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Is It good for me to get...

A follower on Twitter?

Formally, It Is an arc towards me in a directed graph

A friend on Facebook?

Formally, an edge between me and someone else in an undirected graph

To make the “good” part formal, in this talk we consider classic geometric
and spectral measures of centrality

For example: closeness centrality, eigenvector centrality, PageRank...



For Example, With (In)Degree...

* |[f 1 get anew follower or a new friend, my score increases

 Moreover, if someone has a smaller score (fewer friends or followers than
me), their score remains smaller

 Even more is true, if someone else has the same score as me (i.e., number
of followers of friends) they will have a lesser score afterwards

* This properties are obvious for (in)degree

 Can we show that they are still true while we switch to more
“sophisticated” scores?



Score and Rank Monotonicity

Score monotonicity: if you add an arc x — y, the score of y increases (Sabidussi 1966)

Rank monotonicity: if you add an arc x — y, no vertex with a score lower than or equal
y can get a score higher than y (Chien, Dwork, Kumar, Simon & Sivakumar 2004)

Score monotonicity = something good happens
Rank monotonicity = nothing bad happens

Strict rank monotonicity: additionally, vertices with score equal to y get a score lower
than y

= nothing bad happens, something good happens

Undirected case: must work at both ends (Boldi, Furia & Vignha 2021)



Geometric Centrality Measures

Given a graph, we compute a score using some function of the distances

Closeness centrality (Bavelas 1948): reciprocal of sum of all distances
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Harmonic centrality (Beauchamp 1965): sum of reciprocals of all distances
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Betweenness (Anthonisse, 1971; Freeman, 1977)




Spectral Centrality Measures

* (Given a graph, we compute a score using some eigenvector associated with
the adjacency matrix

* Eigenvector centrality (Landau 1895): just take the dominant eigenvector
* Motivation: If the graph is a voting graph, 1A is majority voting (indegree)
 We can refine this: let’s weight the voters using majority voting: (1A)A = 1Az2

* Or refine again, but 1Axoscillates, so Landau proposes to find a positive v
such that vA = Av (and indeed under mild hypotheses 1A% tends to such a v)

* (Actually stated for chess tournaments using A1T)



Spectral Centrality Measures

e Seeley’s index (1951): reputation is recursive
* Motivation: kindergarten data about child / liking child j
 |dea: global reputation should be defined recursively: si= ) j-»i Sj/ d

 This is equivalent to sP = s, where P is A with f1-normalized rows (i.e., divide
by the outdegree)

* |mportant idea: reputation is divided among people you endorse

* Equivalently, the steady state of the natural Markov chain on the graph (AKA
“simplified PageRank” —PageRank without the damping factor)



Spectral Centrality Measures

Katz’s index (1953)

Follows Landau’s idea, but using a summation rather than a limit
He computes 1 + 10A + 102A2 + 108A3 + *+* = 1) n=0 A" = 1(1 — 0A)-T

Note: a must be less than the inverse of the spectral radius; 1Ak is also the
number of incoming paths of length k, and that is the original formulation

One can use a generic border condition v (Hubbell 1965)

v(1 — aA)-1 is equal to the dominant eigenvector of dA + (1 — a)eTv, where e is
a right dominant eigenvector of A (Vigna 2016, using Brauer 1952)



Spectral Centrality Measures

 PageRank (Page, Brin, Motwani & Winograd 1998); different formulations in
time

o Steady state of a perturbed Markov chain: p = p(aP + (1 — a)1Tv)

* Modulo a factor (1 — o), v(1 = aP)1 = v) n=00"P" = v + vaP + vo2P2 + vosP3 + -

* S0, Seeley’s index is to PageRank as eigenvector centrality is to Katz’s index

* |In both cases, when a tends to its limiting value we go back



Getting a New Follower



The Directed Case: Geometric Centralities

* On strongly connected graphs, both score monotone and rank monotone

* Not surprisingly: we shorten a path

* More surprisingly: closeness is not strictly rank monotone

* (One more reason to ditch closeness in favor of harmonic)



The Directed Case: Eigenvector Centrality

* Eigenvector centrality is strictly rank monotone on strongly connected graphs
(Boldi & Vigna 2004)

* Elsner, Johnson & Neumann 1982: any nonnegative (and overall nonzero)
iIncrease in row / of a nonnegative matrix results in coordinate i/ of the
dominant eigenvector increasing more than any other coordinate

* S0 at least on strongly connected graphs the intuition is correct



The Directed Case: Seeley’s Index

e Score and rank monotone only on strongly connected graphs

* Both results proved only for regular Markov chains in Chien, Dwork, Kumar, Simon & Sivakumar 2004

* First result does not need aperiodicity; second result can be proved using our results for PageRank
and taking the limit

* Not strictly rank monotone: y and z maintain the same score




The Directed Case: PageRank

Score monotonicity and loose rank monotonicity in Chien, Dwork, Kumar, Simon &
Sivakumar 2004 under regularity assumptions

We remove all hypotheses assuming just that the preference vector is positive, and
prove strict rank monotonicity

Or, loose rank monotonicity under the only hypothesis that x has nonzero score

Our proofs cover a class of spectral centrality measures of the form Vano(ngn

Same proof for PageRank and Katz’s index

Strategy: use the Sherman-Morrison formula to move the perturbation in the
preference vector, and then argue using properties of M-matrices



The Directed Case: PageRank

 Let P and P’ be the normalized adjacency matrices before and after adding an
arcx =y

e Then P’'—P = X'x 8, where contains —1/d(d + 1) in positions of successors of x
and 1/(d+1) in position y

 Then the Sherman-Morrison formula expresses (1 — aP’)-1 as an (ugly)
correction to (1 — aP)-1, but we can gather the ugly stuff in a positive constant

+ Then, v(1 - aP’)" = (v + c8)(1 - aP)!



The Directed Case: PageRank

* But then we can rewrite the difference between the PageRank vectors as
vl —aoP’ )y —v(1-aP)1=(v+cd)(1 —aP)T-(1-aP)?=cd(1 - aP)

 McDonald, Neumann, Schneider & Tsatsomeros proved in 1995 that
diagonal elements of the inverse of an M-matrix dominate strictly the oft-
diagonal elements, so if B = (1 — aP);
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The Directed Case: PageRank

* A similar approach can be used to prove strict rank monotonicity
* There is no such proof in sight using Markov chains

* |n general, properties that are not true on all Markov chains will not
be within reach of proof technigues based on Markov chains

* Also, most strong results require regularity

* Linear algebra makes it possible to prove stronger statements using
just irreducibility (strong connection)



Getting a New Friend



Seeley’s: Score and Strictly Rank Monotone

o Standardized Seeley’s (£1-normalized degree)

e Obviously strictly rank monotone

e Score monotone except in the case of a star plus isolated nodes

dx)+1 dx)
) >E=}'d()€)<m O O




Nothing Else Works

e (Geometric centralities

* |dea: connecting O and 1 benefits 1 a lot, because it gets closer to the
nodes around O

 The same doesn’t happen for 0, which gains very little as r is small



PageRank: None of the Above, Again

Much more complex situation
We would like to have results for every value of the damping factor a

For a sufficiently close to 1, adding an edge never violates rank
monotonicity

Thus, different values of a require different counterexamples

This might suggest that in some right subinterval of the unit interval
rank monotonicity works

Surprisingly, this is not the case



Fibrations of Graphs

 Maps (morphisms) between graphs G and
B

* Fiber: counterimage of anode in B

* | ocal in-isomorphism property: in-
neighbourhoods are mapped bijectively

 Appeared under a plethora of names:
equitable partitions and front divisors
(spectral graph theory), left-resolving map
(symbolic dynamics), Weisfeiler-Lehman
test (graph isomorphism problems, graph
neural networks), first stage of nauty

(graph isomorphism), etc.




Fundamental Property

Take a fibration ¢: G — B

If v Is a vector on B, write v® for the lifting of v along ¢, that is, the vector
obtained by copying v along the fibers

Then, (vB)® = v¢G (Sachs 1966)

That is: if a vector is fiberwise constant, you can multiply by G by multiplying
the fiber values by B and lifting

Consequence: if G is strongly connected, the dominant eigenvector of G is the
ifting of that of B, and the characteristic polynomial of B divides that of G (see
the theory of equitable partitions and graph divisors in the ‘60s)

More importantly, (v n>0 a”B”)<I> = v®) n=0 "GN as lifting is linear
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Parametric Counterexample

 We just need to find one that is fibered over a graph with a finite number of

vertices

Idea
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Exact PageRank scores

 Now PageRank scores are rational functions in o whose
coefficients are rational functions in k

0.0 0.2 0.4 0.6 0.8 10

0.4 -

ation of node 5 (k=16)

0.2

Relative van

. Degree s too high for exact solutions, but we can use Sturm olynomials

g2 Llpgl L34 Lk —0k+ 3 6 LR e - LR sk-3 o Lt o33 L2 g - 13 S 3544 2k3 + 22— 16k + 5 3428 -2k + 1k +4 St — 613+ 6k — 2 okt 42k 4 2K — Ok
o’ + 1 a’ + a +
2+ Lk -3 2+ Lk -3 2+ Lk -3 2+ Lk -3 K24tk -3 2+ Lk -3 2+ Lk -3 2+ Lk -3
AQZ 4 k2= 91 _j _(ng ki %k + 3k + 12) Lpd _ 8k3 + 1742 4 <[@4 ;51!)% i%é: %Oj ; f f: H fi{ ’Hij 13( QF ]F[ ?%) ! DO 4k iy

 Then we use Sturm polynomials to show that there are two sign changes
around the middle

* We sandwich the sign changes between points going to 0 and 1 for k=0

 We get a counterexample for each value of a



Rich Get Richer

* |n the previous example, the important node becomes more important
(“vampire” behavior)

 \We have a similar class of counterexamples for the opposite behavior




Eigenvector and Katz Centrality

 We can use the same technique, with a different graph, to prove similar results for
eigenvector centrality and Katz centrality

* Eigenvector centrality is particularly tricky because we cannot have an exact description
of the dominant eigenvector (unless you have less than five nodes, or you’re very lucky)

* \We solve the problem by proving the results for Katz’s index in an interval around 1/p,
where p Is the spectral radius.



It Actually Happens (IMDB)!

Score increase

Score decrease

Rank violations
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Conclusion

* The natural insight into the behavior of popular spectral centrality measures
on directed graph is correct

* (General proof technique for monotonicity properties of spectral measures in
the directed case: Sherman—Morrison formula plus M-matrices

 The same insight or proof techniques does not work anymore for undirected
graphs

* (General proof technigue for spectral counterexamples: graph fibrations

o http://vigna.di.unimi.it/fibrations/



http://vigna.di.unimi.it/fibrations/

