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Is it good for me to get…
• A follower on Twitter?


• Formally, it is an arc towards me in a directed graph


• A friend on Facebook?


• Formally, an edge between me and someone else in an undirected graph


• To make the “good” part formal, in this talk we consider classic geometric 
and spectral measures of centrality


• For example: closeness centrality, eigenvector centrality, PageRank…



For Example, With (In)Degree…
• If I get a new follower or a new friend, my score increases


• Moreover, if someone has a smaller score (fewer friends or followers than 
me), their score remains smaller


• Even more is true, if someone else has the same score as me (i.e., number 
of followers of friends) they will have a lesser score afterwards


• This properties are obvious for (in)degree


• Can we show that they are still true while we switch to more 
“sophisticated” scores?



Score and Rank Monotonicity
• Score monotonicity: if you add an arc x → y, the score of y increases (Sabidussi 1966)


• Rank monotonicity: if you add an arc x → y, no vertex with a score lower than or equal 
y can get a score higher than y (Chien, Dwork, Kumar, Simon & Sivakumar 2004)


• Score monotonicity = something good happens


• Rank monotonicity = nothing bad happens


• Strict rank monotonicity: additionally, vertices with score equal to y get a score lower 
than y


• = nothing bad happens, something good happens


• Undirected case: must work at both ends (Boldi, Furia & Vigna 2021)



Geometric Centrality Measures
• Given a graph, we compute a score using some function of the distances


• Closeness centrality (Bavelas 1948): reciprocal of sum of all distances


• Harmonic centrality (Beauchamp 1965): sum of reciprocals of all distances


• Betweenness (Anthonisse, 1971; Freeman, 1977)
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Spectral Centrality Measures
• Given a graph, we compute a score using some eigenvector associated with 

the adjacency matrix


• Eigenvector centrality (Landau 1895): just take the dominant eigenvector


• Motivation: If the graph is a voting graph, 1A is majority voting (indegree)


• We can refine this: let’s weight the voters using majority voting: (1A)A = 1A2


• Or refine again, but 1Ak oscillates, so Landau proposes to find a positive v 
such that vA = λv (and indeed under mild hypotheses 1Ak tends to such a v)


• (Actually stated for chess tournaments using A1T)



Spectral Centrality Measures
• Seeley’s index (1951): reputation is recursive


• Motivation: kindergarten data about child i liking child j


• Idea: global reputation should be defined recursively: si = ∑ j→i sj / dj


• This is equivalent to sP = s, where P is A with 𝓁1-normalized rows  (i.e., divide 
by the outdegree)


• Important idea: reputation is divided among people you endorse


• Equivalently, the steady state of the natural Markov chain on the graph (AKA 
“simplified PageRank”—PageRank without the damping factor)



Spectral Centrality Measures
• Katz’s index (1953)


• Follows Landau’s idea, but using a summation rather than a limit 

• He computes 1 + 1⍺A + 1⍺2A2 + 1⍺3A3 + ⋯ = 1∑n≥0 ⍺nAn = 1(1 – ⍺A)–1


• Note: ⍺ must be less than the inverse of the spectral radius; 1Ak is also the 
number of incoming paths of length k, and that is the original formulation


• One can use a generic border condition v (Hubbell 1965)


• v(1 – ⍺A)–1  is equal to the dominant eigenvector of ⍺A + (1 – ⍺)eTv, where e is 
a right dominant eigenvector of A (Vigna 2016, using Brauer 1952)



Spectral Centrality Measures
• PageRank (Page, Brin, Motwani & Winograd 1998); different formulations in 

time


• Steady state of a perturbed Markov chain: p = p(⍺P + (1 – ⍺)1Tv) 

• Modulo a factor (1 – ⍺), v(1 – ⍺P)–1 = v∑n≥0⍺nPn  = v + v⍺P + v⍺2P2 + v⍺3P3 + ⋯ 


• So, Seeley’s index is to PageRank as eigenvector centrality is to Katz’s index


• In both cases, when ⍺ tends to its limiting value we go back



Getting a New Follower



The Directed Case: Geometric Centralities
• On strongly connected graphs, both score monotone and rank monotone


• Not surprisingly: we shorten a path


• More surprisingly: closeness is not strictly rank monotone


• (One more reason to ditch closeness in favor of harmonic)
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The Directed Case: Eigenvector Centrality
• Eigenvector centrality is strictly rank monotone on strongly connected graphs 

(Boldi & Vigna 2004)


• Elsner, Johnson & Neumann 1982: any nonnegative (and overall nonzero) 
increase in row i of a nonnegative matrix results in coordinate i of the 
dominant eigenvector increasing more than any other coordinate


• So at least on strongly connected graphs the intuition is correct



The Directed Case: Seeley’s Index
• Score and rank monotone only on strongly connected graphs 


• Both results proved only for regular Markov chains in Chien, Dwork, Kumar, Simon & Sivakumar 2004


• First result does not need aperiodicity; second result can be proved using our results for PageRank 
and taking the limit


• Not strictly rank monotone: y and z maintain the  same score

x

y

z



The Directed Case: PageRank
• Score monotonicity and loose rank monotonicity in Chien, Dwork, Kumar, Simon & 

Sivakumar 2004 under regularity assumptions


• We remove all hypotheses assuming just that the preference vector is positive, and 
prove strict rank monotonicity


• Or, loose rank monotonicity under the only hypothesis that x has nonzero score


• Our proofs cover a class of spectral centrality measures of the form v∑n≥0⍺nMn


• Same proof for PageRank and Katz’s index


• Strategy: use the Sherman–Morrison formula to move the perturbation in the 
preference vector, and then argue using properties of M-matrices



The Directed Case: PageRank
• Let P and P’ be the normalized adjacency matrices before and after adding an 

arc x → y 

• Then P’ – P = χTx 𝝳, where contains –1/d(d + 1) in positions of successors of x 
and 1/(d+1) in position y 

• Then the Sherman–Morrison formula expresses (1 – ⍺P’)–1 as an (ugly) 
correction to (1 – ⍺P)–1, but we can gather the ugly stuff in a positive constant


• Then, v(1 – ⍺P’)–1 = (v + c𝝳)(1 – ⍺P)–1



The Directed Case: PageRank
• But then we can rewrite the difference between the PageRank vectors as 

v(1 – ⍺P’)–1 – v(1 – ⍺P)–1 = (v + c𝝳)(1 – ⍺P)–1 – (1 – ⍺P)–1 = c𝝳(1 – ⍺P)–1


• McDonald, Neumann, Schneider & Tsatsomeros proved in 1995 that 
diagonal elements of the inverse of an M-matrix dominate strictly the off-
diagonal elements, so if B = (1 – ⍺P)–1:
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The Directed Case: PageRank
• A similar approach can be used to prove strict rank monotonicity


• There is no such proof in sight using Markov chains


• In general, properties that are not true on all Markov chains will not 
be within reach of proof techniques based on Markov chains


• Also, most strong results require regularity


• Linear algebra makes it possible to prove stronger statements using 
just irreducibility (strong connection)



Getting a New Friend



Seeley’s: Score and Strictly Rank Monotone
• Standardized Seeley’s (𝓁1-normalized degree)


• Obviously strictly rank monotone


• Score monotone except in the case of a star plus isolated nodes
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Nothing Else Works
• Geometric centralities


• Idea: connecting 0 and 1 benefits 1 a lot, because it gets closer to the j 
nodes around 0


• The same doesn’t happen for 0, which gains very little as r is small
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PageRank: None of the Above, Again
• Much more complex situation


• We would like to have results for every value of the damping factor ⍺


• For ⍺ sufficiently close to 1, adding an edge never violates rank 
monotonicity


• Thus, different values of ⍺ require different counterexamples


• This might suggest that in some right subinterval of the unit interval 
rank monotonicity works


• Surprisingly, this is not the case



Fibrations of Graphs
• Maps (morphisms) between graphs G and 

B


• Fiber: counterimage of a node in B


• Local in-isomorphism property: in-
neighbourhoods are mapped bijectively


• Appeared under a plethora of names: 
equitable partitions and front divisors 
(spectral graph theory), left-resolving map 
(symbolic dynamics), Weisfeiler–Lehman 
test (graph isomorphism problems, graph 
neural networks), first stage of nauty 
(graph isomorphism), etc.
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Fundamental Property
• Take a fibration φ: G → B 

• If v is a vector on B, write vφ  for the lifting of v along φ, that is, the vector 
obtained by copying v along the fibers


• Then, (vB)φ = vφG (Sachs 1966) 

• That is: if a vector is fiberwise constant, you can multiply by G by multiplying 
the fiber values by B and lifting


• Consequence: if G is strongly connected, the dominant eigenvector of G is the 
lifting of that of B, and the characteristic polynomial of B divides that of G (see 
the theory of equitable partitions and graph divisors in the ‘60s) 

• More importantly, (v∑n≥0 ⍺nBn)φ = vφ∑n≥0 ⍺nGn as lifting is linear



Idea: Parametric Counterexample
• We just need to find one that is fibered over a graph with a finite number of 

vertices
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Exact PageRank scores
• Now PageRank scores are rational functions in ⍺ whose  

coefficients are rational functions in k


• Degree is too high for exact solutions, but we can use Sturm polynomials


• We show that for ⍺ in the middle of [0..1) score monotonicity fails for k→∞


• Then we use Sturm polynomials to show that there are two sign changes 
around the middle


• We sandwich the sign changes between points going to 0 and 1 for k→∞


• We get a counterexample for each value of ⍺
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Rich Get Richer
• In the previous example, the important node becomes more important 

(“vampire” behavior)


• We have a similar class of counterexamples for the opposite behavior
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Eigenvector and Katz Centrality
• We can use the same technique, with a different graph, to prove similar results for 

eigenvector centrality and Katz centrality


• Eigenvector centrality is particularly tricky because we cannot have an exact description 
of the dominant eigenvector (unless you have less than five nodes, or you’re very lucky)                                  


• We solve the problem by proving the results for Katz’s index in an interval around 1/ρ, 
where ρ is the spectral radius.
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It Actually Happens (IMDB)!

Score increase Score decrease Rank violations

Meryl Streep Yasuhiro Tsushima Anne–Mary Brown,

Jill Corso, …

Denzel Washington Corrie Glass Patrice Fombelle,

John Neiderhauser, …

Sharon Stone Mary Margaret (V) Dolores Edwards, Colette 
Hamilton, …

John Newcomb Robert Kirkham Brandon Matsui, Evis 
Trebicka, …



Conclusion
• The natural insight into the behavior of popular spectral centrality measures 

on directed graph is correct


• General proof technique for monotonicity properties of spectral measures in 
the directed case: Sherman–Morrison formula plus M-matrices


• The same insight or proof techniques does not work anymore for undirected 
graphs


• General proof technique for spectral counterexamples: graph fibrations


• http://vigna.di.unimi.it/fibrations/

http://vigna.di.unimi.it/fibrations/

