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About complex networks analysis

What are complex networks?

Extracted from real-world data

ex: computer networks, social networks, biological networks, . ..
@ agents interacting, no “central brain”

@ = emerges from local interactions

Studied as graphs

@ system common features visible with graphs
ex: heterogeneous degree distribution, high clustering, . ..
@ similar methods and algorithms

Accounting for temporality
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Scientific interest

Attractive because ...
@ Variety of objects

o Create bridges between different topics

Getting the “big picture”

...and in retrospect
@ Variety of communities to learn about

o Highly active research fields

= Stimulating but demanding

Focus on three main axes of research

4/24



From a static to a dynamic analysis of complex networks
L Context & Overview

Describing spreading processes

Dynamical processes on complex networks
Synchronization, opinion dynamics, routing, spreading, . .. J

5/24



From a static to a dynamic analysis of complex networks
L Context & Overview

Describing spreading processes

Dynamical processes on complex networks
Synchronization, opinion dynamics, routing, spreading, . .. J

Models which represent:
@ an infection propagating in a population
@ a packet spreading in a computer network
° ...

Also a means to investigate the dynamical structure
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Predicting and recovering links

Understanding the microdynamics

Unknown mechanisms = learn from data

ex: triadic closure
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Predicting and recovering links

Understanding the microdynamics

Unknown mechanisms = learn from data
ex: triadic closure
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Specificities of the problem
@ tuning number of predictions
@ on large graphs

@ how to incorporate temporal information?
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Generating artificial structures resembling real data
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Model the interaction structure and dynamics

What is modeling here?
Generating artificial structures resembling real data

= allows to uncover possible explanations

Challenges
@ realistic structural constraints on graphs

@ towards modeling temporal networks
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Presentation outline

@ Describing spreading dynamics

@ Modeling the structure and dynamics

Highlight the connexion between these topics
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Spreading cascade in a temporal network

Model analyzed
SIR model: infection probability 1, deterministic recovery after T
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Spreading cascade in a temporal network

Model analyzed
SIR model: infection probability 1, deterministic recovery after T

b 1
. f
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Spreading cascade (but many other names)

Advantages:
@ simplicity of the model
@ allows to tune the time scale

@ probe of the temporal network (motif)
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Role of in/out-degree correlations

Peruani, Tabourier, 2011

Phonecall dataset

~14 millions phone calls between ~1 million users during 1 month
European mobile phone provider

Strongly asymmetric roles (super-spreaders, super-receivers)
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Role of in/out-degree correlations

Peruani, Tabourier, 2011

Phonecall dataset

~14 millions phone calls between ~1 million users during 1 month
European mobile phone provider

Strongly asymmetric roles (super-spreaders, super-receivers)

Critical recovery time 7.
7 such that cascade size diverges
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with some assumptions (no cycles)
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L Role of directedness

Role of in/out-degree correlations

Experimental observations

@ real (Kin, kout) distribution: 32 hours

@ fully-correlated data ki, = kout: 14 hours

@ uncorrelated data: 55 hours

= significant differences
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Peruani, Tabourier, 2011

underestimation of the threshold
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Role of individual temporal patterns

Measuring the characteristics of the cascades
@ cascade = tree = size (¢), depth (6)
@ abundance of each type of cascades

To what can we compare these measures?
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Role of individual temporal patterns

Measuring the characteristics of the cascades
@ cascade = tree = size (¢), depth (6)

@ abundance of each type of cascades

To what can we compare these measures?

Comparing to null models

@ time mixing model: random shuffle of all time labels

@ correlation mixing model: random shuffle of time labels for

interactions originating from same source
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Experimental results on phonecall data

Tabourier, Stoica, Peruani 2012
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Experimental results on phonecall data

Tabourier, Stoica, Peruani 2012

Distributions of o (size) and ¢ (depth) for 7 = 30mins, 3hrs, 12hrs
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time mixing model breaks bursty temporal activity patterns
= Bursty patterns accelerates spreading at short timescales
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Experimental results on phonecall data

Tabourier, Stoica, Peruani 2012

About the correlation mixing model:

@ o and ¢ insufficient to distinguish real data from cmm

@ but comparing cascades and other patterns with cmm
— cmm underestimates short cyclic patterns

cmm breaks correlation between temporal activity and structure
= correlations create a trapping effect

Consistent with “while bursts hinder propagation at large scales,
conversations favor local rapid cascades” Miritello et al., 2011
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Conclusion and prospect

@ Schematic picture of spreading:
rapid cascades at small scales, slower on larger scales

@ Due to individual activity patterns, correlations between
structure and temporality

@ Understanding one step further how the temporal network
structure affects spreading phenomena
— new null models for temporal networks
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Motivation
To explain the observed structure

@ generate a structure that resembles real data

@ unbiased interpretation assumes uniform generation

With graphs
@ either biased generation model
ex: Barabdsi-Albert, Watts-Strogatz, . ..

@ or relatively simple properties
ex: Erdés-Rényi, configuration model, . ..

Versatile method to generate uniformly graphs
with complex constraints
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Switching methods principle

Standard switch method
ex: generate a random graph with a fixed degree distribution
@ start from a graph of the set

@ iterate: select two edges randomly, exchange the ends

e if new graph € set, continue
o if new graph ¢ set, exchange back, continue

After enough iterations — random element of the set
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L Method principle on graphs

Switching methods principle

Standard switch method
ex: generate a random graph with a fixed degree distribution
@ start from a graph of the set

@ iterate: select two edges randomly, exchange the ends

e if new graph € set, continue
o if new graph ¢ set, exchange back, continue

After enough iterations — random element of the set

More complex constraints

Problem: standard method does not guarantee ergodicity
— biased generation process
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L Method principle on graphs
Obtaining ergodicity

Tabourier, Roth, Cointet, 2011
k-switch method
@ start from a graph of the set
@ iterate: select k edges randomly, permute the ends randomly

o if new graph € set, continue
o if new graph ¢ set, exchange back, continue

Z

[

[

Experimentally
low values of k sufficient with most constraints
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L Method principle on graphs

[llustration

Tabourier, Cointet, Roth 2017

Scientific coauthoring networks
Scientists publishing papers together
underlying bipartite structure
— interested in the structure projection on authors
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[llustration

Tabourier, Cointet, Roth 2017

Scientific coauthoring networks
Scientists publishing papers together
underlying bipartite structure
— interested in the structure projection on authors

@ Usual models for social event-based networks:

- standard configuration model M
- bipartite configuration model B

@ More complex model:
- bipartite + monopartite configuration model on authors MB

MB demands k-switch generation
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LMethod principle on graphs

[llustration

Tabourier, Cointet, Roth 2017

Experimental results
Measure: distance distribution in the models vs real data

datasets: archeology in Britain, in Europe
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Motivation
Most models focused on aggregated properties Gauvin et al., 2018
— alternate models preserving structuro-temporal properties
ex: fixed number of temporal motifs
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L(_‘1enera|ization to temporal networks

Generalization to temporal networks: principle

Motivation
Most models focused on aggregated properties Gauvin et al., 2018
— alternate models preserving structuro-temporal properties
ex: fixed number of temporal motifs

Applying the k-switch method on temporal networks

time label used as an attribute constraint
= same randomization technique
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L(_‘1enera|ization to temporal networks

Generalization to temporal networks: challenges

e technical problem:
more elaborate the constraint = slower generation process

@ interpretation problem:
how to have more flexibility on the temporal granularity?
example of strict vs approximate simultaneity
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Conclusion

Common thread
describing the temporal network
predicting links

modeling the structure of interactions

on specific applications

serve to identify dynamical rules of the network
— reconstruct the general evolution of the system
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Thank you for your attention !

My collaborators
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