Lionel Tabourier

LIP6 (Sorbonne Université / CNRS)

Soutenance de HDR

From a static to a dynamic analysis of complex networks Context & Overview

Outline

2 Describing the spreading dynamics

3 Modeling the interaction structure and dynamics

4 Conclusion

About complex networks analysis

What are complex networks?

Extracted from real-world data

ex: computer networks, social networks, biological networks, ...

- agents interacting, no "central brain"
- $\bullet \Rightarrow \mathsf{emerges} \text{ from local interactions}$

Studied as graphs

- system common features visible with graphs ex: heterogeneous degree distribution, high clustering,
- similar methods and algorithms

Accounting for temporality

About complex networks analysis

What are complex networks?

Extracted from real-world data

ex: computer networks, social networks, biological networks, ...

- agents interacting, no "central brain"
- $\bullet \Rightarrow \mathsf{emerges} \text{ from local interactions}$

Studied as graphs

- system common features visible with graphs ex: heterogeneous degree distribution, high clustering, ...
- similar methods and algorithms

Accounting for temporality

About complex networks analysis

What are complex networks?

Extracted from real-world data

ex: computer networks, social networks, biological networks, ...

- agents interacting, no "central brain"
- ullet \Rightarrow emerges from local interactions

Studied as graphs

- system common features visible with graphs ex: heterogeneous degree distribution, high clustering, ...
- similar methods and algorithms

Accounting for temporality

From a static to a dynamic analysis of complex networks Context & Overview

Scientific interest

Attractive because ...

- Variety of objects
- Create bridges between different topics

Getting the "big picture"

... and in retrospect

- Variety of communities to learn about
- Highly active research fields

 \Rightarrow Stimulating but demanding

Focus on three main axes of research

From a static to a dynamic analysis of complex networks — Context & Overview

Scientific interest

Attractive because ...

- Variety of objects
- Create bridges between different topics

Getting the "big picture"

... and in retrospect

- Variety of communities to learn about
- Highly active research fields

 \Rightarrow Stimulating but demanding

Focus on three main axes of research

From a static to a dynamic analysis of complex networks Context & Overview

Scientific interest

Attractive because ...

- Variety of objects
- Create bridges between different topics

Getting the "big picture"

...and in retrospect

- Variety of communities to learn about
- Highly active research fields

 \Rightarrow Stimulating but demanding

Focus on three main axes of research

Describing spreading processes

Dynamical processes on complex networks

Synchronization, opinion dynamics, routing, spreading, ...

Models which represent:

- an infection propagating in a population
- a packet spreading in a computer network

• . . .

Also a means to investigate the dynamical structure

Describing spreading processes

Dynamical processes on complex networks

Synchronization, opinion dynamics, routing, spreading, ...

Models which represent:

- an infection propagating in a population
- a packet spreading in a computer network

• . . .

Also a means to investigate the dynamical structure

From a static to a dynamic analysis of complex networks Context & Overview

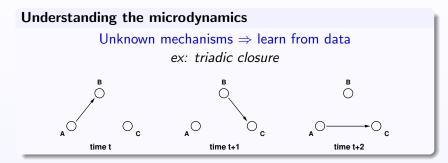
Predicting and recovering links

Specificities of the problem

- tuning number of predictions
- on large graphs
- how to incorporate temporal information?

From a static to a dynamic analysis of complex networks Context & Overview

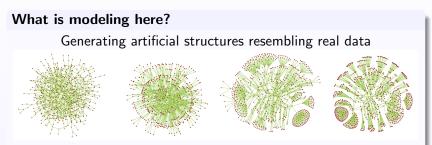
Predicting and recovering links



Specificities of the problem

- tuning number of predictions
- on large graphs
- how to incorporate temporal information?

Model the interaction structure and dynamics

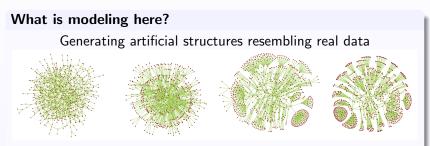


 \Rightarrow allows to uncover possible explanations

Challenges

- realistic structural constraints on graphs
- towards modeling temporal networks

Model the interaction structure and dynamics



 \Rightarrow allows to uncover possible explanations

Challenges

- realistic structural constraints on graphs
- towards modeling temporal networks

From a static to a dynamic analysis of complex networks — Context & Overview

Presentation outline

• Describing spreading dynamics

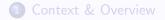
Predicting links

Modeling the structure and dynamics

Highlight the connexion between these topics

From a static to a dynamic analysis of complex networks Describing the spreading dynamics

Outline



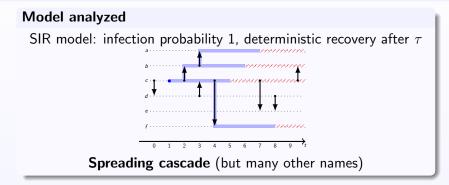
2 Describing the spreading dynamics

3 Modeling the interaction structure and dynamics

4 Conclusion

From a static to a dynamic analysis of complex networks Describing the spreading dynamics

Spreading cascade in a temporal network

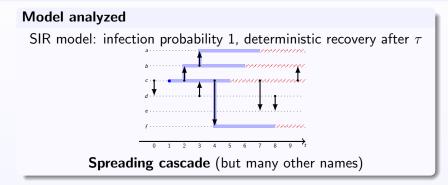


Advantages:

- simplicity of the model
- allows to tune the time scale
- probe of the temporal network (motif)

From a static to a dynamic analysis of complex networks Describing the spreading dynamics

Spreading cascade in a temporal network



Advantages:

- simplicity of the model
- allows to tune the time scale
- probe of the temporal network (motif)

Describing the spreading dynamics

Role of directedness

Role of in/out-degree correlations

Peruani, Tabourier, 2011

Phonecall dataset

 ${\sim}14$ millions phone calls between ${\sim}1$ million users during 1 month European mobile phone provider

Strongly asymmetric roles (super-spreaders, super-receivers)

Describing the spreading dynamics

Role of directedness

Role of in/out-degree correlations

Peruani, Tabourier, 2011

Phonecall dataset

 ${\sim}14$ millions phone calls between ${\sim}1$ million users during 1 month European mobile phone provider

Strongly asymmetric roles (super-spreaders, super-receivers)

Critical recovery time τ_c

 τ such that cascade size diverges

$$\tau_{\rm c} = \frac{< k_{\rm out} >}{< \rho > < k_{\rm out} \cdot k_{\rm in} >}$$

with some assumptions (no cycles)

Describing the spreading dynamics

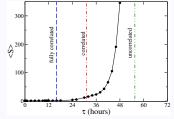
Role of directedness

Role of in/out-degree correlations

Peruani, Tabourier, 2011

Experimental observations

- real (k_{in}, k_{out}) distribution: 32 hours
- fully-correlated data $k_{in} = k_{out}$: 14 hours
- uncorrelated data: 55 hours



underestimation of the threshold

From a static to a dynamic analysis of complex networks Describing the spreading dynamics Role of individual temporal patterns

Role of individual temporal patterns

Measuring the characteristics of the cascades

- cascade = tree \Rightarrow size (σ), depth (δ)
- abundance of each type of cascades

To what can we compare these measures?

Comparing to null models

- time mixing model: random shuffle of all time labels
- *correlation mixing model*: random shuffle of time labels for interactions originating from same source

From a static to a dynamic analysis of complex networks Describing the spreading dynamics Role of individual temporal patterns

Role of individual temporal patterns

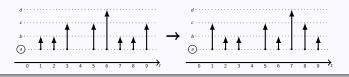
Measuring the characteristics of the cascades

- cascade = tree \Rightarrow size (σ), depth (δ)
- abundance of each type of cascades

To what can we compare these measures?

Comparing to null models

- time mixing model: random shuffle of all time labels
- *correlation mixing model*: random shuffle of time labels for interactions originating from same source



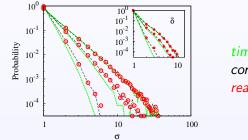
Describing the spreading dynamics

Role of individual temporal patterns

Experimental results on phonecall data

Tabourier, Stoica, Peruani 2012

Distributions of σ (size) and δ (depth) for $\tau = 30$ mins, 3 hrs, 12 hrs



time mixing model corr. mixing model real data

time mixing model breaks bursty temporal activity patterns ⇒ Bursty patterns accelerates spreading at short timescales

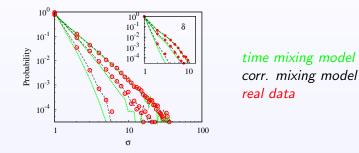
Describing the spreading dynamics

Role of individual temporal patterns

Experimental results on phonecall data

Tabourier, Stoica, Peruani 2012

Distributions of σ (size) and δ (depth) for $\tau = 30$ mins, 3 hrs, 12 hrs



time mixing model breaks bursty temporal activity patterns \Rightarrow Bursty patterns accelerates spreading at short timescales

Describing the spreading dynamics

Role of individual temporal patterns

Experimental results on phonecall data

Tabourier, Stoica, Peruani 2012

About the *correlation mixing model*:

- $\bullet~\sigma$ and δ insufficient to distinguish real data from cmm
- but comparing cascades and other patterns with *cmm* → *cmm* underestimates short cyclic patterns

 $\begin{array}{l} cmm \text{ breaks correlation between temporal activity and structure} \\ \Rightarrow \text{ correlations create a trapping effect} \end{array}$

Consistent with *"while bursts hinder propagation at large scales, conversations favor local rapid cascades" Miritello et al., 2011*

Describing the spreading dynamics

Role of individual temporal patterns

Experimental results on phonecall data

Tabourier, Stoica, Peruani 2012

About the *correlation mixing model*:

- $\bullet~\sigma$ and δ insufficient to distinguish real data from cmm
- but comparing cascades and other patterns with *cmm* → *cmm* underestimates short cyclic patterns

$\begin{array}{l} \textit{cmm} \text{ breaks correlation between temporal activity and structure} \\ \Rightarrow \textit{ correlations create a trapping effect} \end{array}$

Consistent with "while bursts hinder propagation at large scales, conversations favor local rapid cascades" Miritello et al., 2011

Describing the spreading dynamics

Conclusion and prospect

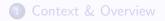
Conclusion and prospect

• Schematic picture of spreading:

rapid cascades at small scales, slower on larger scales

- Due to individual activity patterns, correlations between structure and temporality
- Understanding one step further how the temporal network structure affects spreading phenomena
 → new null models for temporal networks

Outline



2 Describing the spreading dynamics

3 Modeling the interaction structure and dynamics

4 Conclusion

Motivation

To explain the observed structure

- generate a structure that resembles real data
- unbiased interpretation assumes uniform generation

With graphs

- either biased generation model ex: Barabási-Albert, Watts-Strogatz, ...
- or relatively simple properties ex: Erdős-Rényi, configuration model, ...

Versatile method to generate uniformly graphs with complex constraints

Motivation

To explain the observed structure

- generate a structure that resembles real data
- unbiased interpretation assumes uniform generation

With graphs

- either biased generation model ex: Barabási-Albert, Watts-Strogatz, ...
- or relatively simple properties ex: Erdős-Rényi, configuration model, ...

Versatile method to generate uniformly graphs with complex constraints

Motivation

To explain the observed structure

- generate a structure that resembles real data
- unbiased interpretation assumes uniform generation

With graphs

- either biased generation model
 ex: Barabási-Albert, Watts-Strogatz, ...
- or relatively simple properties
 ex: Erdős-Rényi, configuration model, ...

Versatile method to generate uniformly graphs with complex constraints

Modeling the interaction structure and dynamics

Method principle on graphs

Switching methods principle

Standard switch method

ex: generate a random graph with a fixed degree distribution

- start from a graph of the set
- iterate: select two edges randomly, exchange the ends
 - if new graph \in set, continue
 - if new graph \notin set, exchange back, continue

After enough iterations \rightarrow random element of the set

More complex constraints Problem: standard method does not guarantee ergodicity \rightarrow biased generation process

Modeling the interaction structure and dynamics

Method principle on graphs

Switching methods principle

Standard switch method

ex: generate a random graph with a fixed degree distribution

- start from a graph of the set
- iterate: select two edges randomly, exchange the ends
 - if new graph \in set, continue
 - if new graph \notin set, exchange back, continue

After enough iterations \rightarrow random element of the set

More complex constraints

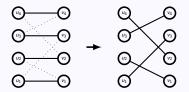
└─ Method principle on graphs

Obtaining ergodicity

Tabourier, Roth, Cointet, 2011

k-switch method

- start from a graph of the set
- iterate: select k edges randomly, permute the ends randomly
 - if new graph \in set, continue
 - if new graph \notin set, exchange back, continue



Experimentally low values of k sufficient with most constraints

Illustration

Tabourier, Cointet, Roth 2017

Scientific coauthoring networks

Scientists publishing papers together underlying bipartite structure \rightarrow interested in the structure **projection** on authors

• Usual models for social event-based networks:

- standard configuration model M
- bipartite configuration model B
- More complex model:
 - bipartite + monopartite configuration model on authors MB

MB demands k-switch generation

Illustration

Tabourier, Cointet, Roth 2017

Scientific coauthoring networks

Scientists publishing papers together

underlying bipartite structure

 \rightarrow interested in the structure projection on authors

- Usual models for social event-based networks:
 - standard configuration model M
 - bipartite configuration model B
- More complex model:
 - bipartite + monopartite configuration model on authors MB

MB demands k-switch generation

Illustration

Tabourier, Cointet, Roth 2017

Scientific coauthoring networks

Scientists publishing papers together

underlying bipartite structure

 \rightarrow interested in the structure projection on authors

- Usual models for social event-based networks:
 - standard configuration model M
 - bipartite configuration model B
- More complex model:
 - bipartite + monopartite configuration model on authors MB

MB demands k-switch generation

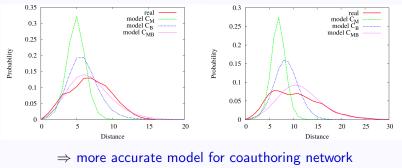
Illustration

Tabourier, Cointet, Roth 2017

Experimental results

Measure: distance distribution in the models vs real data

datasets: archeology in Britain, in Europe



Modeling the interaction structure and dynamics

Generalization to temporal networks

Generalization to temporal networks: principle

Motivation

Most models focused on aggregated properties $G_{auvin et al., 2018}$ \rightarrow alternate models preserving structuro-temporal properties ex: fixed number of temporal motifs

Applying the k-switch method on temporal networks time label used as an attribute constraint \Rightarrow same randomization technique

Modeling the interaction structure and dynamics

Generalization to temporal networks

Generalization to temporal networks: principle

Motivation

Most models focused on aggregated properties $G_{auvin et al., 2018}$ \rightarrow alternate models preserving structuro-temporal properties ex: fixed number of temporal motifs

Applying the *k*-switch method on temporal networks time label used as an attribute constraint ⇒ same randomization technique

Modeling the interaction structure and dynamics

Generalization to temporal networks

Generalization to temporal networks: challenges

• technical problem:

more elaborate the constraint \Rightarrow slower generation process

• interpretation problem:

how to have more flexibility on the temporal granularity? example of strict vs approximate simultaneity

Outline



2 Describing the spreading dynamics

3 Modeling the interaction structure and dynamics

4 Conclusion

Conclusion

Common thread

- describing the temporal network
- predicting links
- modeling the structure of interactions
- on specific applications

serve to identify dynamical rules of the network \rightarrow reconstruct the general evolution of the system

Thank you for your attention !

My collaborators

