Estimating Graph Properties through Sampling

Shweta Jain Advisor: Prof. C. Seshadhri

University of California, Santa Cruz

Large Graphs

Peculiarities of real-world graphs

- Degree distribution
 - Heavy tailed

A: Actor collaboration network, B: WWW, C: Power Grid data [Barabási et. al., 1999]

Source: <u>www.sciencemag.com</u>

Peculiarities of real-world graphs

Counts of patterns: cycles, triangles, cliques

- Avg. distance between nodes small world property
- High clustering coefficients

Need for graph sampling

- Scale traditional graph-theoretic algorithms impractical
- Limitations of access model e.g. streaming
- Can utilize unique characteristics of real-world graphs

- Estimate global characteristics from small sample.
- Fast, work well on real-world instances.
- Accurate, with provable error bounds.

Applications

- Computationally hard problems clique counting
- Restricted access model estimating the degree distribution

A Fast and Provable Method for Estimating Clique Counts using Turán's Theorem.

Shweta Jain C. Seshadhri

University of California, Santa Cruz

WWW 2017 Best Paper

Cliques

* k-clique: set of k vertices all connected to each other.

- * [Holland et. al., 1970], [Milo et. al., 2002], [Burt, 2004], [Przulj et. al., 2004], [Hanneman et. al., 2005], [Hormozdiari et. al., 2007], [Faust, 2010], [Jackson, 2010], [Tsourakakis et. al., 2015], [Sizemore et. al., 2016] - Clique Counts appear in all these papers.
- Used in modeling, community detection, spam detection etc.

Problem Statement

 Given a simple, undirected graph G, and a positive integer k, estimate the number of k-cliques in G.

#5-Cliques = \square

Clique counting:

- * Arboricity and subgraph listing algorithms. [Chiba et. al., 1985]
- Finding dense subgraphs with size bounds. [Alon et. al., 1994]
- Efficient algorithms for clique problems. [Vassilevska, 2009]

Maximal clique counting:

- Finding all cliques of an undirected graph. [Bron et. al., 1963]
- Worst case time complexity of generating all maximal cliques. [Tomita et.al., 2004]
- Listing all maximal cliques in large sparse real-world graphs.
 [Eppstein et. al, 2013]

Challenge

Combinatorial explosion!

GRAPH	VERTICES	EDGES	7-CLIQUES	10-CLIQUES
web- BerkStan	0.6M	6M	9Т	50000T
as-skitter	2M	11M	73B	22T
com-lj	4M	34M	510T	14000000T
com-orkut	ЗM	110M	360B	31T
Enumeration is costly				

Hence, approximate.

Practical approaches

- Practical approaches:
 - Color Coding [Alon et. al, 1994], [Hormozdiari et. al., 2007], [Betzler et. al., 2011], [Zhao et. al., 2012]
 - Edge Sampling, GRAFT [Tsourakakis et. al., 2009], [Tsourakakis et. al., 2011], [Rahman et. al., 2014]
 - * MCMC based [Bhuiyan et. al., 2012]
 - Parallel algorithm using MapReduce [Finocchi et. al., 2015]
 - * kClist [Danisch et. al., 2018]

Our contribution

- * We present a randomized algorithm, TuránShadow that approximates the number of k-cliques in G and has the following properties:
 - Runs on a single machine
 - Provable error bounds

Our contribution

Extremely fast and accurate

GRAPH	7-CLIQUES	TIME	ERROR %
web-BerkStan	9.3T	< 4 minutes	1.05
as-skitter	73B	< 3 minutes	0.23
com-orkut	361B	< 2 hours	1.97

For 10 cliques, no other method terminated for all graphs in min{100xTuranShadow, 7 hours}!

Main theorem

Let **S** be the **Turán k-clique shadow** of G. Then w.h.p. TuránShadow outputs a $(1 \pm \epsilon)$ -approximation to the number of k-cliques in G.

The running time of TuránShadow is $O^*(\alpha | \mathbf{S}| + m + n)$.

α: degeneracym: #edgesn: #vertices

Degeneracy

- * α : degeneracy of graph
- Measure of density, low for real-world graphs
- Let T: set of all subgraphs of G
- * **Degeneracy =** $\max_{t \in T} \min_{v \in t} \{ \text{degree of } v \text{ in } G_{|t} \}$

How many edges can a n-vertex graph have without having a triangle?

[Turán, 1941] If the graph has more than $\frac{n^2}{4}$ edges, then it **must** have a triangle.

[Erdös, 1941] If the graph has even **one** more edge than $\frac{n^2}{4}$, then it must have $\Omega(n)$ triangles.

Thus, if density > $\frac{1}{2}$, then graph necessarily has $\Omega(n)$ triangles.

Turán's theorem

Generalizes for larger k.

If a graph on n vertices has density greater than $1 - \frac{1}{k-1}$ then it must have $\Omega(n^{k-2})$ k-cliques.

Naïve algorithm

n = 1M k = 5 #5-cliques = 100T E[#samples] = $\frac{\binom{1M}{5}}{\#5-cliques}$ ≅ 10¹⁶

Real world graphs have dense pockets.

Drill down on dense pockets and count cliques within them!

Turan Shadow

Turan Shadow

- Convert G to a DAG order by degeneracy
- Build clique enumeration tree, stopping whenever Turán density is reached.

Vn

Convert G to DAG

Check outnbrhd of v₁

Sampling

Sample leaf *i* with probability $\frac{\binom{n_i}{k_i}}{\sum\limits_{j \le l} \binom{n_j}{k_j}}$

Randomly sample k_i vertices from leaf i

Sampling

Bernoulli r.v. X = 1 if k_i -clique, else 0

Putting it all together

- Construct Turán Shadow
- Setup distribution over leaves
- Sample from distribution and scale success ratio

7 and 10 Clique Count Estimation Performance

TuranShadow terminated in **minutes** for all graphs except com-orkut (3M/100M) for which it took 3 hours.

k = 7

3-100x speedup for k=7.

For k=10, **no other algorithm terminated** for all graphs in min{100x, 7 hours}

Size of shadow

Less than 2% error with just 50,000 samples.
Trends in clique counts

Clique Size k

What we achieved

- We make clique-counting feasible for larger cliques.
- Single commodity machine. No need to use MapReduce.
- Extremely fast and accurate
- Provable error bounds

Open Questions

- Feasible for cliques of size k > 10?
- Can we count near-cliques?
- Can this approach be used for dense subgraph discovery?

Thank you

Questions?

Provable and Practical Approximations For the Degree Distribution using Sublinear Graph Samples*

WWW 2018

Talya Eden Tel Aviv University

Shweta Jain

University of California, Santa Cruz Ali Pinar Sandia National Labs

Dana Ron Tel Aviv University

C. Seshadhri

University of California, Santa Cruz

* Talya and Shweta are equal contributors.

Large Graphs

Degree Distribution

Degree(v) = #vertices v is connected to

Degree Distribution

- Degree(v) = #vertices v is connected to
- v d = 5
- Degree distribution: histogram of number of vertices of a certain degree

Heavy tail

A: Actor collaboration network, B: WWW, C: Power Grid data [Barabási et. al., 1999] Source: <u>www.sciencemag.com</u>

Why sample

If access to whole graph: O(n) algorithm

Why sample

- * But what if we did not have access to whole graph?
 - Internet, routing networks
 - Crawl based methods, traceroutes [Faloutsos et. al., 1999]
 - * Contains bias! [Achlioptas et. al., 2009]
 - Cannot simply scale sample.
 - Faloutsos et. al., 1999], [Leskovec et. al., 2006], [Ebbes et. al., 2008]
 [Maiya et. al., 2011], [Ahmed et. al., 2010, 2014] aim to capture representative graph sample

Problem Definition

- ccdh: complementary cumulative degree histogram
 - N(d) = #vertices with degree >= d
- monotonically non-increasing, smooth

Can we estimate N(d) for any given d?

1. Vertex queries: u.a.r. $v \in V$

2. Neighbor queries: u.a.r. neighbor u of v

3. Degree queries: degree d_v

- 1. Vertex queries: u.a.r. $v \in V$
- 2. Neighbor queries: u.a.r. neighbor u of v
- 3. Degree queries: degree d_v

Prior work

- Vertex sampling [Stumpf et. al., 2005, Lee et. al. 2006]
- Edge Sampling [Stumpf et. al., 2005, Lee et. al. 2006]
 All need to sample at least 10-30% of the graph!
- * Snowball Sampling [Maiya et. al., 2011]
- Linear system solver [Zhang et. al., 2015]

Main contribution

- Randomized algorithm SADDLES that estimates N(d)
- Uses a sublinear number of queries for any degree distribution bounded below by a power law.
- Power Law

Strongly sublinear!

Main contribution

- In practice, we needed to sample only 1% of the graph
- Works well for all degrees

Query complexity

- Depends on 2 parameters:
 - * h-index = $min_d max(d, N(d))$
 - Largest d, such that there are at least d vertices of degree
 >= d.
 - Same as the bibliometric h-index!

Query complexity

- Depends on 2 parameters:
 - * h-index = $min_d max(d, N(d))$
 - * $z-index = min_{d:N(d)>0} sqrt(d \cdot N(d))$
 - replace max by geometric mean
- h and z are large for power laws!

Vertex sampling

- Sample u.a.r. vertices
- Bin them according to degree
- * Need $\frac{n}{N(d)}$ samples

Have to take many samples to hit high degree vertex

$$\operatorname{wt}((v,u)) = rac{1}{d_u}$$

Sum of weights of edges incident on a vertex = 1

Sum of weights of edges incident on a vertex = 1

Sum of all weights = n

Say, d = 5

To get N(d), set weights of irrelevant edges to 0

Sum of all weights = N(d)

Set of objects, we want their sum

Sample randomly

Take average of sampled weights

Scale by number of edges to get total sum

Main Idea

- Combine vertex sampling and edge sampling
- But we don't have edge sampling
- Simulate it!

Theoretical work

- Average degree [Feige et. al., 2006], [Goldreich et. al., 2002, 2008]
- * Number of star graphs, moments [Eden et. al., 2011]
- Number of triangles [Eden et. al., 2014]

Simulated Edge Sampling

- Sample some vertices
- The neighbors of these vertices is the edge set that we will perform random sampling on.

Simulated Edge Sampling

- Sample r vertices
- * Set up distribution D to sample vertex $v \propto d_v$
- Repeat q times:
 - Sample a vertex v from D
 - Sample u.a.r. neighbor u of v
- Find average weight of samples
- Scale appropriately

Putting it all together

r and q

- * Total samples: $O^*(r+q)$
- How big do r and q need to be?
 - * If VS: $r = O^*(\frac{n}{N(d)})$
 - * If ES: $r = O^*(\frac{n}{d})$
 - Similarly,

$$q = O^*(\frac{m}{dN(d)})$$

d neighbors to be in R

Query complexity

- Query complexity: $O^*(\frac{n}{h} + \frac{m}{z^2})$
- * Vertex queries: $O^*(\frac{n}{max(d,N(d))})$
- Neighbor queries: $O^*(\frac{m}{dN(d)})$

Simulated Edge Sampling

- Single edge sample is uniform at random
- But multiple edge samples are correlated
- Key insights:
 - Correlation can be contained if h and z are high.
 Power laws have high h and z!
 - 1-hop distance is enough don't need to do long random walks
h and z

Indeed large!

GRAPH	VERTICES	EDGES	AVG. DEG.	h	Z
web- BerkStan	0.6M	6M	10	707	220
as-skitter	2M	11M	7	982	184
com-lj	4M	34M	9	810	114
com-orkut	ЗM	110M	38	1638	172

Results

Thank you

Questions?