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Encoding distances in a graph

We are given a (weighted) (di-) graph 6 = (V,E) with n
nodes and m edges.
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Encoding distances in a graph

We are given a (weighted) (di-) graph 6 = (V,E) with n
nodes and m edges.

Make any useful pre-computation to answer efficiently
online distance queries : what is distance d(uy,vy)?,
d(Ug, Vg) ?,d(Ug, V3) 7,
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Encoding a graph metric : distance oracles
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Size S vs query time T fradeoff (sparse graphs, i.e.
m = O(n))
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Encoding a graph meftric : distance labelings
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Encoding a graph meftric : 2-hop labelings

A 2-hop labelings is a very simple kind of distance labeling.
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Encoding a graph metric : 2-hop labelings

A 2-hop labelings is a very simple kind of distance labeling.

The main idea is to associate a set H, C V of “hubs” to each
node u and to store the distances d(u,v) forall v € H,.
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Encoding a graph meftric : 2-hop labelings

A 2-hop labelings is a very simple kind of distance labeling.

The main idea is to associate a set H, C V of “hubs” to each
node u and to store the distances d(u,v) for all v € H,.

Also known as hub labeling, or landmark labeling.
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Encoding a graph metric : 2-hop labelings

A 2-hop labelings is a very simple kind of distance labeling.

The main idea is to associate a set H, C V of “hubs” to each
node u and to store the distances d(u,v) forall v € H,.

Also known as hub labeling, or landmark labeling.

One of the two main bulding blocks of classical distance
labelings (the other being free labelings).
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2-hop labeling
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2-hop labeling
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2-hop labeling
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2-hop labeling
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2-hop labeling
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2-hop labeling
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Hub sets

Covering property :
A collection of hub sets Hy C V for all u € V is said to cover

graph G if for all u,v, there exists w € H, " H, withw € P,
where Py, is a shortest uv-path.

P\X P

Distance labels : Ly = {(w,d(u,w)) : w € Hy}
Distance query : Dist (Ly, Lv) = mingey,qn, d(u, w) +d(w, v)
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Hub sets
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Covering property :
A collection of hub sets Hy C V for all u € V is said to cover

graph G if for all u,v, there exists w € H, " H, withw € P,
where Py, is a shortest uv-path.

%\x P

Distance labels : Ly = {(w,d(u,w)) : w € Hy}
Distance query : Dist (Ly, Lv) = mingey,qn, d(u, w) +d(w, v)

Introduced by [Gavoille et al. ‘04 Cohen et al. 2003],
applied to road networks [Abraham et al. 2010-2013],

and other practical networks [Akiba et al. 2013].
Approximability results : [Babenko et al. 2013, Angelidakis
et al. 2017].
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Hub sets covering a path
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Hub sets covering a path
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Hub sets covering a path
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Hub sets covering a path
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Hub sets covering a path
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Hub sets covering a path
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Hub sets covering a path

Yy £ £

This results in covering hub sets of size O(logn).
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Hub sets covering a path

Yy £ £

This results in covering hub sets of size O(logn).

A similar construction works for trees, bounded-treewidth
graphs and planar graphs.
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This talk is about

What graphs do have small hubsets?
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This talk is about

What graphs do have small hubsets?

No hope for dense graphs :
. average hub-set size is at least T as :

. for each edge uv € E, we must have u € H, or v € H,.
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This talk is about

What graphs do have small hubsets?

No hope for dense graphs :
. average hub-set size is at least T as :
. for each edge uv € E, we must have u € H, or v € H,.

Planar graphs have covering hub sets of size O(\/n), with a
best known lower bound of Q(n'/3) (unweighted). [Gavoille,
Peleg, Pérennes, Raz '04].
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Part I : Do practical graphs have small

covering hub sets?
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Yes! practical graphs tend to have small covering hub sets.
[Akiba et al. '13] [Delling et al. 14 ]
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Yes! practical graphs tend to have small covering hub sets.
[Akiba et al. '13] [Delling et al. 14 ]

What kind of property they have enables that?
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Yes! practical graphs tend to have small covering hub sets.
[Akiba et al. '13] [Delling et al. 14 ]

What kind of property they have enables that?

Small highway dimension. [Abraham, Fiat, Goldberg, Werneck
'10-13]
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Yes! practical graphs tend to have small covering hub sets.
[Akiba et al. '13] [Delling et al. 14 ]

What kind of property they have enables that?

Small highway dimension. [Abraham, Fiat, Goldberg, Werneck
'10-13]

More generally, small skeleton dimension. [Kosowski, V.,
SODA'17]
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Skeleton dimension

The skeleton dimension k of G is the maximum “width"” of a
"pruned” shortest path tree.
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Barcelona shortest path tree
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Barcelona tree skeleton : prune last third




Barcelona tree skeleton : prune last third
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Barcelona tree skeleton : prune last third
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Barcelona tree skeleton : prune last third

Provence-Alpes- E EE’@? ’







Barcelona tree skeleton : prune last third
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Barcelona tree skeleton : prune last third
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Barcelona tree skeleton : prune last third
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Barcelona tree skeleton : prune last third
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Tree skeleton
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Tree skeleton
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Tree skeleton
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Tree skeleton
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Tree skeleton
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Tree skeleton
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Tree skeleton

Width (E") = max | Cu, (1]
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Tree skeleton

Skd. dim. k= max \,M(:k(ﬁ*)
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Theorem (Kosowski, V., SODA'17)

Given a graph G with skeleton dimension k and diameter D, a
simple random sampling technique allows to find in
polynomial time hub sets with size O(klogD) on average and
maximum size O(kloglogklog D) with high probability.
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Hub set selection : random sampling
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Hub set selection : random sampling
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Hub set selection : random sampling
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Hub set selection : random sampling

The probability to select a node x is o 5.
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Road networks : two tree skeletons
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What ...maps do?
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What ...maps do?
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What ...maps do?

¥4 De Menton a Brest

@ z Options ¥

=0 ‘ Menton ‘
H:) l Brest k

(® Ajouter une destination

(@ Partir maintenant v

16:08 Trafic modéré . Retardde2h 44 min 1468 km
h min Par E80, E60 . ltinéraire avec péage

16:12 Trafic modéré . Retardde2h43min 1471 km
h min Par E80, E72 . ltinéraire avec péage

16:26 Trafic modéré . Retardde2h39min 1509 km
h min ParE15,E50 . [tinéraire avec péage

Imprimer

Q Menton
e Quitter Promenade du Soleil / D6007
en direction de Traverse Saint-Michel

0,6 km
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Highway vs skeleton in Brooklyn

Packing of 172 paths Skeleton width 48
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Skeleton dimension of grids

B(u,r)

=7 = Complex Networks Seminar

©) O O
(@) O (@]
(@] ©) @)
(@] ©) @)
©) O O
©) O O
@) O O

10/12 21/ 39



Skeleton dimension of grids
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Skeleton dimension of grids
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Open : random grid (here 500 x 500)

k=70 k =49 (fpp [1,4)) k =49 (prob 2/3)

Related fo first-passage percolation [Licea, Newman, Piza '96]
[Aldous '14].
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Part IT : Do sparse graphs have covering hub

sets with o(n) size?
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Can we have sublinear size for sparse graphs (m = O(n))?
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Can we have sublinear size for sparse graphs (m = O(n))?

Or even constant degree graphs?
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Can we have sublinear size for sparse graphs (m = O(n))?
Or even constant degree graphs?

Best known upper bound is O(@). [Alstrup, Dahlgaard, Beck,
Knudsen, Porah '16] [Gawrychowski, Kosowski, Uznanski '16]
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Can we have sublinear size for sparse graphs (m = O(n))?

Or even constant degree graphs?

Best known upper bound is O(%). [Alstrup, Dahlgaard, Beck,
Knudsen, Porah '16] [Gawrychowski, Kosowski, Uznanski '16]

Best known lower bound for distance labels is Q(\/n).
[Gavoille, Peleg, Pérennes, Raz '04]
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Theorem (Kosowski, Uznanski, V., PODC'19)

(1) There exists graphs of degree at most 3 where any
collection of covering hub sets has average size O(\/@)

(2) Any graph has a collection of hub sets of O(5 \:/7) size

where 22(eg"n) < RS(n) < 20(V10gM) s q number r'ela‘red to
Ruzsa-Szemerédi graphs.
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Proof : cov. hub sets of this graph have size —

90(+/logn)
Vo
v, s
v,
= 8/8 26/ 39




Voo
v ‘R’ \
¥
P
\

Each V; is a regular 2" x - x 2 lattice of dim. i~ \/logn (here ¢ = 2).
Edges from V;_; to V; connect nodes differing on ith coordinate.

= 7= Complex Networks Seminar 171 27/ 39



Ruzsa-Szemerédi
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A graph is an RS-graph if it can be decomposed into n
induced matchings.
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A graph is an RS-graph if it can be decomposed into n
induced matchings.
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A graph is an RS-graph if it can be decomposed into n
induced matchings.
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A graph is an RS-graph if it can be decomposed into n
induced matchings.

What are the densest RS-graphs?
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A graph is an RS-graph if it can be decomposed into n
induced matchings.

What are the densest RS-graphs?

Theorem ([Ruzsa, Szemerédi 78])

Any RS-graph has at most edges.

20(|og n)
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A graph is an RS-graph if it can be decomposed into n
induced matchings.

What are the densest RS-graphs?

Theorem ([Ruzsa, Szemerédi 78])

Any RS-graph has at most edges.

20(|og n)

Define RS(n) as the smallest integer such that there exists
an RS-graph with n nodes and % edges.
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A graph is an RS-graph if it can be decomposed into n
induced matchings.

What are the densest RS-graphs?

Theorem ([Ruzsa, Szemerédi 78])

Any RS-graph has at most edges.

20(|og n)

Define RS(n) as the smallest im‘eger‘ such that there exists

an RS-graph with n nodes and 3 edges.

QQ(Iog* n) <RS(n) < 90(y/logn)
[Ruzsa, Szemerédi '78] [Elkin '10] [Fox '11]
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Gy = {xoz2¢ |y = *§* and dg(x,2) = D} IDs.t. |Uy 6P| > s
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Converse

Any cst. deg. graph G has hub sets of av. size O(5

Idea: use a vertex cover of each <60 (VC < 2MM).
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Connection with SumIndex problem (comm.
complexity)
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SUMINDEX(n) = minEncoder mGXx IMal + [Mg|
Q(v/n) < SUMINDEX(n) < O( ) [Pudiak 1994]
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Gx =G\ {y¢| Xy =0}, send x = 2a,Lx,,z = 2b,Ls,,, check d(xo, ).
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Part ITI : what about 3 hops?
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3-hopset of a path
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3-hopset of a path
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3-hopset of a path
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3-hopset of a path
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3-hopset of a path
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3-hopset of a path

=7 = Complex Networks Seminar 6/7 35/ 39



3-hopset of a path
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3-hopset distance oracle

Store x,dg(u, x) for x € Ni3(u) (2loglogn per node).
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3-hopset distance oracle

Store x,dg(u, x) for x € Ni3(u) (2loglogn per node).

Store midle links in a hashtable Hy (O(nloglogn) size).
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3-hopset distance oracle

Store x,dg(u,x) for x € Ny3(u) (2loglogn per node).

Store midle links in a hashtable Hy (O(nloglogn) size).

Query for dg(u,v) : best 3-hop path length is

' dg(u, x) + dg(x,y) + dg(y,

X€N13(U)7Yr€nfilT3(V),xyeH2 6(U, ) +dg(x,y) +dg(y, V)
(0((loglogn)?) time).
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Theorem (Kosowski, Gupta, V., ICALP'19)

For a unique-shortest-path graph with skeleton dimension k
and average link length L > 1, there exists a randomized
construction of a 3-hopset distance oracle of size

|[H| = O(nklogk(loglogn + logL)), which performs distance
queries in expected time O(k2 log® k(log” logn + log®L)).
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Some questions

Improve lower-bounds on graphs for general
distance labelings/oracles.
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Some questions
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Some questions

Improve lower-bounds on graphs for general
distance labelings/oracles.

What is the skeleton dimension of a random grid?

What graphs have covering hub sets of ?
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Some questions

Improve lower-bounds on sparse graphs for general
distance labelings/oracles.

What is the skeleton dimension of a random grid?

What graphs have covering hub sets of size O(1)?

What if the graph evolves with time (temporal graphs)?
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Thanks.

Complex Networks Seminar

1/1 39/ 39



