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The big data era

4.3 billion people connected to Internet

36 million web-sites created per minute

55 thousand photos posted per minute

5.5 million videos watched per minute

188 million emails sent per minute

Goal: categorize the data

Users by Service Provider

Web-sites by topic

Photographies by genre

Videos by content

Email is spam or not
Sources: (1) DOMO’s ‘Data Never Sleeps 7.0’
report, 2019. (2) Z. Zhan et al, ‘Fast incremental
PageRank on Dynamic networks’, 2019.



Annotated data is limited
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Classifiers: learn from annotated data

Annotated data: expensive to collect

Raw data Supervised classifier
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Raw data

Build similarity graph Learned classes
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• [M. Zhao et al. 2014]
• [W. Hu et al. 2016]
• [H. Cecotti, 2016]
• [F. De Morsier et al. 2016]
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etc.

State-of-the-art

PageRank-based G-SSL

3 Best overall performance
3 Deep theoretical understanding
3 Optimization problem
3 Connection to the graph topology
3 Swep-cut and multi-class decisions
3 Robustness to parameters
3 Efficient computation
3 Efficient updating
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Problem setup:

• G(V, E ,W): weighted undirected
graph with positive edges

• Sgt ⊂ V: ground truth class

Classification challenge:

• V = Sgt ∪ Sc
gt
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Definition

arg min
f
{f>D−1LD−1f︸ ︷︷ ︸

smoothness

+µ (f − y)>D−1 (f − y)︸ ︷︷ ︸
fitting

}

• f: personalized PageRank score vector

• y: one-hot encoding of labels of Sgt (personalization vector)

• D = diag(du), with du =
∑

v Wuv : degree matrix

• L = D−W: combinatorial Laplacian matrix

• µ: regularization parameter

Analytic closed form solution

f = µ
(

LD−1 + µI
)−1

y
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Interpretation as a random walk process
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(
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)−1
y =

∞∑
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(1− α)αk [P>]ky

• α = 1/(1 + µ)

• P = D−1W
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Interpretation as a random walk process

f = µ
(
LD−1 + µI

)−1
y =

∞∑
k=0

(1− α)αk [P>]ky

• α = 1/(1 + µ)

• P = D−1W

• k = 0: walker at label

• k + 1: continue or restart

• fu ∝ # visits to u
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Illustration
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Multi-class

Sweep-cut
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Conductance

hS :=

∑
u∈S

∑
v∈Sc Wuv

min
(∑

u∈S Duu,
∑

v∈Sc Dvv

)
• S ⊆ V
• S∗ = arg minS hS maximizes internal connections and minimizes external ones

Lemma [F. Chung, Internet Mathematics 2007]

For randomly placed labelled points, PageRank satisfies:

E

∑
v∈Sc

gt

fv

 ≤ hSgt

µ



PageRank-based G-SSL
Limitations
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Only reliable on highly clusterable data

Biased in unbalanced labelled situations

Bad learning with hubs/skewed graphs
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Definition

Lγ = QΛγQ> = Dγ −Wγ

• Dγ is a new degree matrix: [Dγ ]uu = [Lγ ]uu

• Wγ is a new adjacency matrix: [ Wγ ]uv = −[Lγ ]uv

Lemma 1

For all γ > 0, the Lγ-graphs satisfy the Laplacian property

[Dγ ]uu =
∑
v

[Wγ ]uv ≥ 0

For every fixed γ > 0, Lγ codes for a new graph
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Definition

arg min
f

{
f>D−1

γ LγD−1
γ f + µ (f − y)>D−1

γ (f − y)
}

• f: Lγ-PageRank score vector

Analytic closed form solution

f = µ
(
LγD−1

γ + µI
)−1

y

=
∞∑
k=0

(1− α)αk [Pγ
>]ky

• α = 1/(1 + µ)

• Pγ = D−1
γ Wγ : Generalized random walk transition matrix?
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γ = 1: Standard PageRank

• Pγ : Standard random walk

γ < 1: Lévy Flights for Classification

• Pγ : Lévy flight random walk

γ > 1: Signed Graphs for Classification

• Pγ : Not a stochastic matrix (Wγ signed)



Regime 0 < γ < 1

Lévy flights for classification
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The Lévy flight random walk
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The long range transitions

[Pγ ]uv ∼ ∆
−(2γ+1)
uv



The Lγ-PageRank G-SSL
The Lévy flight random walk for classification
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wr >> wb

Incorrect

Correct



Regime γ > 1

Signed graphs for classification
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−
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WulWlv︸ ︷︷ ︸
2 hop (negative)
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[W2]uv = (Duu + Dvv )Wuv︸ ︷︷ ︸
1 hop (positive)

−
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WulWlv︸ ︷︷ ︸
2 hop (negative)

Initial graph
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Clusters in Lγ-graphs
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Definition

Group of nodes S ⊂ V with:

• Large

• Small

Ain(S) =
∑
u∈S

∑
w∈S

|[W+
γ ]uw |

Dout(S) =
∑
u∈S

∑
v∈Sc

|[W−γ ]uv |

Aout(S) =
∑
u∈S

∑
v∈Sc

|[W+
γ ]uv |

Din(S) =
∑
u∈S

∑
w∈S

|[W−γ ]uw |

Agreements

Disagreements
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Definition

h
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min
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Definition

h
(γ)
S =

∑
u∈S

∑
v∈Sc [Wγ ]uv

min
(∑

u∈S [Dγ ]uu ,
∑

v∈Sc [Dγ ]vv
) ≥ 0

Lemma 2

For a fixed γ, let S∗ = argminSh
(γ)
S . Then, S∗ also

• Maximizes Ain(S∗) and Dout(S
∗)

• Minimizes Aout(S
∗) and Din(S∗)
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Lγ-PageRank satisfies the following properties

Mass preservation:
∑

u∈V fu =
∑

u∈V yu

Stationarity: f = πγ if y = πγ

where πγ = [Dγ ]uu /
∑

u∈S [Dγ ]uu

Limit behavior: f → πγ as µ→ 0 and f → y as µ→∞



Confinement of scores
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Lemma 3

For randomly placed labelled points, the Lγ-PageRank vector satisfies:

E

∑
u∈Sc

gt

fu

 ≤ h
(γ)
Sgt

µ



The influence of γ
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Optimal value appears: γ∗ = arg minγ h
(γ)
Sgt
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The estimation of γ∗
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Compute k: maximum distance
between labeled points

Run walkers starting on the labels
for k steps

Use nodes where it is 0.7 more
likely to find the walkers as proxy
Ŝgt

Compute γ̂ on Ŝgt



Algorithm assessment
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γ̂ by algorithm



Algorithm assessment
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Table: Evaluation of Algorithm on the MNIST Dataset. Mean values

(95% confidence interval) are shown.
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• Let v1, . . . , vN be the permutation: qvi = fvi /[Dγ ]vi ,vi ≥ qvi+1 = fvi+1/[Dγ ]vi+1,vi+1

• Let Sj = {v1, . . . , vj}
• Retrieve Ŝgt = Sj for the set Sj achieving minj h

(γ)
Sj
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• Let v1, . . . , vN be the permutation: qvi = fvi /[Dγ ]vi ,vi ≥ qvi+1 = fvi+1/[Dγ ]vi+1,vi+1

• Let Sj = {v1, . . . , vj}
• Retrieve Ŝgt = Sj for the set Sj achieving minj h

(γ)
Sj

Lγ-PR vector Permutation Sweep

A sharp drop implies a good cut

If there is sharp drop between qj and qj+1, then Sj has small h
(γ)
Sj
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Performance evaluation
Real world datasets (Sweep)
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Table: γ enhances performance. Cells: MCC, 95% confidence interval

(parenthesis) and the value of γ [squared brackets].



Performance evaluation
Ratio of labelled points: 3 to 1 (Multi-class)
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Table: γ enhances performance. Cells: MCC, 95% confidence interval

(parenthesis) and the value of γ [squared brackets].
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Lγ-PageRank for Internet routing
The Internet graph
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Lγ-PageRank for Internet routing
Why interesting?
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Problem arises when

• Congestion due to mismatch between capacity and demand

• Vulnerability to DDoS attacks

• Traffic changes due to facilities outages

Current approaches:

7 Extremely hard to compute and error prone

7 Retrieve results every six months



Lγ-PageRank for Internet routing
The influence of γ
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Lγ-PageRank for Internet routing
Classification using strict expert
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Green: Correct inference. Red: Wrong inference



Lγ-PageRank for Internet routing
Classification using loose expert
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Green: Correct inference. Red: Wrong inference



Conclusions

• New degree of freedom γ into PageRank

• Rewires graph and induces two regimes

• For γ < 1 embeds Lévy Flights into PageRank

• For γ > 1 makes opposite clusters repel themselves

• Optimal topology to perform classification

• Significant improvements in accuracy

• Promising AS inferences using the proposed approach
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