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Abstract Many real-world complex networks are best modeled as bipddr 2-mode) graphs, where nodes are
divided into two sets with links connecting one side to theeotHowever, there is currently a lack of methods to
analyze properly such graphs as most existing measures etibads are suited to classical graphs. A usual but
limited approach consists in deriving 1-mode graphs (dghejections) from the underlying bipartite structure,
though it causes important loss of information and dataag®issues. We introduce héngernal linksandpairs

as a new notion useful for a bipartite analysis, and whiclkeginsights on the information lost by projecting the
bipartite graph. We illustrate the relevance of theses eptscon several real-world instances illustrating how it
enables to discriminate behaviors among various cases wheompare them to a benchmark of random graphs.
Then, we show that we can draw benefit from this concept fdr baideling complex networks and storing them
in a compact format.

Keywords real-world networks, bipartite graphs, one-mode progextinternal links, graph storage

1 Introduction

Many real-world networks have a natural bipartite (or 2-jostructure and so are best modeled by bipartite
graphs: two kinds of nodes coexist and links are betweensotldifferent kinds onlyFor instance in many
social networks, referred to as affiliation networks, peale members of groups like directory boards or peer-
production units such as scientific papers’ authors. Thisbearepresented by a 2-mode network in which individ-
uals are connected to the groups they belong to [Shararazfi®, Li et al. 2011]Other typical examples include
biological networks in which proteins are involved in biechical reactions, occurrence of words in sentences of
a book, file-provider graphs where each file is connectedadntiividuals providing it. See [Newman et al. 2001,
Latapy et al. 2008] for more examples.

The classical approach for studying such graphs is to tiemtimto classical (non-bipartite) graphs using the
notion of projection considering only one of the two types of nodes and linking &vo nodes if they share a
neighbor in the bipartite graph. This leads for instanceotmccurrence graphs, where two words are linked if they
appear in a same sentence, coauthoring graphs, where tearchers are linked if they are authors of a same
paper, interest graphs where individuals are linked taggetlihey provide a same file, etc.

This approach however has severe drawbacks [Latapy et@B].2b particular, it leads to huge projected
graphs, and much information is lost in the projectibtethods have been developed to study bipartite graphs
directly, without resorting to projection [Lind et al. 20Q%&tapy et al. 2008, Zweig et al. 2011], though much re-
mains to be done in this direction.

Based on the intuitive idea of projection, we define inticatliy bipartite notions, namelinternal linksand
pairs. Our aim here is to show the relevance of these notions, widaiot suffer from the same loss of information
as projection, for analyzing 2-mode graphs. This is why weseveral cases of real-world networks and show
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that internal links and pairs bring to light different chetexistics of these networks. Obtaining specific conclusio
in a particular context is out of the scope of this paper.

We introduce these new concepts in Sectiow@,present in Section 3 the datasets corresponding to typica
real-world cases that we analyze in Section 4 with regardutonew notionsWe explore a more algorithmic
perspective in Section By suggesting a 1-mode graph storage method.

2 Internal pairs and links

Let us consider a bipartite gragh= (L, T,E), with E C L x T. We call nodes inL (resp.T) the bottom (resp.
top) nodes. We denote by (u) = {ve (LUT), (u,v) € E} the neighborhood of any node We extend this
notation to any seb of nodes as followsN(S) = UyesN(V).

The L-projection ofG is the graphs, = (L,E ) in which (u,v) € E, if uandv have at least one neighbor in
common (inG): N(u) N N(v) # 0. We will denote byN, (u) the neighborhood of a nodein G,: N, (u) ={ve
1, (u,v) € E; } = N(N(u)) \ {u}. The T-projectionG~ is defined dually.

For any pair of node@u, v) ¢ E, we denote b5+ (u, V) the graphG’ = (L, T,EU{(u,v)}) obtained by adding
the new link(u,v) to G. For any link(u, v) € E, we denote bys — (u,v) the graptG’ = (L, T,E\ {(u,v)}) obtained
by removing the linku,v) from G.

Definition 1 (internal pairs) Let (u,v) € L x T with (u,v) ¢ E and letG' = G+ (u,v), (u,v) is a_L-internal pair
if G, =G’ whereG/, is the_L-projection ofG’. We defineT -internal pairs dually.

/M/M

=G+ (B,I) L—GL

Fig. 1 Example of L-internal pair. Left to right: a bipartite grapl®, the bipartite graptG’ obtained by adding linkB,I) to G, and the
L -projection of these two graphs. &, =G, (B,l) is a_L-internal pair ofG.

Definition 2 (internal links) Let (u,v) € L x T with (u,v) € E and letG' = G— (u,v), (u,v) is a_L-internal link
if G, =G’ whereG/, is the_L-projection ofG’. We defineT -internal links dually.

/I%I\/I%I\%

B, j) Gl =G,

Fig. 2 Example of L-internal link . Left to right: a bipartite grapks, the bipartite grapls’ obtained by removing linkB, j) from G, and the
L -projection of these two graphs. & =G, (B, ]) is a_L-internal link of G.

In other words,(u,v) is a L-internal pair ofG if adding the new link(u,v) to G does not change itd -
projection; it is aL-internal link if removing link(u,v) from G does not change its-projection. See Figures 1
and 2 for examples.

Definition 3 (internal degree) ki (u) is the number ofL-internal links of nodeu in the bipartite graph and is
called its L-internal degree. We define in the same Wayu), the T-internal degree of node
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The notion of internal link is related to the redundancy fioefntrc of a node [Latapy et al. 2008], defined for
any nodev as the fraction of pairs itN(v) that are still linked together in the projection of the gragtobtained
from G by removingv and all its links (all these pairs are linked® ). That is to say, more formally:

_ [{uw} CN(v)tu#w,3IV#v, (V,u) e Eand(V,w) €E |
B \N(V)\(H;l(V)\fl) '

rc(v)

There is however no direct relationship between the twoongti The redundancy is a node-oriented property: it
gives a value for each node, while the notion of internaldiakd pairs is link-oriented. As illustrated on Figure 3,
nodes exhibiting the same fraction of internal links mayehdifferent redundancies, and conversely two nodes
having the same redundancy may correspond to differenniateonnectivity patternd-hough we can establish
relations for the extreme casesuit | has degre&" in the bipartite network, ik (u) /k*(u) = 1 thenrc = 1.
Conversely ifk- (u) = 0 thenrc = 0. The same goes far nodes.

A B C D E F

Fig. 3 Redundancy versus internal links.In this graph, B and D have the same fraction_lointernal links %) while having different
redundancies (resg. and &).

We now give a characterization of internal links which doeseaxplicitly rely on the projection anymore and
provides another point of view on this notion.

Lemma 1 Alink (u,v) of G is_L-internal if and only if Nv) \ {u} € N(N(u) \ {v}).

Proof Let us consider a linku,v) € E and letG' = G— (u, V) be the bipartite graph obtained by removing the link
(u,v) from G. Then, by definitionE, = E’ U{(u,x), xe N(v) \ {u}}.

Suppose thatu,v) is a L-internal link,i.e. E; = E’. Then all links(u,x) in the expression above already
belong toE' . Therefore, for eack € N(v)\ {u}, 3y # ve T such thay € N(u) "N(x). By symmetryx € N(y)
andy € N(u) \ {v} thereforex € N(N(u) \ {v}) and soN(v) \ {u} € N(N(u)\ {v}).

Suppose now thati(v) \ {u} € N(N(u)\ {v}). Then for each nodee N(v) \ {u}, 3y € N(u) \ {v} such that
x € N(y). Thus, by definition of the projectioriy,x) € E' . ThereforeE, = E/ and the link(u,v) is L-internal.

O

3 Datasets

Our aim is to evaluate the importance of internal pairs ankklin large real-world networks, rather than obtain
specific conclusions in a particular context. That is why tuelg various instances of real-world bipartite graphs,
expecting to observe different behaviors. We present mgaction the datasets we will use and summarize their
general features (number of nodes and links). The grapharwuthsideration are social ones connecting people
(LL-nodes) through events, groups or similar interestmnodes).

— Imdb-movie$Barabasi et al. 1999] is obtained from timternet Movie Databas@ww. imdb . com): it features
actors connected to the movies they played.in.= 127,823 actors| T | = 383 640 movies|E| = 1,470,418.

— Delicious-tagqdGorlitz et al. 2008] consists dbelicious(www.delicious.com) users connected to the tags
they use for indexing their bookmarks.| = 532 924 users|T| = 2,474,234 tags|E| = 37,421 585.

— Flickr-tags[Prieur et al. 2008] consists éflickr (www.flickr.com) users connected to the tags they use for
indexing their photod.L| = 319,675 users|T| = 1,607,879 tags|E| = 13,336,993.

— Flickr-commentssame as above, except tirditkr users are linked to the photos they commght—= 760,261
users|T| = 12,678 244 photos|E| = 41,904,158.

— Flickr-favorites same as above, except that users are linked to the photppitieup as favorites| L| =
321312 users|T| = 6,450,934 photos|E| = 17,871 828.

— Flickr-groups same as above, except that users are linked to the group®éheng.|L| = 72,875 users,
| T| =381,076 groups|E| = 5,662 295.



4 Oussama Allali et al.

— P2P-files[Aidouni et al. 2009] is obtained fromeer-to-peeffile exchangeeDonkey users are linked to the
files they provide| L| = 122599 peers| T| = 1,920 353 files,|E| = 4,502 704.

— PRL-paper$as been extracted from thi¢eb of Scienceatabasewww . isiwebofknowledge . com), collecting
papers and authors Bhysical Review Lettefsom 2004 to 2007} L| = 15,413 authors T| = 41,633 papers,
|E| = 249 474.

4 Analysis of real-world cases

In this section, we use the notions of internal links andgaitroduced in Section 2 to describe the real-world
cases presented in Section 3. Let us insist on the fact thatimuis notto provide accurate information on these
specific cases, but to illustrate how internal links andspaiay be used to analyze real-world data. We first show
that there are many internal links in typical data, then gttt number of internal links of each node and the
correlation of this number with the node’s degree.

Since the links attached t0-nodes (respl-nodes) of degree 1 are all-internal (respT -internal), and since
there may be a large fraction of nodes with degree 1 in realdigvaphs, we only study in the sequel links attached
to nodes with degree at least 2.

4.1 Amount of internal links and pairs

In order to capture how redundant is the bipartite structueecompute the number df- and_L-internal pairs and
links. The fraction of internal links, denotdg, and presented in Table 1 is in general not negligible. A qtativie
analysis of these values however requires the definitiontidrachmark. That is why we compare the measures
to the corresponding amounts on random bipartite graphtstivit same sizes and degree distributions, which is a
typical random model to evaluate the deviation from an etqzblbehavior — see for example [Newman et al. 2001,
Newman et al. 2003]. The measures related to this model witeferred to with the symbol *.

We denote byZ (L) (resp.2 (T)) the set of L-internal pairs (respT -internal pairs) and b¥g (L) (resp.
E|(T)) the set of L-internal links (resp:T-internal links). We normalize the number of internal pairgl links
measured on real graphs to the values obtained with the rdedetlibed above. The corresponding results are also
presented in Table 1.

R S BM | em) 20 8
Imdb-movies 0.031 0.441 47.0| 0.026 0.491 147
Delicious-tags 0.112 0.972 1.47| 0.104 1.823 5.31
Flickr-tags 0.117 0.920 1.51| 0.048 1.040 2.50
Flickr-comments| 0.398 0.258 4.22| 0.002 0.151 22.0
Flickr-groups 0.228 0.491 2.21| 0.015 0.249 2.86
Flickr-favorites 0.172 0.574 2.02| 0.002 0.704 12.4
P2P-files 0.337 0.082 8.53| 0.136 0.092 1430
PRL-papers 0.718 0.033 7.17| 0.487 0.001 11.2

Table 1 Fraction of internal links {g, ), number of internal pairs®,) and internal links ) of real-world graphs both normalized to the values
on random bipartite graphs with the same size and same déigtebutions.

We first notice that the behaviors with respect to the amotintternal links are very heterogeneous. Still
some general trends can be underlined: in the random dasend T-internal links are underestimated. So, the
probability of having nodes sharing the same neighborhebibiher in real graphs than in random ones. We may
indeed expect, for instance, that people participatindiéosame paper have a higher probability to be coauthors
of another one than a random pair of authors.

Meanwhile the numbers of internal pairs are generally asterated in random graphs. To understand this
effect, let us consider the extreme case of a graph where twodes have either exactly the same neighborhood,
or no common neighbors. Then all links areinternal, and the graph does not contain any internal Y\&@rmay
therefore suppose that the number of internal pairs is mglzanti-correlated to the number of internal links,

In general, there is a correlation between how much the nuofbieternal links is underestimated in random
graphs and how much the number of internal pairs is overasgid) but this correlation does not hold in all cases.
Finally, there is no direct link between these observatamtsthe sizes or average degrees of the considered graphs.
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We observe a specific behavior for the two graphs which cpomed to tagging databases. Delicious-tags
andFlickr-tags For these graphs we observe the lowest gaps between thencdtaaindom cases far-internal
links and pairs. Conversely, they are the only graphs forctviihe amount off -internal pairs is underestimated
in random graphsThis suggests that comparing the fraction of internal paid links could be used as a tool to
classify social networks into families, yet such a hypoitekould be tested on a larger amount of datasets.

Going one step further, when we consider thénternal pairs and links, which correspond to repeategtint
actions among individuals through differentnodes, we observe that the gaps between real and random case
are particularly high fotmdb-moviesP2P-filesand PRL-papersThese graphs correspond to direct interactions
among agents, while in the other cases two individuals calinked to a samer-node without this implying
any interaction. For example two users can use the same thguwvicommunicating at all. So, this suggests that
stronger social relationships may involve greater difiess between the real graph and its random model. But
once again, one must be very cautious with such interpoetivhich require further confirmations as well as a
precise definition of the “strength” of a relationship.

We will see in the next sections that a more refined study efival pairs and links brings more enlightening
observations than these global figur@sce we can observe a wide range of behaviors both f@nd_L - internal
links and pairs, we will restrict our analysis in the followgito L - internal links and pairs for the sake of brevity.

4.2 Distribution of internal links among nodes

The notion of internal links partitions the links of each eddto two sets: the internal ones and the others. We
now study how the fraction of internal links is distributed@ng nodes. On Figure 4, we plot the complementary
cumulative distribution of the fraction of internal linkeipnode for the datasets under study. We also plot the
complementary cumulative distribution for random graphs.

Imdb-movies: Delicious-tags: Flickr-tags: Flickr-comnis:
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Fig. 4 Complementary cumulative distribution of the fraction mtieirnal links per node.

One of the most noticeable differences between both cuigesr the probability of having a node whose
links are all internalX = 1): this fraction is indeed much higher in real than in randgnaphs. We also observe
that real graphs exhibit fewer nodes with very low (or nuiidtions of internal links (though the fraction of nodes
with nointernal link is high in both cases). In this respect too,dh&asets behave differently: fondb-movieshe
probability of having a 102 fraction of internal links is more than one order of magnétuarger in the random
than in the real graph, whilElickr-tags curves are close to be superimposed at low fractions. Ndteethis is
not directly related to the fact that the number of intertratd is underestimated or not in random graphs: for
Delicious-tagghe ratio between the number afinternal links in the real and in the random case is smdflant
for Flickr-tags but the difference between the distributions of the fiactf internal links per node are larger for
Delicious-tagghan forFlickr-tags
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Finally, the very low fractions that we observe are assedi& nodes with high degree. Indeed, for dnypode
u with ki (u) # 0, we must havek-(u)/k*(u) > 1/k*(u). Therefore, we study in the following the correlation
between the degree of a node and its number of internal links.

4.3 Correlation of internal links with node degrees

We investigate in this section the relationship betwkerand the bipartite degrele plotting on Figure 5 the
average degree of nodes with internal dedgeas a function ok;- for the real datasets and the randomized ones.
We observe that both real and random curves in several casdsecapproximated by a sub-linear law on several
decades. However, this model is unsatisfactorP@r-filesdatabase, and questionable on cases where the values
are too rare or too scattered: most noticedbtgb-moviesand Flickr-groups The dispersion observed at large
degrees is a consequence of the heterogeneous degreeutitii the number of nodes with high degree being
low.

Imdb-movies: Delicious-tags: Flickr-tags: Flickr-commis:
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Fig. 5 Average degrek as a function of the internal degree:.

If we suppose that the fact that a given link is internal iseipendent from the node’s degree, then nodes of
internal degred;- should have on average a degkee ki /a, whereaq is the average fraction of -internal links
on the whole graph, and the plots of Figure 5 would be lindarandom graphs have a sublinear behavior, that
means that nodes with large degrees have on average a higttéori of internal links. This effect can be explained
qualitatively: increasing the degree of a nadeeverything being otherwise unchanged - implies increptie
probability that one of its neighborss such thaiN(v) \ {u} € N(N(u)\ {v}).

On the other hand, the slope for real graphs is in most caggasrlthan for the random ones - again tagging
datasets exhibit a different behavior. So there is an adtitieffect leading high degree nodes to have not as
high an internal degree as expected by considering onlyegeee distributions. This is consistent with previous
observations: the real case provides more internal lindsfemer nodes with a low (but not null) fraction of such
links, which must be high degree nodes. This stems from tttétat if nodess andv are neighbors, the probability
thatN(v) \ {u} € N(N(u)\ {v}) is all the more important i has a small degree anch large one. Therefore we
expect that degree-correlated graphs yield larger sldmasdegree-anticorrelated ones. Yet, a more quantitative
understanding of these phenomena calls for a study of theedegrrelations.

5 Removing internal links

When modeling complex networks using bipartite graphs [Mew et al. 2001, Guillaume et al. 2004], the pres-
ence of internal links may be a problem as they are poorlyuregtby models. To this regard, removing internal
links before generating a random bipartite graph may ledxbtter models. Moreover, internal links are precisely
these links in a bipartite graph which may be removed witlthiainging the projection. As the bipartite graph may
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be seen as a compact encoding of its projection [Latapy 208B], one then obtains an even more compressed
encoding. Considering the example of ®P2P-filesdataset, it demands 30 MB if stored as a usual 2-mode table of
lists, while the corresponding-projection (i.e. users) demands 213 MB, and thprojection 4.6 GB, if stored as

a table of edges.

However, removing internal links is not trivial, as remaoyione specific linku,v) may change the nature of
other links: while they were internal in the initial graphey may not be internal anymore after the removal of
(u,v). See Figure 6 for an example. Therefore, in order to obtaiipartite graph with no internal link but still
the same projection (and savanimalgraph to this regard), it is not possible in general to dedéitimitial internal
links since this would alter dramatically the structureha projection. So, the set of internal links must be updated
after each removal. Going further, there may exist remavategyies which maximize the number of removals,
whereas others may minimize it.

i i k I i i K I c
A B C D A B C D B
G G =G-(Ai) G, =G,

Fig. 6 Influence of the deletion process on internal links{(A,i), (B, j),(C,k),(D,l)} are L-internal links ofG, yet deleting(A,i) leads to
G where{(B, j),(C,k),(D,l)} are no longerL-internal links, as they are the only links @ ensuring thaA is connected to respectiveB; C
andDinG, .

To explore these questions, let us consider a random rermpovass, where each step consists in choosing an
internal link at random and removing it, and where such stepsterated until no internal link remains. Figure 7
presents the number of remaining internal links as a funatiothe number of internal link removed for typical
cases. We also plot the upper boufd- x (wherex denotes the number of link removals), which represents the
hypothetical case where all links initially internal remaiternal during the whole process.

Imdb-movies: P2P-files:
L -internal links: T-internal links: L -internal links: T-internal links:
5.1¢ 16.10
g 7 i
21¢ V1 6.1(;:
o by

Oo 10* 21d 31d 41d sad 00 10 21 31d  aad 00 210 410 6.;[(? 00 410 810 1210 1610

Fig. 7 Number of internal links remaining as a function of the numiiedeletions. Red thick line: random deletion processelthin line:
theoretical upper bound.

This random deletion process leads to a pruned bipartifghgcmntaining the information of the 1-mode graph.
Going back to the example of tiR2P dataset, the obtained 2-mode storage graph demands 12 Miefoglated
L -projection and 22 MB for thé@ one, thus enabling a compression to 0.40 (resp. 0.73) whapa@d to the
standard 30 MB bipartite representation of the network -etviig itself a compact encoding of the projections.

To go further, one may seek strategies that remove as maennaitlinks as possible, for instance using a
greedy algorithm selecting at each step the internal liaKlilgg to the lowest decrease of the number of remaining
internal links. This is however out of the scope of this paper

6 Conclusion

We introduced the notion of internal links and pairs in bijtargraphs, and proposed it as an important notion
for analyzing real-world complex networks. Using a wide gkteal-world examples, we observed that internal
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links are very frequent in practice, and that associatedsttas are fruitful measures to point out similarities and
differences among real-world networkihis makes them a relevant tool for the analysis of bipagiitgohs and
researchers confronted with a given network can use thismtd get a better understanding of Moreover,
removing internal links may be used to compact bipartitevdings of graphs and to improve their modeling.

We provided a first step towards the use and understandingerhal links and pairsto go one step further,
it would be helpful to derive analytical results on randomdels such as the probability for a link or a pair to be
internal.On another level, further investigations could bring us enqaecise information about the role of internal
links, in particular regarding the dynamidor instance, we gave evidence in a recent article [Alladile2011]
that internal pairs may become internal links with high fzdoitity in future evolution of the graph. We therefore
expect that these notions will be useful for recommandatlgarithms.One may also study the links (and pairs)
which are bothlL- andT-internal, as they may have a special importance in a network
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