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Peculiarities of real-world graphs
❖ Degree distribution

❖ Heavy tailed

A: Actor collaboration network, B: WWW, C: Power Grid data [Barabási et. al., 1999]

Source: www.sciencemag.com
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Peculiarities of real-world graphs

❖ Counts of patterns: cycles, triangles, cliques

❖ Avg. distance between nodes - small world property
❖ High clustering coefficients

3-clique 
(triangle) 5-clique
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Need for graph sampling

❖ Scale - traditional graph-theoretic algorithms impractical
❖ Limitations of access model e.g. streaming
❖ Can utilize unique characteristics of real-world graphs
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Goals

❖ Estimate global characteristics from small sample.
❖ Fast, work well on real-world instances.
❖ Accurate, with provable error bounds.
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Applications

❖ Computationally hard problems - clique counting
❖ Restricted access model - estimating the degree 

distribution
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A Fast and Provable Method 
for Estimating Clique Counts 
using Turán’s Theorem.
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Cliques
❖ k-clique: set of k vertices all connected to each other.

❖ [Holland et. al., 1970], [Milo et. al., 2002], [Burt, 2004], [Przulj et. al., 2004], 
[Hanneman et. al., 2005], [Hormozdiari et. al., 2007], [Faust, 2010], [Jackson, 
2010], [Tsourakakis  et. al., 2015], [Sizemore et. al., 2016]  - clique counts 
appear in all these papers.

❖ Used in modeling, community detection, spam detection etc. 
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Problem Statement
❖ Given a simple, undirected graph G, and a positive 

integer k, estimate the number of k-cliques in G.
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Prior theoretical work

❖ Clique counting:
❖ Arboricity and subgraph listing algorithms. [Chiba et. al., 1985]
❖ Finding dense subgraphs with size bounds. [Alon et. al., 1994] 
❖ Efficient algorithms for clique problems. [Vassilevska, 2009]

❖ Maximal clique counting:
❖ Finding all cliques of an undirected graph. [Bron et. al., 1963]
❖ Worst case time complexity of generating all maximal cliques. [Tomita 

et.al., 2004]
❖ Listing all maximal cliques in large sparse real-world graphs. 

[Eppstein et. al, 2013]

theo work
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Challenge
❖ Combinatorial explosion! 

GRAPH VERTICES EDGES 7-CLIQUES 10-CLIQUES

web-
BerkStan

0.6M 6M 9T 50000T

as-skitter 2M 11M 73B 22T

com-lj 4M 34M 510T 14000000T

com-orkut 3M 110M 360B 31T
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Enumeration is costly.
Hence, approximate.



Practical approaches
❖ Practical approaches:

❖ Color Coding [Alon et. al, 1994], [Hormozdiari et. al., 2007], [Betzler 
et. al., 2011], [Zhao et. al., 2012]

❖ Edge Sampling, GRAFT [Tsourakakis et. al., 2009], 
[Tsourakakis et. al., 2011], [Rahman et. al., 2014]

❖ MCMC based [Bhuiyan et. al., 2012]

❖ Parallel algorithm using MapReduce [Finocchi et. al., 2015]

❖ kClist [Danisch et. al., 2018]
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Our contribution

❖ We present a randomized algorithm, TuránShadow that 
approximates the number of k-cliques in G and has the 
following properties:
❖ Runs on a single machine
❖ Provable error bounds 
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Our contribution
❖ Extremely fast and accurate

❖ For 10 cliques, no other method terminated for all 
graphs in min{100xTuranShadow, 7 hours}!
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GRAPH 7-CLIQUES TIME ERROR %

web-BerkStan 9.3T < 4 minutes 1.05

as-skitter 73B < 3 minutes 0.23

com-orkut 361B < 2 hours 1.97



Main theorem
Let S be the Turán k-clique shadow of G. Then w.h.p. 

TuránShadow outputs a (1 ± !)-approximation to the 
number of k-cliques in G. 

The running time of TuránShadow is O*(⍺|S|+m+n).
⍺: degeneracy

m: #edges
n: #vertices
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Degeneracy

❖ ⍺: degeneracy of graph
❖ Measure of density, low for real-world graphs
❖ Let T: set of all subgraphs of G
❖ Degeneracy = max

t2T
min

v2t
{degree of v in G|t}
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How many edges can a n-vertex graph have 
without having a triangle?                

n2

4
Ans: 

[Turán, 1941] If the graph has more than                        
edges, then it must have a triangle.

n2

4
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[Erdös, 1941] If the graph has even one more edge 
than     , then it must have          triangles.n2

4
⌦(n)

density =  #edges�n
2

�

19

= 1

2

Thus, if density >   , then graph necessarily has                  

triangles.⌦(n)

1

2



Turán’s theorem
Generalizes for larger k.

                                       

If a graph on n vertices has density greater than

then it must have 

k-cliques.

1� 1

k � 1

⌦(nk�2)
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G

Naïve algorithm

GGG

E[#samples] = 

n =
k =

1M
5

#5-cliques = 100T
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≅ 1016 



Key Idea
Real world graphs have dense pockets.

Drill down on dense pockets and count cliques within 
them!
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Turan Shadow
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G

G1
G7

G4

G8 G2

G6 G3

G5

G9

Turán 
density!

decompose

G-> G1, k1

 G2, k2

 G3, k3

 …



G1

Turan Shadow

C = 
G1

G7

G4

G8
G2

G6 G3

G5

G9

G1G1G1

#samples = 
1 
0 2 3 
0 
1 

E[#samples] = 

n1=
k1=

21
5

< 

< Erdös!
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Constructing the shadow

❖ Convert G to a DAG - order by degeneracy
❖ Build clique enumeration tree, stopping whenever Turán 

density is reached.
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Constructing the shadow

…
v1 v2 v3 v4 vn

Convert G to 
DAG

26



Constructing the shadow

…
v1 v2 v3 vnv4

v3

v2

v4

Convert G to 
DAG

Check outnbrhd 
of v1
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Constructing the shadow

…
v1 v2 v3 vnv4

v3

v2

v4

Convert G to 
DAG

Check outnbrhd 
of v1: Γ+(v1)Is density > Turán 

density (k-1)? 
Add to TuránShadow

Yes
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Constructing the shadow

…
v1 v2 v3 vnv4

v4

Convert G to 
DAG

Check outnbrhd 
of v1

Add to TuránShadow

No
Expand further

Is density > Turán 
density (k-1)? 

Add to TuránShadow
Yes

v4

v2 v3
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Γ+(v1)⋂Γ+(v2)



Sampling

…

G1(n1, k1) G2(n2, k2) G3(n3, k3) Gl(nl, kl)

Sample leaf i with probability

(

ni
ki
)

P
jl

(

nj
kj
)

Randomly sample ki vertices from leaf i
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Sampling

…

G1(n1, k1) G2(n2, k2) G3(n3, k3) Gl(nl, kl)

Bernoulli r.v. X = 1 if ki-clique, else 0

Exp[X] = #k-cliques in GP
jl

(nj
kj
)
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Putting it all together

❖ Construct Turán Shadow
❖ Setup distribution over leaves
❖ Sample from distribution and scale success ratio
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TuranShadow terminated in minutes for all graphs except 
com-orkut (3M/100M) for which it took 3 hours.
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3-100x speedup for k=7.

For k=10, no other algorithm terminated for all graphs in 
min{100x, 7 hours}

34

k = 7
Sp

ee
du

p

0

1

10

100

1,000

lo
c-
go
w

w
eb
-S
ta
n

am
az
on

yo
ut
ub
e

G
oo
gl
e

B
er
kS
ta
n

as
-s
ki
tt
er

Pa
te
nt
s

so
c-
po
ke
c

co
m
-l
j

co
m
-o
rk
ut

ES GRAFT



Size of shadow

105 106 107 108 109 1010

Number of edges

105

106

107

108

109

1010
S

ha
do

w
si

ze
Shadow size, k=7

Shadow size roughly linear in m.
35



Less than 2% error with just 50,000 samples.
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Trends in clique counts
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What we achieved

❖ We make clique-counting feasible for larger cliques.
❖ Single commodity machine. No need to use 

MapReduce.
❖ Extremely fast and accurate
❖ Provable error bounds
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Open Questions

❖ Feasible for cliques of size k > 10?
❖ Can we count near-cliques?
❖ Can this approach be used for dense subgraph 

discovery?
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Thank you

Questions?

40
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❖ Degree(v) = #vertices v is connected to

Degree Distribution

d = 5
v
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❖ Degree(v) = #vertices v is connected to

❖ Degree distribution: histogram of number of vertices of a 
certain degree

Degree Distribution

d = 5
v
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Heavy tail

A: Actor collaboration network, B: WWW, C: Power Grid data [Barabási et. al., 1999]
Source: www.sciencemag.com
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Why sample
❖ If access to whole graph: O(n) algorithm 
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Why sample
❖ But what if we did not have access to whole graph?

❖ Internet, routing networks

❖ Crawl based methods, traceroutes [Faloutsos et. al., 1999] 

❖ Contains bias! [Achlioptas et. al., 2009]

❖ Cannot simply scale sample.

❖ [Faloutsos et. al., 1999], [Leskovec et. al., 2006], [Ebbes et. al., 2008]
[Maiya et. al., 2011], [Ahmed et. al., 2010, 2014] - aim to capture 
representative graph sample 

7



Problem Definition
❖ ccdh: complementary cumulative degree histogram

❖  N(d) = #vertices with degree >= d
❖ monotonically non-increasing, smooth

Can we estimate N(d) for any given d?
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Query Model
1. Vertex queries: u.a.r. v ∈ V

9

Can I get 
a vertex

Here you go!

Can I get 
a vertex

Here you go!



Query Model
2. Neighbor queries: u.a.r. neighbor u of v
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Can I have 
a neighbor of A

Here you go!

Can I have 
a neighbor of B

Here you go!

A

B



Query Model
3. Degree queries: degree dv
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Can I have 
the degree of A

4

Can I have 
the degree of B

9

A

B



Query Model
1. Vertex queries: u.a.r. v ∈ V

2. Neighbor queries: u.a.r. neighbor u of v

3. Degree queries: degree dv 
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Prior work

❖ Vertex sampling [Stumpf et. al., 2005, Lee et. al. 2006]

❖ Edge Sampling [Stumpf et. al., 2005, Lee et. al. 2006]

❖ Random Walk with Jump [Lee et. al. 2006]

❖ Forest Fire Sampling [Faloutsos et. al., 2006]

❖ Snowball Sampling [Maiya et. al., 2011]

❖ Linear system solver [Zhang et. al., 2015]
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All need to sample at least 10-30% 
of the graph!



Main contribution
❖ Randomized algorithm SADDLES that estimates N(d)
❖ Uses a sublinear number of queries for any degree distribution 

bounded below by a power law.
❖ Power Law

exponent number of samples

2 n

3 n
❖ Strongly sublinear!

14
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Main contribution
❖ In practice, we needed to sample only 1% of the graph
❖ Works well for all degrees
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Query complexity
❖ Depends on 2 parameters:

❖ h-index = mind max(d, N(d))
❖ Largest d, such that there are at least d vertices of degree 

>= d.
❖ Same as the bibliometric h-index!

16
d

N(d)

d = N(d)

h



Query complexity
❖ Depends on 2 parameters:

❖ h-index = mind max(d, N(d))
❖ z-index = mind:N (d)>0 sqrt(d·N(d))

❖  replace max by geometric mean
❖ h and z are large for power laws!
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Vertex sampling
❖ Sample u.a.r. vertices
❖ Bin them according to degree
❖ Need            samples
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Have to take 

many samples


to hit high

degree vertex

d d



Edge sampling
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Edge sampling
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Edge sampling
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Edge sampling
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Edge sampling
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Edge sampling
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Main Idea
❖ Combine vertex sampling and edge sampling
❖ But we don’t have edge sampling
❖ Simulate it!
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Theoretical work
❖ Average degree [Feige et. al., 2006], [Goldreich et. al., 

2002, 2008]
❖ Number of star graphs, moments [Eden et. al., 2011]
❖ Number of triangles [Eden et. al., 2014]
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Simulated Edge Sampling
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❖ Sample some vertices
❖ The neighbors of these vertices is the edge set that 

we will perform random sampling on.



Simulated Edge Sampling
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❖ Sample r vertices
❖ Set up distribution D to sample 

vertex v ∝ dv
❖ Repeat q times:

❖ Sample a vertex v from D
❖ Sample u.a.r. neighbor u of 

v
❖ Find average weight of 

samples
❖ Scale appropriately

u

r vertices

v



Putting it all together
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Sample 
vertices

Enough vertices with
degree>d found?

Yes Use estimator of 
vertex sampling

No

Sample edges
and use estimator of 

edge sampling

d

d



r and q
❖ Total samples: 
❖ How big do r and q need to be?

❖ If VS: r =
❖ If ES: r = 
❖ Similarly,

q = 

30

degree d vertex

Want at least 1 of its 
d neighbors to be in R



Query complexity
❖ Query complexity:
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❖ Vertex queries: 
❖ Neighbor queries:

d

N(d)

d = N(d)

h



Simulated Edge Sampling
❖ Single edge sample is uniform at random
❖ But multiple edge samples are correlated
❖ Key insights:

❖ Correlation can be contained if h and z are high. 
Power laws have high h and z!

❖ 1-hop distance is enough - don’t need to do long 
random walks
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h and z
❖ Indeed large!
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GRAPH VERTICES EDGES AVG. DEG. h z

web-
BerkStan 0.6M 6M 10 707 220

as-skitter 2M 11M 7 982 184

com-lj 4M 34M 9 810 114

com-orkut 3M 110M 38 1638 172



Results
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Thank you

Questions?
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