p_1 is:

$$\lambda_{p_{1}} = \begin{cases} \lambda_{p_{1}}^{(1)} = \left(d_{G}(u_{1}, v_{2}) - d_{G}(u_{1}, u_{2}) + d_{E}(u_{2}, v_{2})\right)/2, & \text{if } \ell_{p_{1}} \leq \lambda_{u_{2}}, \lambda_{v_{2}}, \\ \lambda_{p_{1}}^{(2)} = \left(d_{G}(v_{1}, v_{2}) - d_{G}(u_{1}, u_{2}) + d_{E}(u_{1}, v_{1}) + d_{E}(u_{2}, v_{2}) - 2\ell_{p_{1}}\right)/2, & \text{if } \lambda_{v_{2}} < \ell_{p_{1}} \leq \lambda_{u_{2}}, \\ \lambda_{p_{1}}^{(3)} = \left(d_{G}(u_{1}, v_{2}) - d_{G}(v_{1}, u_{2}) - d_{E}(u_{1}, v_{1}) + d_{E}(u_{2}, v_{2}) + 2\ell_{p_{1}}\right)/2, & \text{if } \lambda_{u_{2}} < \ell_{p_{1}} \leq \lambda_{v_{2}}, \\ \lambda_{p_{1}}^{(4)} = \left(d_{G}(v_{1}, v_{2}) - d_{G}(v_{1}, u_{2}) + d_{E}(u_{2}, v_{2})\right)/2, & \text{if } \ell_{p_{1}} > \lambda_{u_{2}}, \lambda_{v_{2}}. \end{cases}$$

$$(8)$$



Empirical Assessment Real-World Road Networks

City	n	m	δ	Processing time			
				Discrete		Continuous	
Abidjan	2,577	2,908	$8.76 \cdot 10^{-4}$	490.12	(0.02)	4.00	(0.08)
Karlskrona	2,619	2,999	$8.75 \cdot 10^{-4}$	672.36	(0.02)	4.11	(0.06)
Soustons	6,803	$7,\!351$	$3.18 \cdot 10^{-4}$	$3,\!889.20$	(0.10)	18.13	(0.10)
Maastricht	9,539	10,929	$2.40 \cdot 10^{-4}$	$7,\!379.10$	(0.08)	35.84	(0.18)
Trois-Rivières	12,001	14,014	$1.95 \cdot 10^{-4}$	$11,\!504.23$	(0.12)	55.54	(0.26)
Alice Springs	17,011	17,790	$1.23 \cdot 10^{-4}$	16,765.85	(0.17)	93.38	(0.56)
Sfax	17,152	19,702	$1.34 \cdot 10^{-4}$	$21,\!122.19$	(0.14)	131.18	(0.42)
Avignon	19,481	$21,\!898$	$1.15 \cdot 10^{-4}$	$25,\!438.31$	(0.20)	136.30	(0.77)
Liverpool	28,739	$33,\!424$	$8.09 \cdot 10^{-5}$	52,773.02	(0.20)	313.55	(3.32)
Ljubljana	30,854	$34,\!684$	$7.29 \cdot 10^{-5}$	$60,\!572.10$	(0.31)	369.35	(26.91)
Lisbon	35,231	40,853	$6.58 \cdot 10^{-5}$	79,702.34	(0.44)	495.99	(9.46)
Dakar	$36,\!561$	45,041	$6.74 \cdot 10^{-5}$	$98,\!568.74$	(0.40)	530.90	(7.62)
Hong Kong	46,145	$49,\!559$	$4.65 \cdot 10^{-5}$	111,724.71	(0.36)	790.45	(8.67)

References I

- [Bar+22] F. de la Barra, A. Alignier, S. Reyes-Paecke, A. Duane, and M. D. Miranda. "Selecting Graph Metrics with Ecological Significance for Deepening Landscape Characterization: Review and Applications". In: Land 11.3 (2022), p. 338. DOI: 10.3390/land11030338.
- [Bar11] M. Barthélemy. "Spatial networks". In: *Physics Reports* 499.1-3 (2011), pp. 1-101. DOI: 10.1016/j.physrep.2010.11.002.
- [BS09] E. Bullmore and O. Sporns. "Complex brain networks: graph theoretical analysis of structural and functional systems". In: Nature Reviews Neuroscience 10.3 (2009), pp. 186–198. DOI: 10.1038/nrn2575.
- [GN06] M. T. Gastner and M. E. J. Newman. "Shape and efficiency in spatial distribution networks". In: Journal of Statistical Mechanics 01.1 (2006), P01015. DOI: 10.1088/1742-5468/2006/01/P01015.
- [Hes97] P. M. Hess. "Measures of Connectivity". In: Places 11 (1997), pp. 58–65. URL: https://escholarship.org/uc/item/9599t9f1.
- [KT01] A. R. Kansal and S. Torquato. "Globally and locally minimal weight spanning tree networks". In: *Physica A* 301 (1-4 2001), pp. 601-619. DOI: 10.1016/S0378-4371(01)00430-7.
- [Lab18] V. Labatut. "Continuous Average Straightness in Spatial Graphs". In: Journal of Complex Networks 6.2 (2018), pp. 269–296. DOI: 10.1093/comnet/cnx033.

References II

- [LEO9] D. Levinson and A. El-Geneidy. "The minimum circuity frontier and the journey to work". In: Regional Science and Urban Economics 39 (6 2009), pp. 732–738. DOI: 10.1016/j.regsciurbeco.2009.07.003.
- [LJB13] R. Louf, P. Jensen, and M. Barthelemy. "Emergence of hierarchy in cost-driven growth of spatial networks". In: Proceedings of the National Academy of Sciences 110 (22 2013), pp. 8824–8829. DOI: 10.1073/pnas.1222441110.
- [OM96] S. O'Sullivan and J. Morrall. "Walking Distances to and from Light-Rail Transit Stations". In: Journal of the Transportation Research Board 1538 (1996), pp. 19–26. DOI: 10.3141/1538-03.
- [PCL06] S. Porta, P. Crucitti, and V. Latora. "The Network Analysis of Urban Streets: A Primal Approach". In: Environment and Planning B 33 (5 2006), pp. 705–725. DOI: 10.1068/b32045.
- [Pun+22] J. Pung, R. M. D'Souza, D. Ghosal, and M. Zhang. "A road network simplification algorithm that preserves topological properties". In: Applied Network Science 7 (2022), p. 79. DOI: 10.1007/s41109-022-00521-8.
- [Sol+08] R. V. Solé, M. Rosas-Casals, B. Corominas-Murtra, and S. Valverde. "Robustness of the European power grids under intentional attack". In: *Physical Review E* 77.2 (2008), p. 026102. DOI: 10.1103/physreve.77.026102.
- [VLD05] I. Vragović, E. Louis, and A. Díaz-Guilera. "Efficiency of informational transfer in regular and complex networks". In: *Physical Review E* 71 (3 2005), p. 036122. DOI: 10.1103/PhysRevE.71.036122.