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Abstract

The degree distribution of the Internet topology is considered as one of its
main properties. However, it is only known through a measurement procedure
which gives a biased estimate. This measurement may in first approximation
be modeled by a BFS (Breadth-First Search) tree. We explore here our ability
to infer the type (Poisson or power-law) of the degree distribution from such a
limited knowledge. We design procedures which estimate the degree distribution
of a graph from a BFS of it, and show experimentally (on models and real-world
data) that this approach succeeds in making the difference between Poisson and
power-law degree distributions.

Keywords: Internet, graph, topology, measurement, degree distribution, tracer-
oute, simulations.

1. Introduction

The Internet may be seen as a graph at several levels: autonomous systems,
routers and links between them, or IP hops between interfaces for instance.
For a decade, these graphs have been at the core of an intense research activity
[10, 15, 23, 27] aimed at a better understanding and management of the Internet,
which plays a crucial role in our society.

A property of high interest in these graphs is the degree distribution, i.e. the
fraction Pk of nodes with k links, for all k: it may have a strong influence on the
robustness of the network [2, 20], on protocol design [21], and on spreading of
information [6, 23]. Moreover, it is often claimed that these degree distributions
may deviate significantly from what classical models assume [2, 13, 23, 27],
which leads to an intense activity on modeling issues [12, 3].

However, the degree distribution of the Internet topology (at any of the
levels cited above) is not readily available: one only has access to samples of
these graphs, obtained through measurement procedures which are intricate,
time and resource consuming, and far from complete. Even more important,
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these samples are biased by the measurement procedure, which may have a
strong influence on the observed degree distribution [9, 1, 17, 27].

As a consequence, the current situation regarding the degree distribution of
the Internet is unclear [27, 19, 16, 18]. The relevance of obtained samples regard-
ing the degree distribution observed from them is far from being established. In
particular, there is a controversy on whether the Internet topology may have a
homogeneous (typically Poisson), or heterogeneous (typically power-law) degree
distribution [16, 27]. In order to obtain an answer to this question, the most
widely used approach currently is to conduct larger and larger measurements,
in the expectation that these will lead to accurate observations [18, 24, 8]. How-
ever, this may be a dead end: the degree distribution may be intrinsically biased
by the measurement process [1, 17] and in practice it may depend much on the
sample size [18].

We explore here a completely different approach: we consider a simple model
of Internet topology measurements and try to derive the type of the degree
distribution of the underlying graph from this limited observation. Our basic
goal therefore is to answer the following question: given the limited information
obtained from measurement, does the underlying topology more likely have a
power-law or a Poisson degree distribution?

In many cases (traceroutemeasurements, BGP tables, and AS-level trace-
route, typically), the measurement process may be approximated by a BFS
(Breadth First Search) tree from a given node of the network. Indeed, Internet
measurements mostly consist in sets of routes (i.e. paths in the considered
topology) going from a monitor to a set of targets, collected from as many
monitors as possible. Since each route is modeled as a shortest path and since
one may expect routes to have long common prefixes, the view from each monitor
may be approximated by a BFS. Although this is a rough approximation, in the
lack of a widely accepted and better solution, it has been used in many occasions
[17, 22, 1, 25, 9].

Deciding on the degree distribution from such a view is a challenging task,
and we will make a few assumptions in order to make a first step towards this
ambitious goal. We first assume that the size of the graph, i.e. its number of
nodes n, is given. In the case of the Internet, this is a reasonable assumption
[25, 14]. In addition, we will assume that the underlying graph is a random
graph with either a Poisson or power-law degree distribution. And finally, we
assume that we have a complete BFS of the considered graph: all nodes (but
not all links) in the graph are reached by the exploration. Finally, we assume
that the number of links m of the graph is known. It is clear that the last two
assumptions are very strong, and are not attainable in practice. We however
consider them as reasonable for a first approximation, and give hints of how to
get rid of the knowledge of the number of links in the last section of the paper.

This paper contains six main sections. We describe our methodology in
Section 2. It relies on several strategies to infer a degree distribution from
a BFS, which we detail in Section 3. In Sections 4 and 5 we experimentally
evaluate the validity of our approach on model graphs and real-world graphs
respectively. In Section 6, we propose a method to reduce the initial information
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Figure 1: Scheme of our method. G is an unknown graph on which we perform a measurement
which gives its number of nodes n, its number of links m and a BFS T . We then consider two
different hypotheses: G has a Poisson degree distribution with average degree λ or it has a power-
law degree distribution with exponent α. We build two graphs G1 and G2 each with a strategy
in accordance with the corresponding hypothesis. We then compare the degree distribution of G1
to the expected one of G if hypothesis 1 is true, and the one of G2 to the expected one of G if
hypothesis 2 is true. The hypothesis which leads to the most similar degree distributions is expected
to be correct.

needed by our approach. We discuss limitations and future work in Section 7.

2. Methodology

Our methodology is sketched in Figure 1. It aims at deciding the type of
the degree distribution of an unknown graph G from one of its BFS tree T , its
number of nodes n and its number of links m obtained through a measurement.
To do so, we consider the two following hypotheses:

• (H1) G has a Poisson degree distribution P (1): P
(1)
k = λke−λ

k! , in which
λ = 2m

n
is the average degree.

• (H2) G has a power-law degree distribution P (2): P
(2)
k = Ck−α ,where C

is a normalizing coefficient and the average degree is
∑

k1−α

∑
k−α .

For each hypothesis, we build a graph according to a strategy which we detail
in Section 3, thus obtaining G1 and G2, respectively. Our expectation is that if
hypothesis H1 is true (G is Poisson) then the degree distribution PG1 of G1 will
be closer to the theoretical distribution P (1) than PG2 to P (2), and conversely
if H2 is true (G is power-law) then the degree distribution PG2 of G2 will be
closer to P (2) than PG1 to P (1). To compare two distributions, we will use
different distances D (we will define several below) and compare D(P (1), PG1)
to D(P (2), PG2).
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We experimentally assess the validity of this approach by applying it to cases
where we know the original graph G (we obtain such graphs using models in Sec-
tion 4 and using real-world data in Section 5). We then compare the expected
theoretical degree distribution to the ones of the graphs obtained from each
strategy and check conformance of results with expectations. Comparing distri-
butions is a challenge itself, for which no general automatic procedure is com-
monly accepted. To perform this, we will use two complementary approaches:
visual inspection of plots of the inverse cumulative degree distributions (ICDD),
together with two classical statistical tests, the Kolmogorov-Smirnov test [11]
and Statistical Distance [5] distances, defined as:

Definition 1. Kolmogorov-Smirnov test:
The KS test gives the maximum difference of the cumulative values of two degree
distributions P and Q: KS(P,Q) = maxi

∑i

k=1(Pk −Qk).

Definition 2. Statisitical Distance:
The SD gives the sum of the absolute difference between two degree distributions
P and Q: SD(P,Q) =

∑

k=1 |Pk −Qk|.

In Section 6, we extend our approach to get information on the degree dis-
tribution of a graph when the number of links is not known, which is a more
realistic assumption. In that case we use our rebuilding strategies for a wide
range of possible values of m and infer the most probable type of degree distri-
bution as previously, see Figure 2.

3. Building strategies

Starting from a BFS T of a graph G with n nodes and m links and an
hypothesis (H1 or H2) on the degree distribution of G (type Poisson or power-
law), our objective here is to iteratively add m − n + 1 links to T in order to
build a graph G′ with n nodes, m links, and degree distribution similar to the
one of G. We define different link addition strategies according to the supposed
type of G, Poisson or power-law. And in each case, we show how to compute
the degree distribution of the resulting graph.

3.1. H1: G is Poisson (RR strategy)

Suppose G is a Poisson random graph. It may therefore be seen as the
result of an Erdös Rényi (ER) construction [7]: starting with n nodes and no

link, m links are uniformly chosen among the n(n−1)
2 possible pairs of nodes.

The expected node degree distribution obtained by this way follows a Poisson

law: Pk = λke−λ

k! where λ = 2m
n

is the average degree.
We may think of building a graph G′ similar to G by using a variant of

the ER construction: starting with the n nodes and n − 1 links of a BFS tree
T , the m − n + 1 missing links are randomly added as in the ER model. But
then T may not be a possible BFS of G′: any link in G which is not in T is
necessarily between two nodes in consecutive levels of T , or in the same level
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Figure 2: Scheme of our method, in the case when m is unknown. G is an unknown graph on
which we perform a measurement which gives its number of nodes n and a BFS tree T . We then
consider two different type of hypotheses: (H1) G has a Poisson degree distribution with average
degree λ or (H2) it has a power-law degree distribution with exponent α. Both parameters λ and
α are equivalent to the number of links m. Then we build two families of graphs G1,m and G2,m

in accordance with these two hypothesis and different m. We then compare the degree distribution
of G1,m to the expected one of G if (H1) is true, and the one of G2,m to the expected one of G if
(H2) is true. The hypothesis which leads to the most similar degree distributions is expected to be
correct.

Figure 3: Let us consider a part of a BFS of G, composed of a set of links A-B, A-c, B-D, C-E and
C-F. Links B-E and D-E may also be present in G, but not link A-F.
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of T (otherwise T would not be a shortest path tree and thus not a BFS, see
Figure 3). In order to ensure that T is also a possible BFS of G′ we therefore
add links only between nodes in consecutive levels or in the same level. Since
both extremities of links are randomly chosen, we call this construction the RR
(Random-Random) strategy.

We now show that the expected node degree distribution of G′ obtained with
the RR strategy can be directly computed from n, m and T without explicitly
constructing G′.

Let nj denote the number of nodes at level j in the BFS tree T . For each
node v at level j with degree k (one father node and k − 1 son nodes), three
kinds of links may be added: (1) to upper level j−1, there are nj−1−1 possible
positions, all nodes in the upper level except the father of v; (2) to the same
level of v, there are nj − 1 possible positions, all nodes in this level except v

itself; (3) to lower level j+1, there are nj+1−k+1 possible positions, all nodes
at lower level except the k − 1 sons of v.

Let Sjk be the number of possible positions linked to a node at level j having
k neighbors: Sjk = nj−1+nj+nj+1−k−1. On the other hand, let S be the total

number of possible positions in a BFS tree T : S =
∑

j

(

njnj+1 − nj+1 +
nj(nj−1)

2

)

.

Therefore, if we make a random choice, the probability that this position links to
a given node v (at level j with degree k) is

Sjk

S
. We finally obtain the following

theorem.

Theorem 1. Given a tree T with n nodes, if we construct a graph G′ using the
RR strategy, then the expectation of a node v with degree l in G′ is:

E (dG′(v) = l) =
1

n

∑

j>0

l
∑

k=1

njkP (k → l, j) (1)

where njk is the number of nodes with degree k at level j in T and P (k → l, j) =
(

m−n+1
l−k

)

(

Sjk

S

)l−k (

1−
Sjk

S

)m−n+1−(l−k)

is the probability that a node v with

degree k at level j becomes a node of degree l in G′ after m − n + 1 links have
been added.

As each newly added link impacts two nodes, the values of P (k → l, j) are
independent from the other P (k′ → l′, j′). We will consider that this impact
can be ignored, when n and m is large enough. From this result, one may
estimate the expectation of the degree distribution of G′ from n, m and T ,
without constructing it explicitly. This is of high interest in practice, since
it allows to compute the expectation of degree distribution and compare it
with degree distributions obtained by the constructing strategies. Going further
would however need precise results on the expectation of degrees in T , which is
a difficult problem [1].
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3.2. H2: G is power-law (PP strategies)

Suppose now that G is a power-law graph. We therefore aim at designing
a process which builds from a BFS T of G, a graph G′ with power-law node
degree distribution. To do this, as before, we add m−n+1 links between nodes
in appropriate levels of T . However, these pairs of nodes are no longer chosen
uniformly at random. Instead, we use a selection scheme inspired from the pref-
erential attachment of the classical Barabási-Albert model [4]: we choose (in
the appropriate levels) nodes randomly with probability proportional to their
degree in T . As we choose both extremities of added links according to pref-
erential attachment, we call this procedure the PP (Preferential-Preferential)
strategies.

We now show how to compute, for this strategy, the expected obtained degree
distribution.

Theorem 2. Given a tree T with n nodes, if we construct a graph G′ using the
PP strategy, then the expectation of a node v with degree l in G′ is:

E (dG′(v) = l) =
1

n

∑

j>0

l
∑

k=1

njkP (k → l, j,m′) (2)

where njk is the number of nodes with degree k at level j in T and P (k → l, j,m′)
is the probability that a node v with degree k at level j in T is constructed as a
node with degree l in G′ after m′ links have been added into T .

Computation process.. The term P (k → l, j,m′) may be obtained recursively:

P (k → l, j,m′) = (1− θ)P (k → l, j,m′ − 1) (3)

+ θ P (k + 1 → l, j,m′ − 1)

We split P (k → l, j,m′) into two parts which correspond to two cases (linked
to this node or not) when a new link is added. The probability that a newly
added link changes the node from degree k to k + 1 is denoted by θ.

In the following, we compute θ using four terms:

• θ1 : the probability that the node v is selected as the first endpoint of the
newly added link.

• θ2 : the probability that a node at upper level j− 1 is selected as the first
endpoint, and v is selected as the second endpoint.

• θ3 : the probability that a node (except v) at level j is selected as the first
endpoint, and v is selected as the second endpoint.

• θ4 : the probability that a node at lower level j +1 is selected as the first
endpoint, and v is selected as the second endpoint.
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The sum of degrees of all nodes at the level i after t links have been added
is di,t. In the following, we give the details of how to calculate for the case of
PP strategy.

θ1 =
k

2 (n− 1 + t)
(4)

θ2 =
dj−1,t

2 (n− 1 + t)

k

dj−2,t + dj−1,t + dj,t
(5)

θ3 =
dj,t − k

2 (n− 1 + t)

k

dj+1,t + dj,t + dj−1,t
(6)

θ4 =
dj+1,t

2 (n− 1 + t)

k

dj+2,t + dj+1,t + dj,t
(7)

The next problem is how to compute dj,t. We denote by Kj→j′ the proba-
bility that a directed link is added from level j and j′, where j′ must be j, j−1,
j + 1.

dj,t = Kj→j (dj,t−1 + 2) + (Kj±1→j +Kj→j±1) (dj,t−1 + 1)

+ (1−Kj→j −Kj→j±1 −Kj±1→j) dj,t−1 (8)

Kj→j′ =
dj,t−1

2 (n− 1 + t)

dj′,t−1

dj−1,t−1 + dj,t−1 + dj+1,t−1
(9)

Using equation (9) in the expressions (8) shows that dj,t is a function of
dj′,t−1, which can be calculated by dynamic programming techniques.

Our computation process is not exact, since we have neglected to take into
account possible collision, i.e. positions to be selected several times. However,
since we deal with sparse graphs, in the case of model graphs as well as real
graphs, the number of links to be added to the BFS tree is much smaller than
the number of possible positions, and so there are very few collisions. From a
practical viewpoint, in the building process, we just ignore multiple links.

4. Validation using model graphs

Our expectation is that the strategies described in previous section succeed
in building a graph G′ similar (regarding degree distribution) to G when the
appropriate strategy is used with an appropriate graph (RR if G is Poisson, PP
if G is power-law). In addition, we expect that the degree distribution of G′

will differ significantly from that of G if a wrong strategy is applied (RR if G is
power-law, PP if G is Poisson). In this section we conduct experiments on model
graphs, i.e. random graphs in the classes of Poisson graphs or power-law graphs
with given parameters (average degree and exponent respectively). To ensure
that the BFS covers all nodes of the graph, we use a software which generates
random simple connected graphs according to a given degree sequence (sampled
from the given degree distribution) [26].
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Figure 4: Reconstruction of a graph Poisson 3 and Poisson 10. We draw the ICDD (Inverse
Cumulative Degree Distribution) for three graphs: the original graph G and the ones obtained with
the RR and the PP strategies. Horizontal axis: degree k; vertical axis: fraction of the number of
nodes with degree lower than or equal to k.

For each model graph G, we first extract a BFS tree T from a randomly
chosen node, then build G′

RR (using RR strategy) and G′
PP (using PP strat-

egy), and we denote by PRR and PPP , the corresponding degree distributions.
According to the method described in Figure 1, we suppose that we know n

and m. Therefore, the corresponding parameters λ (for RR strategy), α (for
PP strategy) and the corresponding theoretical degree distributions Pλ and Pα

can be derived from n and m. By comparing the values KS(PRR, Pλ) and
KS(PPP , Pα) (or SD(PRR, Pλ) and SD(PPP , Pα)), we may then decide on
the type of the underlying graph. If the concluded type is the same as the type
that we have used to generate the underlying graph, and so is the same as the
actual one, then our method has succeed.

We conducted experiments on Poisson model graphs with average degree
from 3 to 10 (step is 0.1), and power-law model graphs with exponents from
2.1 to 2.5 (step is 0.01), which are typical values used in Internet modeling.
In each case, we consider graphs with 10000 and 100000 nodes, and all results
in tables and figures are averaged over ten samples. We display below the
results for average degrees 3 and 10 and for exponents 2.1 and 2.3, which are
representative of our observations.

The general conclusion of our experiments is that for both cases of Poisson
and power-law, we succeed in deciding the type of the underlying graphs: for
Poisson model graphs, the type decided by our method is actually Poisson and
for power-law graphs, the type decided is actually power-law.

4.1. Poisson graphs

In Figure 4 we present the results for Poisson graphs with average degrees 3
and 10.

The degree distribution obtained with RR strategy is closer to the original
one, as expected. This is confirmed by the KS and SD statistics (Table 1): the
smallest values are obtained with RR strategy.

Notice that a Poisson graph with a higher degree gives better results. This
is probably due to the fact that we add more links in this case, and so strategies

9



Table 1: KS and SD for Poisson model graphs. The smallest KS or SD values mean the

smallest difference on degree distribution.

Poisson 3 Poisson 10
n = 10000 n = 100000 n = 10000 n = 100000
KS SD KS SD KS SD KS SD

RR 0.043 0.091 0.037 0.075 RR 0.025 0.116 0.014 0.048
PP 0.284 0.610 0.268 0.571 PP 0.119 0.444 0.111 0.446
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Figure 5: Reconstruction of a graph power-law 2.1 and 2.3. We draw the ICDD for three graphs:
the original graph G, and the ones obtained with the RR and the PP strategies.

for doing this make much more difference.
Finally, we conclude that our method succeeds in recognizing random Pois-

son graphs. This is true for all average degrees, but performs best on graphs
with a relatively high average degree.

4.2. Power-law graphs

Similar to Poisson model graphs, we conduct our experiments with power-
law model graphs.

In Figure 5 we present obtained results for power-law graphs with exponent
2.1 and 2.3. To better show the characteristic of the power-law, all plots are in
log-log scale. Both the ICDD plot and the statistic test (Table 2) support our
conclusion for all exponents and all sizes.

Table 2: KS and SD for power-law model graphs

Power-law 2.1 Power-law 2.3
n = 10000 n = 100000 n = 10000 n = 100000
KS SD KS SD KS SD KS SD

RR 0.201 0.432 0.194 0.405 RR 0.278 0.591 0.274 0.553
PP 0.038 0.138 0.049 0.180 PP 0.030 0.086 0.024 0.095
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Figure 6: ICDD of the Skitter and Radar graphs G and the ones obtained with RR and PP
strategies.

Table 3: KS and SD for Skitter graph.

KS SD

theory-RR 0.166 0.359
theory-PP 0.082 0.235

5. Experiments on real-world data

Previous section shows that our method succeeds in making the difference
between Poisson and power-law random graphs. It is clear however that, in
practice, considered graphs have neither perfect Poisson nor power-law degree
distribution, and are not random.

We consider in this section several real-world datasets among the current
largest measurements of the Internet topology. Although obtained graphs are
still partial views and probably are strongly biased, they constitute current
state-of-the-art of available data and we use them as benchmarks.

Like in previous section, for each case of real-world graph G, we consider
two hypotheses: (H1) G has a degree distribution close to a Poisson law; (H2)
G has a degree distribution close to a power-law. Using strategies RR and PP ,
we build graphs G′

RR and G′
PP , respectively. Our expectation is that if (H1)

is true then G′
RR degree distribution is close to the theoretical Poisson law; if

(H2) is true then G′
PP degree distribution is close to the theoretical power-law;

and the converse is not true.

5.1. Skitter graph

We first try our method on an AS-level map collected by the Skitter project
of CAIDA [15]. The obtained graph has 5776 nodes and 12025 links.

Figure 6 (left) shows the ICDD obtained with our strategies and shows that
the entire Skitter graph follows a degree distribution of type power-law (a perfect
power-law in a log-log scale is a straight line). The distribution obtained with
RR strategy is clearly far from a power-law. The one obtained with PP strategy
is much closer. Table 3 confirms this, even though the difference between the
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Table 4: KS and SD for Radar graphs.

KS SD KS SD KS SD
Cm Japon Ortolan

RR 0.064 0.151 RR 0.074 0.202 RR 0.062 0.156
PP 0.241 0.521 PP 0.163 0.363 PP 0.213 0.476

RR strategy and the PP strategy is as strong as for model graphs (see Table 1
and 2).

Finally, our method succeeds in deciding that the Skitter graph has a degree
distribution close to a power-law.

5.2. Radar graphs

A radar graph is a part of the Internet topology observed by periodic running
traceroute-like measurements from one monitor to a set of targets during several
weeks, See [22] for details and the original data. We use here three instances
of radar graphs, from three different monitors: Cm (21430 nodes and 37938
links), Japon (27066 nodes and 77545 links) and Ortolan (24725 nodes and
48516 links).

In Figure 6 (right), we plot the ICDD of Radar-Japon graph and those
obtained by the RR and the PP strategies. The shape of the original ICDD
indicates that the degree distribution of the underlying graph is likely to be a
mixture of both Poisson and power-law.

Table 4 shows numerical results for the three radar graphs. All results show
that the difference between the RR strategy and its corresponding theoretical
distribution is smaller than that of the PP strategy. Therefore our method
decide that the type of the radar graphs is more likely Poisson even though
their distributions have a long-tail. Note that the difference between RR and
PP are much smaller than for previous cases, thus indicating that the confidence
in the conclusion is poor.

Finally, our method decides that Radar graphs are more likely to have Pois-
son degree distribution, but with poor confidence (which is in accordance with
their actual type).

6. Deciding without m

The goal of this section is to decide the type of degree distribution and
estimate m for an unknown graph G, using only n and one of its complete
BFS tree T . We proceed as follows: for each building strategy, we compute
the KS distance between the obtained distribution and the theoretical one for
a wide range of realistic values of m: for each value of m we compare with KS
the distance between the theoretical distribution corresponding to m and the
distribution of the graph resulting from the building strategy. We then plot
this statistics and select the value m′ which gives the minimum KS value. If
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Table 5: Results for Poisson model graphs

n=1000 KS m m’ n=10000 KS m m’

Poisson 3 0.068 1500 2085 Poisson 3 0.027 15000 23750
Poisson 5 0.074 2500 2835 Poisson 5 0.025 25000 36250
Poisson 10 0.096 5000 5650 Poisson 10 0.041 50000 68750

Figure 7: KS obtained for a Poisson model graph with average degree 3. In both figures, we plot
KS as a function of the estimated degree. In the left figure we use the RR strategy, which shows
minimum KS of 0.05 in the region of λ = 4. In the right figure we use the PP strategy , which
shows much bigger KS’s. Thus we conclude to a Poisson graph.

the minimum value is given by the RR strategy, we conclude that the degree
distribution of the original graph is Poisson, whereas if m′ is given by the PP
strategy, we conclude that the degree distribution is power-law (Figure 2). The
RR strategy is conducted with average degree from 2 to 50, with step 0.1. The
PP strategy is conducted with exponent from 2.05 to 2.40, with step 0.05.

In the following we only mention the results of KS tests, but the result with
SD are similar.

6.1. Poisson graphs

We show how the obtained KS test evolves as a function of the value of
λ = 2m

n
in Figure 7. The RR strategy performs much better than the PP one,

and the KS reaches a minimal for a value m′ close to the actual value of m.
Table 5 shows the results in a different way, for Poisson model graphs of size

1000 and 10000. First since the minimum KS is always observed in the case
of RR (and not PP) strategy, we conclude that the type of graph is Poisson.
Second, according to the minimum value of KS we can estimate the value of λ
and thus the value of the (unknown) number of links of the original graph.

For example for n = 1000 in Table 5 shows that the minimal value for KS is
obtained for m′ = 2085 (whereas the real value is m = 1500, corresponding to
a Poisson model graph with λ = 3).

Notice that the estimate m′ of m is always a little overestimated and this
becomes worse when the size of the graph grows. We have no explanation for
this observation currently.

13



Table 6: Results for power-law model graphs

n=1000 KS m m’ n=10000 KS m m’

power-law 2.10 0.07 4233 3002 power-law 2.10 0.06 42326 28129
power-law 2.15 0.09 3662 2936 power-law 2.15 0.04 36622 25043
power-law 2.20 0.07 3220 2550 power-law 2.20 0.03 32198 25043
power-law 2.25 0.07 2873 2418 power-law 2.25 0.03 28730 21085
power-law 2.30 0.06 2598 2168 power-law 2.30 0.03 25982 21377
power-law 2.35 0.05 2378 2200 power-law 2.35 0.02 23780 20534
power-law 2.40 0.06 2200 2109 power-law 2.40 0.02 21996 20274

Figure 8: KS for a power-law model graph with exponent 2.2. The left figure is the estimation with
the RR strategy with a minimum greater than 0.1. The right figure is the estimation with the PP
strategy with a minimum less than 0.1

6.2. Power-law graphs

In Table 6 and Figure 8, we give the result of our experiments for power-law
graphs with exponents between 2.10 and 2.40.

Again, the method succeeds in deciding the appropriate type of the graph:
with PP, the value of the KS test is smaller than with RR. The estimate m′ is
reasonable, but lower than the actual value.

6.3. Real-world graphs

Finally, we apply our method on some real world graph, see Table 7 and
Figure 9.

Table 7: Results for real-world graphs

RR PP m m′

Skitter 0.109 0.091 12822 7683
Radar-Orlanto 0.150 0.435 48516 49450
Radar-Japon 0.067 0.162 77545 79041
Radar-Cm 0.051 0.225 37938 49289
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Figure 9: KS for Skitter-AS graph.

As before, our method succeeds in deciding that the Skitter graph is very
close to a power-law graph, while radar graphs are closer to a Poisson graph,
but are actually in between, the both cases, we obtain reasonable estimates m′

of the number of links m.

7. Conclusion

In this paper, we presented a new approach to decide on the type of the
degree distribution of a graph when only a BFS and its size are known. We use
different strategies to reconstruct a graph from a BFS, according to the presup-
posed type of the graph. We then show how these strategies allow to decide
between Poisson and power-law degree distributed graphs, with experiments on
random graphs as well as real-world graphs.

We worked on two sets of hypotheses: we first supposed that, in addition
to a BFS T on the n vertices of the unknown original graph G, we know its
number of edges m: in this case we formally compute the expected degree
distribution of the graphs obtained with the different reconstructing strategies;
moreover experiments on random graphs confirm that the knowledge of a BFS
and m allows to recognize the type of the graph. Second, we use the same
reconstruction strategies without knowing the number of edges m, and we can
still reasonably predict the type of the original graph.

The main limitation of our contribution is that we suppose the knowledge of
a complete BFS of the unknown graph. This hypothesis is not realistic, though,
since practical measurements rather provide only paths to a subset of the real
graph vertices. Our main perspective therefore is to reduce requirements on
data, and design strategies needing truncated BFS (BFS until a certain level)
only, and partial BFS (that do not contain all vertices of the graph). Assuming
that such measurements are available is much more realistic[22].

In future work, we also want to improve our method by investigating various
refinements: (i) design reconstruction strategies taking into account more subtle
properties of the BFS, such as node distribution on each level, and also other
local properties such as the clustering coefficient; (ii) extend the reconstruction
strategies in the direction of other types of distributions: a first step would be
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to mix RR and PP strategies for mixed Poisson power-law graphs, but we also
aim at investigating power-laws with exponential cut-off, and other laws.
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