

Efficient Data Stream Mining

Talk at Complex Network, LIP6

Maroua Bahri

(nría_

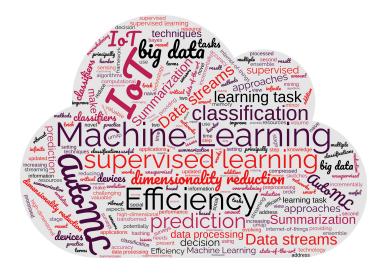
Paris, 27 June 2022

- 2015-2016 : Master in Data Mining and Knowledge Management, Polytech' Nantes
- 2014-2016 : Master in Sciences and Technologies of BI, Institut Supérieur de Gestion de Tunis
- 2017-2020 : Ph.D. degree in Computer Science, Télécom Paris
 - Improving IoT data stream analytics using summarization techniques
 - Defended in June 2020
- 2020-2021 : Postdoc, Télécom Paris

2021-Current : Postdoc, INRIA Paris

Maroua Bahri

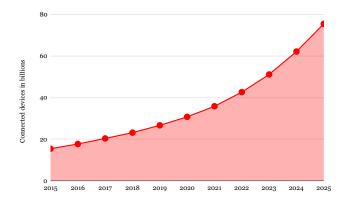
Data Stream Mining



Internet of Things (IoT)

Network of connected devices

Internet of Things (IoT)



Statista predicts around 80 billion IoT devices by 2025

Challenges

- Technical
 - Complex data
 - Computational resource
- Energetic
 - The electronic industry is leaving unfavourable environmental footprints
 - Reduction of energy supply
- Security
 - Ensuring security in IoT products and services
- Economic
 - Some materials are rare or becoming

• • •

Challenges

- Technical
 - Complex data
 - Computational resource
- Energetic
 - The electronic industry is leaving unfavourable environmental footprints
 - Reduction of energy supply
- Security
 - Ensuring security in IoT products and services
- Economic
 - Some materials are rare or becoming

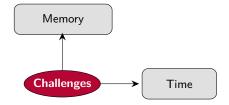
• • • •

Technical Challenges

Memory

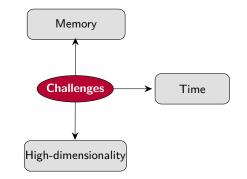
• Use a limited amount of memory

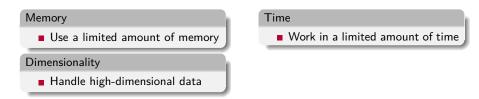
Technical Challenges

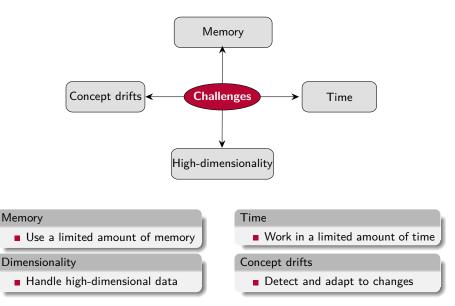


Use a limited amount of memory

Technical Challenges







Example : Email Filtering

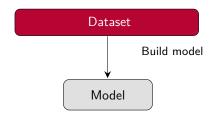
Example : Email Filtering

Maroua Bahri

Data Stream Mining

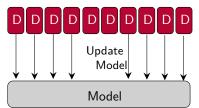
Example : Email Filtering

Batch vs. Streaming



Batch approaches

- Finite training sets
- Static models



Stream approaches

- Infinite training sets
- Dynamic models

Stream Mining

Maintain models in an online fashion

- Incorporate data on the fly
- Single pass, one instance at a time
- Once processed, it is discarded or archived
- Be ready to predict at any instance

Classification and Contributions

 Different classifiers that continuously operate and incorporate instances as they arrive exist [DMKD'21]

Classification and Contributions

 Different classifiers that continuously operate and incorporate instances as they arrive exist [DMKD'21]

Accurate models but expensive, especially with high-dimensional data

Classification and Contributions

 Different classifiers that continuously operate and incorporate instances as they arrive exist [DMKD'21]

Accurate models but expensive, especially with high-dimensional data

- Improve stream algorithm performance
- Guarantee a good precision
- Tradeoff between resources and accuracy
- \Rightarrow Sampling, sketching, dimensionality reduction, \cdots

Compressed k-Nearest Neighbors [ECAI'20]

Stream kNN :

- Uses a sliding window as a search space
- Given an unclassified instance X_i from a stream S :
 - Determines the kNN inside the window
 - Predicts the most frequent label

Compressed k-Nearest Neighbors [ECAI'20]

Stream kNN :

- Uses a sliding window as a search space
- Given an unclassified instance X_i from a stream S :
 - Determines the *k*NN inside the window
 - Predicts the most frequent label

- Inefficient at prediction time
- Memory consuming
- Inefficient with high-dimensional data

Compressed k-Nearest Neighbors [ECAI'20]

Stream kNN :

- Uses a sliding window as a search space
- Given an unclassified instance X_i from a stream S :
 - Determines the kNN inside the window
 - Predicts the most frequent label

- Inefficient at prediction time
- Memory consuming
- Inefficient with high-dimensional data

 \Rightarrow Dimensionality reduction

Dimensionality Reduction (DR)

The projection of high-dimensional data into a low-dimensional space by reducing the input features

Objectif : given an instance $X_i \in \mathbb{R}^a$, we wish to obtain $Y_i \in \mathbb{R}^m$, where $m \ll a$

- Principal Component Analysis (PCA)
- Compressed Sensing (CS)
- Hashing Trick (HT)

• • • •

Dimensionality Reduction (DR)

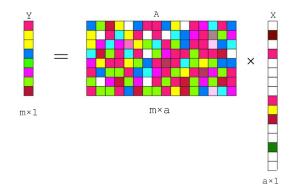
The projection of high-dimensional data into a low-dimensional space by reducing the input features

Objectif : given an instance $X_i \in \mathbb{R}^a$, we wish to obtain $Y_i \in \mathbb{R}^m$, where $m \ll a$

- Principal Component Analysis (PCA)
- Compressed Sensing (CS)
- Hashing Trick (HT)

...

Compressed Sensing (CS)



- Data compression method that transforms and reconstructs data from few samples with h.p
- Matrix A used to transform instances from $\mathbb{R}^a o \mathbb{R}^m, m \ll a$
 - Fourier transform, random matrices (e.g., Bernoulli, Gaussian)

Donoho, Compressed sensing, 2006.

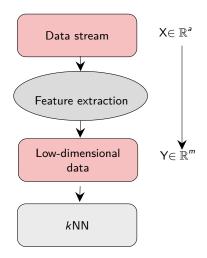
CS relies on two principles :

■ *Sparsity* : expresses the idea that data may be much smaller and are compressible. *X* is *s*-sparse if $||X||_0 \le s$

CS relies on two principles :

- Sparsity : expresses the idea that data may be much smaller and are compressible. X is s-sparse if ||X||₀≤ s
- **Restricted Isometry Property (RIP)** : A satisfies RIP \forall *s*-sparse instance $X \in \mathbb{R}^{a}$, if there exists $\epsilon \in [0, 1]$:

$$(1-\epsilon)\|X\|_2^2 \le \|AX\|_2^2 \le (1+\epsilon)\|X\|_2^2$$



CS-*k***NN** : Theoretical Guarantees

The distance between two instances X_i and X_j is defined as follows : $D_{X_j}(X_i) = \sqrt{\|X_i - X_j\|^2}$

The *k*-nearest neighbors distance is defined as : $D_{w,k}(X_i) = \min_{\binom{w}{k}, X_j \in w} D_{X_j}(X_i)$

CS-*k***NN** : Theoretical Guarantees

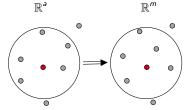
The distance between two instances X_i and X_j is defined as follows : $D_{X_j}(X_i) = \sqrt{\|X_i - X_j\|^2}$

The k-nearest neighbors distance is defined as : $D_{w,k}(X_i) = \min_{\binom{W}{k}, X_j \in w} D_{X_j}(X_i)$

Theorem

Given a stream $S = \{X_i\}$ and $\epsilon \in [0, 1]$, if there exists a transformation matrix $A : \mathbb{R}^a \to \mathbb{R}^m$ having the RIP, such that $m = \mathcal{O}(s \log(a))$, where s is the sparsity of data, then $\forall X_i \in w$:

$$(1-\epsilon)D^2_{w,k}(X) \leq D^2_{w,k}(AX) \leq (1+\epsilon)D^2_{w,k}(X)$$



Maroua Bahri

Overview of the data

Dataset	#Instances	#Attributes	#Classes	Туре
Tweets ₁	1,000,000	500	2	Synthetic
Tweets ₂	1,000,000	1,000	2	Synthetic
Tweets ₃	1,000,000	1,500	2	Synthetic
RBF	1,000,000	200	10	Synthetic
CNAE	1,080	856	9	Real
Enron	1,702	1,000	2	Real
IMDB	120,919	1,001	2	Real
Spam	9,324	39,916	2	Real
Covt	581,012	54	7	Real

Accuracy (%)

Dataset	CS- <i>k</i> NN	HT- <i>k</i> NN	PCA- <i>k</i> NN	<i>k</i> NN
Tweet ₁	78.82	73.77	80.43	79.80
Tweet ₂	78.13	73.02	80.06	79.20
$Tweet_3$	76.75	72.40	81.93	78.86
RBF	98.90	19.20	99.00	98.89
CNAE	70.00	65.00	75.83	73.33
Enron	96.02	95.76	94.59	96.18
IMDB	69.86	69.65	70.57	70.94
Spam	85.39	83.82	96.00	81.17
Covt	91.36	77.18	91.55	91.67
Overall ∅	82.80	69.98	85.55	83.34

Results

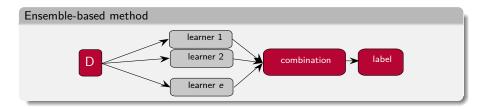
Memory (MB)

Dataset	CS- <i>k</i> NN	HT- <i>k</i> NN	PCA- <i>k</i> NN	<i>k</i> NN
Tweet ₁	2.52	2.52	3.03	34.64
Tweet ₂	2.52	2.52	5.97	70.97
Tweet ₃	2.52	2.52	8.84	103.19
RBF	2.52	2.52	8.86	13.18
CNAE	2.52	2.52	3.09	61.37
Enron	2.52	2.52	3.51	70.60
IMDB	2.52	2.52	8.81	70.65
Spam	2.52	2.52	245.22	1476.11
Covt	2.52	2.52	3.02	3.47
Overall ∅	2.52	2.52	32.26	211.57

Time (sec)

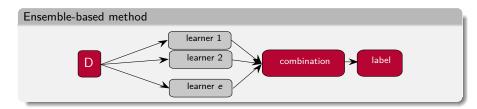
Dataset	CS- <i>k</i> NN	HT- <i>k</i> NN	PCA- <i>k</i> NN	<i>k</i> NN
Tweet ₁	62.55	93.24	622.65	1198.78
Tweet ₂	107.48	120.83	705.71	2029.82
Tweet ₃	126.73	154.22	988.25	2864.55
RBF	59.47	168.31	243.26	284.34
CNAE	0.87	0.95	3.97	32.19
Enron	1.58	1.81	7.21	86.08
IMDB	95.62	125.62	1686.88	7892.96
Spam	159.92	194.07	11329.91	34231.45
Covt	30.94	88.17	161.00	252.69
Overall Ø	71.68	105.25	1749.87	5430.32

Ensemble CS-kNN (CSB)



Bifet, et al., Leveraging bagging for evolving data streams, 2010.

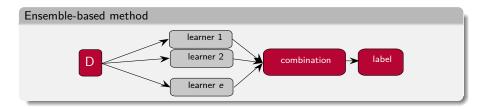
Ensemble CS-kNN (CSB)



- Uses CS-*k*NN as a base learner under Leveraging Bagging (LB)
- Uses several random matrices : one for each ensemble member
- Preserves the neighborhood properties of the CS-kNN

Bifet, et al., Leveraging bagging for evolving data streams, 2010.

Ensemble CS-kNN (CSB)



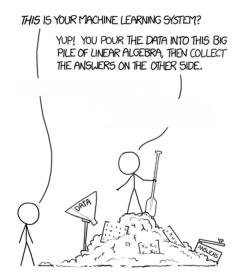
- Uses CS-*k*NN as a base learner under Leveraging Bagging (LB)
- Uses several random matrices : one for each ensemble member
- Preserves the neighborhood properties of the CS-kNN

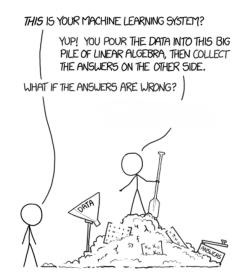
\oplus Good accuracy

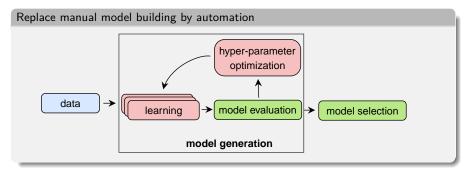
⊖ Computational resources

Bifet, et al., Leveraging bagging for evolving data streams, 2010.

Maroua Bahri







Evolution-Based Online Automated Machine Learning [PAKDD'22]

AutoML for Stream Classification

- Selecting randomly a population from the configuration space
- Ranking from the best/worst performing configurations
- Generating a new configuration to remove the weakest one

Cedric Kulbach (FZI Research)

Albert Bifet (Télécom Paris & University of Waikato)

Jacob Montiel (University of Waikato)

Automated Machine Learning For Anomaly Detection

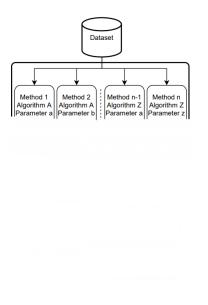
AutoAD [Submitted]

- An automated framework for unsupervised anomaly detection (batch setting)
- Given different AD algorithms and their hyper-parameter search space, AutoAD gives the anomaly scores based on the performance of each approach

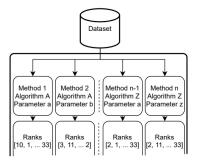
Mauro Sozio

Andrian Putina (Télécom Paris & Huawei France)

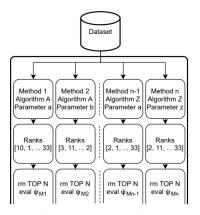
Flavia Salutari



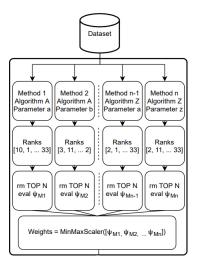
Given a set of methods



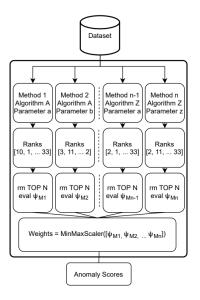
Rank the output anomaly score



Remove the top anomalous instance Evaluate the performance of each method



A weight proportional to the measure is assigned to each method



Final scores are computed based on the initial scores and the weight assigned to each method

Thank You!

https://sites.google.com/site/bahrimarouaa/

https://github.com/marouabahri/