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From a static to a dynamic analysis of complex networks

Context & Overview

About complex networks analysis

What are complex networks?

Extracted from real-world data
ex: computer networks, social networks, biological networks, . . .

agents interacting, no “central brain”

⇒ emerges from local interactions

Studied as graphs

system common features visible with graphs
ex: heterogeneous degree distribution, high clustering, . . .

similar methods and algorithms

Accounting for temporality
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From a static to a dynamic analysis of complex networks

Context & Overview

Scientific interest

Attractive because . . .

Variety of objects

Create bridges between different topics

Getting the “big picture”

. . . and in retrospect

Variety of communities to learn about

Highly active research fields

⇒ Stimulating but demanding

Focus on three main axes of research
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Context & Overview

Describing spreading processes

Dynamical processes on complex networks

Synchronization, opinion dynamics, routing, spreading, . . .

Models which represent:

an infection propagating in a population

a packet spreading in a computer network

. . .

Also a means to investigate the dynamical structure
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Context & Overview

Predicting and recovering links

Understanding the microdynamics

Unknown mechanisms ⇒ learn from data
ex: triadic closure
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time t+2

Specificities of the problem

tuning number of predictions

on large graphs

how to incorporate temporal information?
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Context & Overview

Model the interaction structure and dynamics

What is modeling here?

Generating artificial structures resembling real data

⇒ allows to uncover possible explanations

Challenges

realistic structural constraints on graphs

towards modeling temporal networks
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Context & Overview

Presentation outline

Describing spreading dynamics

Predicting links

Modeling the structure and dynamics

Highlight the connexion between these topics
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Describing the spreading dynamics

Spreading cascade in a temporal network

Model analyzed

SIR model: infection probability 1, deterministic recovery after τ
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Spreading cascade (but many other names)

Advantages:

simplicity of the model

allows to tune the time scale

probe of the temporal network (motif)
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Describing the spreading dynamics

Role of directedness

Role of in/out-degree correlations

Peruani, Tabourier, 2011

Phonecall dataset

∼14 millions phone calls between ∼1 million users during 1 month
European mobile phone provider

Strongly asymmetric roles (super-spreaders, super-receivers)
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Describing the spreading dynamics

Role of directedness

Role of in/out-degree correlations

Peruani, Tabourier, 2011

Phonecall dataset

∼14 millions phone calls between ∼1 million users during 1 month
European mobile phone provider

Strongly asymmetric roles (super-spreaders, super-receivers)

Critical recovery time τc

τ such that cascade size diverges

τc =
< kout >

< ρ >< kout · kin >

with some assumptions (no cycles)
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Describing the spreading dynamics

Role of directedness

Role of in/out-degree correlations

Peruani, Tabourier, 2011

Experimental observations

real (kin, kout) distribution: 32 hours

fully-correlated data kin = kout : 14 hours

uncorrelated data: 55 hours

⇒ significant differences
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Describing the spreading dynamics

Role of individual temporal patterns

Role of individual temporal patterns

Measuring the characteristics of the cascades

cascade = tree ⇒ size (σ), depth (δ)

abundance of each type of cascades

To what can we compare these measures?

Comparing to null models

time mixing model : random shuffle of all time labels

correlation mixing model : random shuffle of time labels for
interactions originating from same source
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Describing the spreading dynamics

Role of individual temporal patterns

Experimental results on phonecall data

Tabourier, Stoica, Peruani 2012

Distributions of σ (size) and δ (depth) for τ = 30mins, 3hrs, 12hrs
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⇒ Bursty patterns accelerates spreading at short timescales
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Describing the spreading dynamics

Role of individual temporal patterns

Experimental results on phonecall data

Tabourier, Stoica, Peruani 2012

About the correlation mixing model :

σ and δ insufficient to distinguish real data from cmm

but comparing cascades and other patterns with cmm
→ cmm underestimates short cyclic patterns

cmm breaks correlation between temporal activity and structure
⇒ correlations create a trapping effect

Consistent with “while bursts hinder propagation at large scales,
conversations favor local rapid cascades” Miritello et al., 2011
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Describing the spreading dynamics

Conclusion and prospect

Conclusion and prospect

Schematic picture of spreading:
rapid cascades at small scales, slower on larger scales

Due to individual activity patterns, correlations between
structure and temporality

Understanding one step further how the temporal network
structure affects spreading phenomena
→ new null models for temporal networks
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Modeling the interaction structure and dynamics

Motivation

To explain the observed structure

generate a structure that resembles real data

unbiased interpretation assumes uniform generation

With graphs

either biased generation model
ex: Barabási-Albert, Watts-Strogatz, . . .

or relatively simple properties
ex: Erdős-Rényi, configuration model, . . .

Versatile method to generate uniformly graphs
with complex constraints
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Modeling the interaction structure and dynamics

Method principle on graphs

Switching methods principle

Standard switch method

ex: generate a random graph with a fixed degree distribution

start from a graph of the set

iterate: select two edges randomly, exchange the ends

if new graph ∈ set, continue
if new graph /∈ set, exchange back, continue

After enough iterations → random element of the set

More complex constraints

Problem: standard method does not guarantee ergodicity
→ biased generation process
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Modeling the interaction structure and dynamics

Method principle on graphs

Obtaining ergodicity

Tabourier, Roth, Cointet, 2011

k-switch method

start from a graph of the set

iterate: select k edges randomly, permute the ends randomly

if new graph ∈ set, continue
if new graph /∈ set, exchange back, continue

u1 v1

u2 v2

u3 v3

u4 v4

u1 v1

u2 v2

u3 v3

u4 v4

Experimentally
low values of k sufficient with most constraints
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Modeling the interaction structure and dynamics

Method principle on graphs

Illustration

Tabourier, Cointet, Roth 2017

Scientific coauthoring networks

Scientists publishing papers together
underlying bipartite structure

→ interested in the structure projection on authors

Usual models for social event-based networks:

- standard configuration model M
- bipartite configuration model B

More complex model:

- bipartite + monopartite configuration model on authors MB

MB demands k-switch generation
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Modeling the interaction structure and dynamics

Method principle on graphs

Illustration

Tabourier, Cointet, Roth 2017

Experimental results

Measure: distance distribution in the models vs real data

datasets: archeology in Britain, in Europe

⇒ more accurate model for coauthoring network
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Modeling the interaction structure and dynamics

Generalization to temporal networks

Generalization to temporal networks: principle

Motivation

Most models focused on aggregated properties Gauvin et al., 2018

→ alternate models preserving structuro-temporal properties
ex: fixed number of temporal motifs

Applying the k-switch method on temporal networks

time label used as an attribute constraint
⇒ same randomization technique
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Modeling the interaction structure and dynamics

Generalization to temporal networks

Generalization to temporal networks: challenges

technical problem:
more elaborate the constraint ⇒ slower generation process

interpretation problem:
how to have more flexibility on the temporal granularity?
example of strict vs approximate simultaneity
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Conclusion

Common thread

describing the temporal network

predicting links

modeling the structure of interactions

on specific applications

serve to identify dynamical rules of the network
→ reconstruct the general evolution of the system
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Conclusion

Thank you for your attention !

My collaborators
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