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Abstract

The degree distribution of the Internet topology is considered as one
of its main properties. However, it is only known through a measure-
ment procedure which gives a biased estimate. This measurement may
in first approximation be modeled by a BFS (Breadth-First Search)
tree. We explore here our ability to infer the type (Poisson or power-
law) of the degree distribution from such a limited knowledge. We
design procedures which estimate the degree distribution of a graph
from a BFS or multi-BFS trees, and show experimentally (on models
and real-world data) that our approaches succeed in making the differ-
ence between Poisson and power-law degree distribution and in some
cases can also estimate the number of links. In addition, we establish
a method, which is a diminishing urn, to analyze the procedure of the
queue. We analyze the profile of the BFS tree from a random graph
with a given degree distribution. The expected number of nodes and
the the expected number of invisible links at each level of BFS tree are
two main results that we obtain. Using these informations, we propose
two new methodologies to decide on the type of the underlying graph.

Key words: Topology of Internet, BFS
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10 CHAPTER 1. INTRODUCTION

1.1 Complex networks

Complex networks from the real world, modeled as graphs, appear in many con-
texts, such as metabolic networks, protein interactions or topology of the brain
in biology [Alb05, JTA+00, SBH02], relationships or exchanges of information in
society [HD03, LENA+01, NWS02, WF94], references or co-authoring in citation
analysis and occurrence in linguistic networks [Bir08, PNFB05].

In computer science, we can also cite many examples, like web graphs (hyper-
links between pages, see for instance [15], [BV04a, BV04b, Bro00, KKR+99]), or
data exchanges (in peer-to-peer systems, e-mail, etc, see for instance [HKLFM04,
LBGL05, LBLG04, VKMVS04]). The Internet may also be seen as a graph at sev-
eral levels [DF07]: Autonomous Systems (AS), routers and links between them,
or Internet Protocol (IP) hops between interfaces for instance. For a decade,
these graphs have been at the core of an intense research activity [DF07, FFF99,
GMZ03, KCC+07, MP01a, RsA04, WAD09] aimed at a better understanding and
management of the Internet, which plays a crucial role in our society.

Most graphs from the examples cited above have some nontrivial statistical
properties. The term nontrivial indicates that the properties of real-world graphs
are significantly different from those of model graphs, such as lattices, rings and
random graphs1. The main such properties [DGM08] are:

• Small density2: A dense graph is a graph in which the number of links is
close to the maximal number of links. The opposite, a graph with far fewer
links, is a sparse graph. The distinction between sparse and dense graphs is
rather vague, and depends on the context, but most graphs met in practice
are clearly sparse, with a number of links of the order of the number of
nodes.

• Giant component: A giant component is a connected subgraph that contains
the majority of all nodes [MR98]. For random graphs, it is not guaranteed
that there always exists a giant component [Bol84, ER60], but for real-world
graphs most nodes tend to be connected.

• Small diameter3 and small average distance between nodes: This property
sometimes leads to call real-world graphs as small-world graphs. In other
words, between any two nodes, there is a short path (which is not true for
lattices) [AJB99, BR04, CL04, NSW01].

1The concept random graphs varies according to the context. In this introduction, it refers
to the graphs from the ER model [Bol01], i.e. graphs chosen at random among the ones with a
given number of nodes and links

2For undirected simple graphs, the graph density is defined as: D = 2|E|
|V |(|V |−1) , where |E| is

the number of links and |V | is the number of nodes.
3The diameter of a graph is the length of the longest shortest path between any two nodes

of this graph.
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• Heterogeneous degree distribution: The degree distribution of a graph is
the fraction Pk of nodes with degree k, for all k. A degree distribution is
homogeneous, if all the values are close to the average, like in Poisson and
Gaussian distributions; a degree distribution is heterogeneous, if there is a
huge variability between degrees, with several orders of magnitude between
them. When a distribution is heterogeneous, it makes sense to try to mea-
sure this heterogeneity rather than the average value, which then has little
meaning. In some cases, this can be done by fitting the distribution by a
power-law, i.e. a distribution of the form pk ∝ k−α. The degree distribution
of real-world graphs often is well fitted by a power-law distribution with an
exponent between 2 and 3 [CSN09].

• Strong clustering coefficient4: Several variants of this notion coexist [WS98,
Hua06], their common goal being to capture the fact that nodes in a graph
tend to form groups of strongly connected subgraph. In real-world networks,
this is much more present than in random graphs.

Despite this knowledge of some common properties of most real-world graphs,
understanding their structures and their evolutions is still challenge. Researchers
have studied these key questions in the last years and they focus therefore on four
main research areas: measurement, analysis, modeling and algorithmics of these
networks [Lat07].

Measurement. In order to study complex networks like the Internet, the Web,
social networks or biological networks, first of all one has to explore them. How-
ever, most real-world graphs are not directly available: data (information about
nodes and links) are collected by some measurement procedures. How to per-
form the measurement is itself a challenge which depends on the various cases.
In addition, obtained views are in general partial because of the enormous size
of the considered cases. Such partial views reveal some properties in a biased
form. Therefore, it is necessary to study the bias and try to correct it, either by
improving the procedure, or correcting the results.

Analysis. Given a real-world graph, the first step is to describe its structure
(static view) and evolution (dynamic view). This is done using statistical notions
and/or structural ones, aiming at capturing the key features of the graph. This
topic has led to an important stream of studies [AJB00, BA99, BGLL08, CSWN00,
CEAH00, WF94]. The definition of such notions is however not trivial, as well as
the evaluation of their relevance and the interpretation of obtained descriptions.
The main method currently is to compare the real-world complex networks to
random graphs in similar classes.

4Two versions of this measure exist: the global and the local. The global version was designed
to give an overall indication of the clustering in the network, whereas the local gives an indication
of the embeddedness of single nodes.
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Modeling. In order to explain the nature of observations, to develop mathe-
matically rigorous results and to conduct appropriate simulations, it is important
to capture observed properties in models of real-world complex networks. This
is generally done by the random sampling of graphs in a specific class of graphs
generated by some explicit construction [Bol01, MR95, BAJ99, GLM06, NWS02].
We then obtain artificial graphs similar to the real ones regarding the selected
properties.

Algorithmics. Finally, the study of very large graphs naturally calls for algo-
rithmics for two reasons. First, the context of real networks raises original algo-
rithms questions (such as community detection), which did not exist before. In
addition, solutions to common classical algorithmic problems (such as the calcula-
tion of the diameter) are no longer applicable because of the size of the considered
graphs. On the other side, the properties encountered in practice may be used to
improve the efficiency of algorithms on real networks.

1.2 The case of the Internet

In the case of the Internet, the most frequently used measurement tool is traceroute
[7], available on most operating systems5. It is a computer network diagnostic
tool for displaying the route (path) followed by packets and measuring transit
delays across an Internet Protocol (IP) network6. Each route consists of a monitor
where traceroute is launched, a destination that is an arbitrary IP address that we
indicate as a parameter of traceroute and a set of intermediate nodes. An image
of the topology of the Internet is then obtained by merging a great number of
such routes. If we increase the number of monitors, some properties will be better
estimated [DAHB+06, GLM06, GL05].

A property of high interest in the map of the Internet is its degree distribution,
i.e. the fraction Pk of nodes with k links, for all k: it may have a strong influence
on the robustness of the network [AJB00, MLG09, CEAH00, CSWN00, KW08,
AB02], on protocol design [MP01b], and on spreading of information [BBCS05,
RsA04]. Moreover, it is often claimed that these degree distributions may deviate
significantly from what classical models assume [AJB00, FFF99, RsA04, WAD09],
which leads to an intense activity on modeling issues [FKP02, ALWD05].

However, the degree distribution of the Internet topology (at any of the levels
cited above) is not readily available: one only has access to samples of these graphs,
obtained through measurement procedures which are intricate, time and resource

5On Microsoft Windows operating systems it is named tracert [14]. Windows NT-based
operating systems also provide PathPing [5], with similar functionality. Variants with similar
functionality are also available, such as tracepath on Linux installations [12, 4]. For Internet
Protocol Version 6 (IPv6) the tool sometimes has the name traceroute6 [13].

6If we focus on AS network, we just need and accurate IP-to-AS mapping. Some researchers
work on this topic in order to develop a scalable and accurate AS-level traceroute tool [MRWK03].
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consuming, and far from complete. Even more important, these samples are biased
by the measurement procedure, which may have a strong influence on the observed
degree distribution [DAHB+06, AKCM05, LBCX03, WAD09, CM04, PR04].

As a consequence, the current situation regarding the degree distribution of the
Internet is unclear [WAD09, LAWD04, KW08, LM08]. The relevance of obtained
samples regarding the degree distribution observed from them is far from being
established. In particular, there is a controversy on whether the Internet topology
may have a homogeneous (typically Poisson), or heterogeneous (typically power-
law) degree distribution [KW08, WAD09]. In order to obtain an answer to this
question, the most widely used approach currently is to conduct larger and larger
measurements, in the expectation that these will lead to accurate observations
[LM08, SS05, CHK+09]. However, this may be a dead end: the degree distribution
may be intrinsically biased by the measurement process [AKCM05, LBCX03] and
in practice it may depend much on the sample size [LM08].

1.3 This thesis

We explore in this thesis a completely different approach: we consider a simple
model of the Internet topology measurements and try to derive the type of the
degree distribution of the underlying graph from this limited observation. Our
basic goal therefore is to answer the following question: given the limited informa-
tion obtained from measurement, does the underlying topology more likely have a
heterogeneous (typically power-law) or a homogeneous (typically Poisson) degree
distribution?

In many cases (traceroute measurements, BGP tables, and AS-level traceroute,
typically), the measurement process may be approximated by a BFS (Breadth
First Search) tree7 from a given node of the network. Indeed, the Internet mea-
surements mostly consist in sets of routes (i.e. paths in the considered topology)
going from a monitor to a set of targets, collected from as many monitors as
possible. Since each route is modeled as a shortest path and since one may ex-
pect routes to have long common prefixes, the view from each monitor may be
approximated by a BFS tree. Although this is a rough approximation, in the
lack of a widely accepted and better solution, it has been used in many occasions
[LBCX03, OML08, AKCM05, VBD+07, DAHB+06]. We will use it in this thesis
too.

Finally, we focus in this thesis on deciding on the type of the degree
distribution (homogeneous or heterogeneous) of graphs from traceroute-

7In graph theory, breadth-first search (BFS) is a graph search algorithm [CLRS09] that begins
at the root node and explores all the neighboring nodes. Then for each of those nearest nodes,
it explores their unexplored neighbor nodes, and so on, until all nodes are covered.
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like measurements (modeled by BFS), using both experimental and an-
alytic methods.

1.4 Contributions

The following chapters of this thesis are organized as follows.

Chapter 2 describes some basic notations and concepts that we will use in this
thesis.

Chapter 3 describes the basic rebuilding procedure which reconstructs a graph
similar to the original one from one of its BFS trees. Comparing the distribution
of the rebuilt graph and the distribution in theoretical view, we may decide on the
type, either Poisson or power-law, in condition that the number of links is known.
According to different strategies of selection, either random or preferential, two
rebuilding strategies are proposed: RR and PP. The procedure is composed with
re-adding the same number of links that are invisible in BFS tree. In order to avoid
changing the diameter or the average distance a lot, we add links only among the
allowed positions. The validity of our strategies is verified with random model
graphs. Our strategy succeeds in deciding the type of the underlying graphs.

Chapter 4 develops the procedure of Chapter 3, while we no longer require the
condition the number of links. We choose the number of linksm from a wide range,
then for each m and for each type we test the KS distance between the theoretical
distribution and the distribution of the corresponding rebuilt graph. In those
triple of (type,m,KS), the minimum KS is chosen as the result of estimate. For
deciding type, our strategy always runs well. But for estimating the number of
links, a bias always presents for random model graphs.

Chapter 5 adapts our method with several monitors of BFS trees. While with
several complete BFS trees, we first merge these BFS trees into one graph and the
allowed positions are the intersection of the allowed positions of each BFS tree.
Then RR or PP strategies are applied with the merged graph. First, we test the
probability of link-detection on random model graphs. And we observe that about
10 roots are sufficient to cover a large part of links, so we choose the number of
monitor no more than 20 in practice. Using several BFS trees, we observe a more
exact result than using a single BFS tree. The estimate of the number of links is
very close to the underlying one.
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Chapter 6 contributes to some formal analysis on the profiles of BFS tree by
using generating functions and configuration model. The procedure of BFS use a
FIFO queue as the underlying data structure, which can be modeled as a dimin-
ishing urn problem. With the help of generating function and some technique of
PDE, we may have an explicit expression of the solution. To get a more intuitive
result, we compute two expectations: (1) the expected number of nodes at each
level in a BFS tree; (2) the expected number of invisible links at each level in a
BFS tree.

Chapter 7 presents two applications by using the analytic results of Chapter 6.
Using the expected number of invisible links, we refine RR and PP strategies
and we propose two improved versions: RRIL and PPIL strategies. Using the
expected number of nodes at each level, the estimation is conducted by comparing
the detected “node vector” and the “theoretical node vectors”. By comparing
node vectors, we need only a bounded BFS tree rather than a complete BFS tree.
But the results on real-world graphs show that these two applications are not
stable ones.

Chapter 8 gives the comparison of different methods and the suggestion of the
future works.



16 CHAPTER 1. INTRODUCTION



Chapter 2
Preliminaries

Contents
2.1 Graphs and degree distributions . . . . . . . . . . . . 18

2.1.1 Basic concepts and notations . . . . . . . . . . . . . . . 18

2.1.2 Special distributions . . . . . . . . . . . . . . . . . . . . 19

2.1.3 Comparing two distributions . . . . . . . . . . . . . . . 20

2.1.4 Random graphs . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 State-of-the-art . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Measurement from m monitors to k destinations . . . . 23

2.2.2 Degree distribution of BFS trees . . . . . . . . . . . . . 25

17



18 CHAPTER 2. PRELIMINARIES

2.1 Graphs and degree distributions

In this section, we present some basic concepts and notations for graphs and degree
distributions, which are used in all this thesis.

2.1.1 Basic concepts and notations

A graph is an ordered pair G = (V,E) comprising a set V of vertices or nodes
together with a set E of edges, lines or links; in this thesis we use the notations:
nodes and links. Links are 2-element subsets of V (i.e. a link is composed of two
nodes.), and the relation is represented as an unordered pair. This type of graphs
may be named precisely as undirected and simple. More generally, E may be a
multi-set of unordered pairs of (not necessarily distinct) nodes; G is then called a
multigraph or pseudograph.

The nodes belonging to a link are called the ends or endpoints of the link. A
node may exist in a graph and not belong to any link.

The sets V and E are usually taken to be finite, and many of the well-known
results are not true (or are rather different) for infinite graphs because many of
the arguments fail in the infinite case. The order of a graph is n = |V | (its number
of nodes). A graph’s size is m = |E| (its number of links). The degree of a node
is the number of links that are connected to it, where a link that connects to the
node at both ends (a loop) is counted twice. For a link {u, v}, graph theorists
sometimes use the notation uv.

An important property of a graph is its degree sequence.

Definition 1. Degree sequence {dj}: the degree sequence of an undirected graph
is the sequence of integers dj with dj equal to the number of nodes of degree j for
all j ≥ 0.

For example, a degree sequence (0, 3, 1, 1, 2) means that there is no node with
degree 0, three nodes with degree 1, one with degree 2, one with degree 3 and two
with degree 4. If a degree sequence is given, it is easy to count the number of links

|E| =
∑

j jdj

2
, half of sum of all degrees. Note that the only constraint for a degree

sequence is that the sum
∑

j jdj must be an even number.

Example 1. Given a degree sequence (0, 0, 2, 2), that is two nodes with degree 2
and two nodes with degree 3, Figure 2.1 shows two possible graphs.

In practice, the degree distribution is sometimes used in place of the degree
sequence.

Definition 2. Degree distribution {aj}: aj is the fraction of nodes in the graph
with degree j. Thus if there are n nodes in total and dj of them have degree j, we
have aj = dj/n. In this thesis PG denotes the node degree distribution of a graph
G, and PG

j is a synonym of aj.
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Figure 2.1: Two possible constructions of a graph.

The generating function of a degree distribution is defined as g(z) =
∑

j ajz
j.

We then obtain some direct results. For instance, the sum of degree distribution
must be 1, i.e. g(1) = 11; and the average degree is expressed as δ = g′(1) =
∑

j jaj.

2.1.2 Special distributions

We present have some typical degree distributions often used in the domain of
complex networks. The frequently used types in this thesis are Regular, Poisson
and Power-law. In each case, we give the explicit aj and the respective generating
function g(z) =

∑

j ajz
j :

• Regular r: ar = 1 and g(z) = zr. Some lattices and rings have a regular
degree distribution.

• Poisson λ: aj =
e−λλj

j!
and g(z) = eλ(z−1), where λ, the parameter of Poisson,

is a positive real value (the average of considered values), see Figure 2.2, left.

• Power-law α: aj = Cj−α and g(z) = C
∑

j j
−αzj, where C is the coefficient

of normalization C = 1
∑

j j
−α and α is a constant parameter of the power-

law distribution known as the exponent or scaling parameter, see Figure 2.2,
center.

• Power-law α with exponential cutoff β: aj = Cj−α exp
(

− j

β

)

. Such distri-

butions are also called truncated power-law, see Figure 2.2, right.

1Generating functions provide an efficient way to deal with degree distribution [NSW01].
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Figure 2.2: Left: distribution Poisson 5; Center: distribution of power-law 2.5,
Right: distribution of power-law 2.5 with cutoff 10.
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Figure 2.3: Left: ICDD of Poisson 5; Center: ICDD of power-law 2.5; Right:
ICDD of power-law 2.5 with cutoff 10.

For readability reasons, in particular in the case of empirical heterogeneous
distributions, it is often more convenient to plot Inverse Cumulative Degree Dis-
tribution (ICDD), which is in bijection with the original distribution.

Definition 3. ICDD Inverse Cumulative Degree Distribution: given a distribu-
tion {aj}, the corresponding ICDD is ICDD(j) = 1−∑j

k=1 ak.

All ICDD are monotone decreasing from 1 to 0. See examples in Figure 2.3.

2.1.3 Comparing two distributions

Comparing distributions is a challenge in itself, for which no general automatic
procedure is commonly accepted. To perform this, we will use two classical statisti-
cal tests, Kolmogorov-Smirnov test [EDJ+08] and the Statistical Distance [Bas89],
defined as:

Definition 4. Kolmogorov-Smirnov test:
KS test is the maximum difference of the cumulative values of two distributions P
and Q: KS(P,Q) = maxi|

∑i

k=1(Pk −Qk)|.

Definition 5. Statistical Distance:
The SD gives the sum of the absolute difference between two degree distributions
P and Q: SD(P,Q) =

∑

k=1 |Pk −Qk|.
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Example 2. Let us consider for instance the two distributions:
P = (0.1, 0.1, 0.2, 0.3, 0.1, 0.2) and
Q = (0.3, 0.1, 0.1, 0.2, 0.2, 0.1)
As shown in Table 2.1, KS(P,Q) = 0.2 the fourth row at i = 1 or i = 2 and

Table 2.1: Computation of KS and SD
j 1 2 3 4 5 6

Pj 0.1 0.1 0.2 0.3 0.1 0.2
Qj 0.3 0.1 0.1 0.2 0.2 0.1

|Pj −Qj| 0.2 0 0.1 0.1 0.1 0.1

|∑j

k=1 (Pk −Qk) | 0.2 0.2 0.1 0 0.1 0

SD(P,Q) = 0.6 is the sum of the third row.

KS value and the SD value are between 0 and 2. They both have their own
advantages and disadvantages, and provide complementary information: KS test
may be seen as a worst case, and the SD as an average one.

2.1.4 Random graphs

ER model

In graph theory, Erdös Rényi (ER) model [Bol01, ER60] is one that sets a link
between each pair of nodes with equal probability, independently of the other links,
also noted as G(n, p) model. Each link is included in the graph with probability
p.

A graph in G(n, p) has on average
(

n

2

)

p links. The distribution of the degree
of any particular node is binomial:

P (deg(v) = k) =

(

n− 1

k

)

pk (1− p)n−1−k

where n is the total number of nodes in the graph.

Configuration model

To deal precisely with a random graph, sometimes a multiple one or one with self-
loop links (links started and terminated at the same node), with a given degree
sequence {dj}, we use the configuration model [Bol01]: for each node of degree j,
we create j copies, and then the links of the graph are determined by two copies
according to a uniformly random matching among all these copies. In the process
of matching, two copies associated by a link mutually call partner.
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Figure 2.4: The configuration model with a given degree sequence (1, 1, 1), namely
one node with degree 1, one with degree 2 and one with degree 3. The left part
corresponds the given degree sequence and the right part are two examples (but
not all) of random matching among these copies. The generated graph may have
multiple links and self-loop links.

Example 3. See Figure 2.4. The round points represent nodes and the square
points represent copies. Here, the configuration model with a given degree sequence
(1, 1, 1), namely one node with degree 1, one with degree 2 and one with degree 3.
The left part of figure corresponds to the given degree sequence (1, 1, 1) and the
right part consist in two examples (but not all) of random matching among these
copies. Attention: the generated graph may have multiple links and self-loop links.

Given a degree distribution, the procedure of a graph generator consists of
two main steps: (1) generate a random sequence from a specified distribution,
parameters [EHP00], see also [1]. (2) generate random graphs from a sequence
[VL05], see also [2].

2.2 State-of-the-art

Only a few previous works deal with a theoretical approach to the problem of
bias in traceroute-like measurements. They confirm the previous experimental
work, which showed that this bias, although it decreases when the size of the
measurement growes, has a crucial impact on observations [GLM06, GL05].

In this section, we review the main theoretical contributions published on this
topic, first show the necessary assumptions to idealize the union of traceroute



2.2. STATE-OF-THE-ART 23

paths as a BFS tree (see Subsection 2.2.1). The degree distribution of a BFS tree
has been proved a biased one (see Subsection 2.2.2).

2.2.1 Measurement from m monitors to k destinations [DAHB+06]

Many Internet measurement projects build Internet maps by collecting data from
multiple monitors [9, 10, 11, 8, 3]. The general strategy consists in acquiring a
partial view of the network from each monitor and merging these views in order
to get a presumably accurate global map. This provides a map, which remains
incomplete but may be very large. Properties of such maps are supposed to be
reasonable approximations of the properties of the actual Internet.

More formally, let us consider a sparse undirected graph G = (V,E) with nodes
V = {v1, v2, ...vn} and links E. Then let us define a set of monitor nodes S =
{i1, i2, ...ins

} and a set of target nodes T = {j1, j2...jnt
} describing the deployment

of ns monitors and nt targets. For each monitor-target pair, we compute a shortest
path connecting them and merge all obtained paths. We call this process a (ns, nt)-
traceroute measurement and denote the obtained graph by G′ = (V ′, E ′). It is a
partial view (a subgraph) of G.

Unfortunately, even with a graph merging from a great number of traceroute
paths, the estimate of the degree distribution is still biased. First we check from
which factors this bias originates and we focus on two basic problems: node-
detection and link-detection.

The main purpose is to compute the probability of link-detection and node-
detection which are functions of ns, nt and the topology of the underlying graph.

First, we introduce some notations:

• σ
(l,m)
i : that takes the value 1 if the node i belongs to the path between nodes

l and m, and 0 otherwise.

• σ
(l,m)
i,j : that takes the value 1 if the link ij belongs to the path between nodes

l and m, and 0 otherwise.

• δi,j: Kronecker’s delta is a function of two variables i and j, usually integers,
which is 1 if they are equal and 0 otherwise.

• ρS: the density of monitors ρS = ns

n
.

• ρT : the density of targets ρT = nt

n
.

• ǫ: the density of probes ǫ = nsnt

n
.

• 〈...〉: denotes the average.

• bi: node betweenness, the number of shortest paths between pairs of nodes

in the network that pass through node i, bi =
∑

l 6=m 6=i

〈

σ
(l,m)
i

〉

.
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Figure 2.5: Left: Poisson graph (from ER model) with average degree 10; Right:
Power-law graph (from MR model) with exponent 2.5. Both graphs have 10000
nodes. The notation x%− y% means that ρS = x and ρT = y.

• bi,j: edge betweenness, the number of shortest paths between pairs of nodes

in the network that pass through link ij, bij =
∑

l 6=m

〈

σ
(l,m)
i,j

〉

.

Theorem 1. [DAHB+06] If the situation of the measurement satisfies the condi-
tion ρSρT ≪ 1, then the average discovery probability of a link is

E (πi,j) ∼ 1− exp (−ρSρT bij) (2.1)

Theorem 2. [DAHB+06] If the situation of the measurement satisfies the condi-
tion ρSρT ≪ 1, then the average discovery probability of a node is

E (πi) ∼ 1− exp (−ρSρT bi) (2.2)

The betweenness (see also [Bra01, Fre77]) gives a measure of the amount of all-
to-all traffic that goes through a link or a node, if the shortest path is used as the
metric defining the optimal path between pairs of nodes, and it can be considered
as a non-local measure of the centrality of a link or a node in the graph.

The edge betweenness has values between 2 and n(n − 1). If the densities of
monitors and targets are small but finite in the limit of large n, it is clear that
links with low betweenness have 〈πi,j〉 ∼ O(N−1). This fact readily implies that in
real situations the discovery process is generally not complete, a large part of low
betweenness links being not discovered, and that the network sampling is made
progressively more accurate by increasing the density of probes ǫ.

According to Theorem 1, a great fraction of links cannot be discovered while
ǫ≪ 1. This fact implicates that the degree distribution under the same condition
is biased. In [GLM06], there are simulation results on degree distribution.

For ER graphs with low average degree Poisson, as shown in Figure 2.5: Left,
the obtained degree distribution converges quite slowly. For configuration model
with power-law, although lines that fit the degree distribution coincide not well,
they are really parallel ones. As we know, the parallel lines in a log-log scale plot
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must have the same exponent α. In both cases, in order to obtain an enough
accurate sampling, at least 5% nodes should be taken as monitors and targets.
Unfortunately, the number of monitors are strictly constrained by social reasons,
only a relative small number of monitors can be handled in a real simulation.

2.2.2 Degree distribution of BFS trees [AKCM05]

The degree distribution of a BFS tree from a configuration model graph is proved
to be a power-law, in the limit of parameters of regular graphs and Poisson graphs.
In general case, we have:

Theorem 3. Let G be a random multi-graph with a sober 2 degree distribution
{aj}, and assume that G is connected. Let T be a BFS tree on G, and let ABFS

j

be the number of nodes of degree j in T . There exists a constant η > 0 such that
with high probability 3, |ABFS

j − aBFS
j n| < n1−η for all j, where

aBFS
m+1 =

∑

i

ai

[∫ 1

0

iti−1

(

i− 1

m

)

pvis (t)
m (1− pvis (t))

i−1−m dt

]

pvis (t) =
1

∑

j jajt
j

∑

k

kakt
k

(

∑

j jajt
j

δt2

)k

More concisely, if g(z) =
∑∞

0 ajz
j is the generating function of the degree distri-

bution {aj} of G, then aBFS
j is the coefficient of zj in

gBFS (z) = z

∫ 1

0

g′
[

t− (1− z)

g′ (1)
g′
(

g′ (t)

g′ (1)

)]

dt (2.3)

The requirement of sober ensure that the graph G is connected with a high
probability. This assumption is reasonable in practice, because the isolated nodes
have not much sense in our research. Then we give three examples: regular graphs,
Poisson graphs and power-law graphs.

Regular graphs

Using Equation (2.3), we derive the observed degree distribution of a BFS tree
from a random regular graph Gr:

Lemma 1. The generating function for a r-regular graph is g(z) = zr, the expected
degree distribution of BFS T is given by:

aBFS
m+1 =

Γ (r) Γ
(

m+ 1
r−2

)

Γ
(

r + 1
r−2

)

(r − 2)m!
(2.4)

2A degree distribution {aj} is sober if aj = 0 for j < 3, and there exist constants α > 2 and
C > 0 such that aj < Cj−α for all j. In fact, if the tested graphs is guaranteed to be connected,
the assumption of sober is not necessary.

3a sequence of events ǫn occurs with high probability if Prob [ǫn] = 1− o (1) as n→∞.
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Figure 2.6: The degree distribution of BFS from Poisson 3 graph and Poisson 10
with 1000 nodes.

then, aBFS
m+1 ∼ 1

m(r−2)
4 for large r.

Proof. Note that Γ(m) < Γ(m + ǫ) < Γ(m)mǫ, for all m ≥ 2 and all 0 < ǫ < 1,
therefore, for m ≥ 2, aBFS

m+1 is bounded as follows:

m−1

r
1

r−2 (r − 2)
< aBFS

m+1 <
m−1+ 1

r−2

r − 2
(2.5)

For any fixed r, this gives a power-law degree distribution, and where r is large,
aBFS
m+1 ∼ 1

m(r−2)
.

Poisson graphs

Lemma 2. The generating function for a Poisson graph is g(z) = e−λ(1−z), the
expected degree distribution of BFS T is given by:

aBFS
m+1 =

Γ (m)

λm!
(1− o (1)) (2.6)

Lemma 2 implies that for a random Poisson graph, the degree distribution of
BFS T is aBFS

m+1 ∼ 1
λm

.
In Figure 2.6, we show the ICDD curves of Poisson graphs (the left is parame-

terized 3 and the right is parameterized 10) and their BFS trees. The X-ordinate
is the degrees and the Y-ordinate is the value of ICDD. In both two cases, the
curves of the BFS trees have an obviously bias on degree distribution.

Power-law graphs

For power-law-α graph, the corresponding generating function of degree distri-

bution is g(z) =
∑

j j
−α

∑

j j
1−α = ζ(α)

ζ(α−1)
, where ζ(α) is the Riemann zeta function

4The ∼ sign means “approximately equal”, in the precise sense that the ratio of both terms
tends to 1 as n gets large.
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Figure 2.7: The degree distribution of BFS from power-law 2.1 graph and power-
law 2.3 with 1000 nodes.

[Edw01, Ivi03] that is defined as ζ(α) =
∑∞

j=1 j
−α. There is not yet a close

and explicit calculation for a general real α. Because there is no explicit form
of g(z), some researches [CGW07] have been conducted using some reasonable
approximations.

Lemma 3. Let v be a node with degree j in graph G, Then

E [degBFS(v)|degG(v) = j] ≈ j (j − 1)

j + 3
(2.7)

With Equation (2.7), we observe that for high degree nodes, the factor j−1
j+3

is asymptoticly to 1. That is to say, the estimated exponent converges to the
underlying one. However, nodes of low and moderate degree have a large effect
on numerical estimates of the exponent, especially in finite-sized graphs or when
the average degree of the underlying graph is relatively large.

In Figure 2.7, we show the ICDD curves of power-law graphs (The left is
parameterized 2.1 and the right is parameterized 2.3) and their BFS trees. The
X-ordinate is the degrees and the Y-ordinate is the value of ICDD. Both X-ordinate
and Y-ordinate are in log-log scale. We observe that both the degree distribution
of the original graph and that of the BFS tree have a power-law, but they are not
coincident. That is to say, the estimation of degree distribution has a bias on the
parameter of the power-law.
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3.1 Introduction

As deciding on the degree distribution is a challenging task, we will make a few
important assumptions in order to make a first step towards this ambitious goal.
We first assume that the order of the graph, i.e. its number of nodes n, is given.
In the case of the Internet, this is a reasonable assumption [VBD+07, HPG+08].
In addition, we will assume that the underlying graph is a random graph with
either a Poisson or power-law degree distribution. And we also assume that we
have a complete BFS of the considered graph: all nodes (but not all links) in the
graph are reached by the exploration. Finally, we assume that the number of links
m of the graph is known. It is clear that these assumptions are very strong, and
are not attainable in practice. We however consider them as reasonable for a first
approximation, and give hints of how to reduce the knowledge we used in the next
chapters.

We describe our methodology that decides on the type of a graph with the
number of nodes, the number of links and a complete BFS tree in Section 3.2. It
relies on several strategies to infer a degree distribution from a BFS and we detail
the procedure in Section 3.3 and the algorithm in Section 3.4. In Section 3.5 and
Section 3.6 we experimentally evaluate the validity of our approach on random
model graphs and real-world graphs respectively.

3.2 Methodology

Our methodology is sketched in Figure 3.1. It aims at deciding the type of the
degree distribution of an unknown graph G from one of its BFS tree T , its number
of nodes n and its number of links m obtained through a measurement. To do so,
we consider the two following hypotheses:

• (H1) G has a Poisson degree distribution P (1): P
(1)
j = λje−λ

j!
, in which λ = 2m

n

is the average degree.

• (H2) G has a power-law degree distribution P (2): P
(2)
j = Cj−α ,where C is

a normalizing coefficient and the average degree is
∑

j1−α
∑

j−α .

For each hypothesis, we build a graph according to a particular strategy which
is detailed in Section 3.3, thus obtaining G1 and G2, respectively. To compare
two distributions, we will use different distances between two degree distribution
D (such as KS or SD). Our expectation is that if hypothesis H1 is true (G is
Poisson) then the degree distribution PG1 of G1 will be closer to the theoretical
distribution P (1) than PG2 to P (2), D(PG1, P (1)) < D(PG2, P (2)), and conversely if
H2 is true (G is power-law) then the degree distribution PG2 of G2 will be closer
to P (2) than PG1 to P (1).
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Figure 3.1: Schema of our method. G is an unknown graph on which we perform
a measurement which gives its number of nodes n, its number of links m and
a BFS T . We then consider two different hypotheses: G has a Poisson degree
distribution with average degree λ or it has a power-law degree distribution with
exponent α. We build two graphs G1 and G2 each with a strategy in accordance
with the corresponding hypothesis. We then compare the degree distribution of
G1 to the expected one of G if hypothesis 1 is true, and the one of G2 to the
expected one of G if hypothesis 2 is true. The hypothesis which leads to the most
similar degree distributions is expected to be correct.
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We experimentally assess the validity of this approach by applying it to cases
where we know the original graph G (we obtain such graphs using models in Sec-
tion 3.5 and using real-world data in Section 3.6). We then compare the expected
theoretical degree distribution to the ones of the graphs obtained from each strat-
egy and check conformance of results with expectations.

3.3 Strategies for building graphs

Starting from a BFS T of a graph G with n nodes andm links and a hypothesis (H1
or H2) on the degree distribution of G (type Poisson or power-law), our objective
here is to iteratively add m− n+1 links to T in order to build a graph G′ with n
nodes, m links, and degree distribution similar to the one of G. We define different
link addition strategies according to the supposed type of G, Poisson or power-law.
In each case, we also show how to compute the expected degree distribution of
the resulting graph, without explicitly building them.

3.3.1 H1: G is Poisson (RR strategy)

Suppose G is a Poisson random graph. It may therefore be seen as the result of
an Erdös Rényi (ER) construction [Bol01]: starting with n nodes and no link, m

links are uniformly chosen among the n(n−1)
2

possible pairs of nodes. The expected

node degree distribution obtained this way follows a Poisson law: Pk = λke−λ

k!

where λ = 2m
n

is the average degree.

We may think of building a graph G′ similar to G by using a variant of the
ER construction: starting with the n nodes and n− 1 links of a BFS tree T , the
m− n+ 1 missing links are randomly added as in ER model.

But then T may not be a possible BFS tree of the rebuilt graph G′: any link
in G which is not in T is necessarily between two nodes in consecutive levels of
T , or in the same level of T (otherwise T would not be a shortest path tree and
thus not a BFS, see Figure 3.2). We call those positions at which we may add
a link allowed positions: in order to ensure that T is also a possible BFS tree of
G′ we add links only between nodes in consecutive levels or in the same level.
Since both endpoints of links are randomly chosen, we call this construction RR
(Random-Random) strategy.

We now show that the expected node degree distribution of G′ obtained with
RR strategy can be directly computed from n, m and T without explicitly con-
structing G′.

Let nk denote the number of nodes at level k in the BFS tree T . For each node
v at level k with degree j (one father node and j − 1 son nodes), three kinds of
links may be added: (1) to upper level k− 1, there are nk−1− 1 allowed positions,
all nodes in the upper level except the father of v; (2) to the same level of v, there
are nk − 1 allowed positions, all nodes in this level except v itself; (3) to lower
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Figure 3.2: Let us consider a part of a BFS of G, composed of a set of links A-B,
A-C, B-D, C-E and C-F. Links B-E and D-E may also be present in G, but not
link A-F.

level k+1, there are nk+1− j+1 allowed positions, all nodes at lower level except
the j − 1 sons of v.

Let Sjk be the number of allowed positions linked to a node at level k having
j neighbors: Sjk = nk−1+nk +nk+1− j− 1. On the other hand, let S be the total

number of allowed positions in a BFS tree T : S =
∑

k

(

nknk+1 − nk+1 +
nk(nk−1)

2

)

.

Therefore, if we make a random choice, the probability that this position links to
a given node v (at level k with degree j) is

Sjk

S
. We finally obtain the following

theorem.

Theorem 4. Given a tree T with n nodes, if we construct a graph G′ using RR
strategy, then the expectation of a node v with degree l in G′ is:

E (dG′(v) = l) =
1

n

∑

k>0

l
∑

j=1

njkP (j → l, k) (3.1)

where njk is the number of nodes with degree j at level k in T and P (j → l, k) =
(

m−n+1
l−j

)

(

Sjk

S

)l−j (

1− Sjk

S

)m−n+1−(l−j)

is the probability that a node v with degree

j at level k becomes a node of degree l in G′ after m−n+1 links have been added.

As each newly added link impacts two nodes, the values of P (j → l, k) are
independent from the other P (j′ → l′, k′). We will consider that this impact can
be ignored, when n and m is large enough. From this result, one may estimate the
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expectation of the degree distribution of G′ from n, m and T , without construct-
ing it explicitly. This is of high interest in practice, since it allows to compute
the expectation of degree distribution and compare it with degree distributions
obtained by the constructing strategies. Going further would however need precise
results on the expectation of degrees in T , which is a difficult problem [AKCM05].

3.3.2 H2: G is power-law (PP strategy)

Suppose now that G is a power-law graph. We therefore aim at designing a process
which builds from a BFS T of G, a graph G′ with power-law node degree distribu-
tion. To do this, as before, we add m− n+ 1 links between nodes in appropriate
levels of T . However, these pairs of nodes are no longer chosen uniformly at ran-
dom. Instead, we use a selection schema inspired from the preferential attachment
of the classical Barabási-Albert (BA) model [BAJ99, BA99, PR04]: we choose (in
the appropriate levels) nodes randomly with probability proportional to their de-
gree in T . As we choose both endpoints of added links according to preferential
attachment, we call this procedure PP (Preferential-Preferential) strategy.

We now show how to compute, for this strategy, the expected obtained degree
distribution.

Theorem 5. Given a tree T with n nodes, if we construct a graph G′ using PP
strategy, then the expectation of a node v with degree l in G′ is:

E (dG′(v) = l) =
1

n

∑

k>0

l
∑

j=1

njkP (j → l, k,m′) (3.2)

where njk is the number of nodes with degree j at level k in T and P (j → l, k,m′)
is the probability that a node v with degree j at level k in T is constructed as a
node with degree l in G′ after m′ links have been added to T .

Computation process. The term P (j → l, k,m′) may be obtained recursively:

P (j → l, k,m′) = (1− θ)P (j → l, k,m′ − 1) (3.3)

+ θ P (j + 1→ l, k,m′ − 1)

We split P (j → l, k,m′) into two parts which correspond to two cases (linked to
this node or not) when a new link is added. The probability that a newly added
link changes the node from degree j to j + 1 is denoted by θ.

In the following, we compute θ using four terms:

• θ1 : the probability that the node v is selected as the first endpoint of the
newly added link.

• θ2 : the probability that a node at upper level k − 1 is selected as the first
endpoint, and v is selected as the second endpoint.
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• θ3 : the probability that a node (except v) at level k is selected as the first
endpoint, and v is selected as the second endpoint.

• θ4 : the probability that a node at lower level k + 1 is selected as the first
endpoint, and v is selected as the second endpoint.

The sum of degrees of all nodes at the level k after t links have been added is
dk,t. In the following, we give the details of how to calculate for the case of PP
strategy.

θ1 =
j

2 (n− 1 + t)

θ2 =
dk−1,t

2 (n− 1 + t)

j

dk−2,t + dk−1,t + dk,t

θ3 =
dk,t − j

2 (n− 1 + t)

j

dk+1,t + dk,t + dk−1,t

θ4 =
dk+1,t

2 (n− 1 + t)

j

dk+2,t + dk+1,t + dk,t

The next problem is how to compute dk,t. We denote by Kk→k′ the probability
that a directed link is added from level k to k′, where k′ must be k, k − 1, k + 1.

dk,t = Kk→k (dk,t−1 + 2) + (Kk±1→k +Kk→k±1) (dk,t−1 + 1)

+ (1−Kk→k −Kk→k±1 −Kk±1→k) dk,t−1 (3.4)

Kk→k′ =
dk,t−1

2 (n− 1 + t)

dk′,t−1

dk−1,t−1 + dk,t−1 + dk+1,t−1

(3.5)

Using Equation (3.5) in the expressions Equation (3.4) shows that dk,t is a
function of dk′,t−1, which can be calculated by dynamic programming techniques.

Our computation process is not exact, since we have neglected to take into
account possible collision, i.e. positions selected several times. However, since we
deal with sparse graphs, in the case of model graphs as well as real graphs, the
number of links to be added to the BFS tree is much smaller than the number of
possible positions, and so there are very few collisions. From a practical viewpoint,
in the building process, we just ignore multiple links.

Similar to RR and PP strategies, one may propose two other possible strategies:
RP (first endpoint random, second endpoint preferential) strategy and PR strategy
whose theoretical degree distribution can be computed in a similar way. Intuitively,
these two strategies lead a rebuilt graph with mixed type, neither similar to Poisson
nor similar to power-law.
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3.4 Algorithm

Finally our approach consists in applying Algorithm 1. We call it SBm(RR,PP )
which means the algorithm that decides on the type with hypothesis m using
single BFS tree and rebuild the graph using RR and PP strategies.

Data: The number of nodes n, the number of links m and a BFS tree T of
a graph G.

Result: The type of G.
Compute the set of allowed positions Eallowed according to T ;1

Let m′ ← m− n+ 1 ;2

The rebuilt graph G′
1 ← T ;3

while m′ > 0 do4

Randomly (RR strategy) choose a position uv from Eallowed ;5

Add link uv into G′
1: G

′
1 ← G′

1 + uv ;6

m′ ← m′ − 1 ;7

end8

m′ ← m− n+ 1 ;9

The rebuilt graph G′
2 ← T ;10

while m′ > 0 do11

Preferentially (PP strategy) choose a position uv from Eallowed ;12

Add link uv into G′
2, G

′
2 ← G′

2 + uv ;13

m′ ← m′ − 1 ;14

end15

Compute theoretical distribution P Poisson corresponding to n and m ;16

Compute theoretical distribution P Power−law corresponding to n and m ;17

KSPoisson = KS(P Poisson, PG′

1) ;18

KSPower−law = KS(P power−law, PG′

2) ;19

if KSPoisson < KSPower−law then20

Return Poisson ;21

else22

Return power-law ;23

end24

Algorithm 1: SBm(RR,PP ): Algorithm of deciding type of the distribu-
tion of a graph for m, n and a BFS tree.

Remarks: Notice that in Algorithm 1 we use KS test to compare two distri-
butions. Other comparison methods, such as SD distance, may be used in place
of KS test and lead to different conclusion. We will see in the following that, in
all the cases we considered, the results were the same using KS and SD. Impor-
tantly, one may also obtain the result without explicitly building the graph, using
Theorem 4 and Theorem 5.
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3.5 Validation using model graphs

Our expectation is that the strategies described in Section 3.3 succeed in building
a graph G′ similar (regarding degree distribution) to G when the appropriate strat-
egy is used with an appropriate graph (RR if G is Poisson, PP if G is power-law).
In addition, we expect that the degree distribution of G′ will differ significantly
from that of G if a wrong strategy is applied (RR if G is power-law, PP if G is
Poisson). In this section we conduct experiments on model graphs, i.e. random
graphs in the classes of Poisson graphs or power-law graphs with given param-
eters (average degree λ and exponent α respectively). To ensure that the BFS
covers all nodes of the graph, we use a program which generates random simple
connected graphs according to a given degree sequence (sampled from the given
degree distribution) [VL05], [2].

For each model graph G, we first extract a BFS tree T from a randomly chosen
node, then build G′

RR (using RR strategy) and G′
PP (using PP strategy), and we

denote by PRR and P PP , the corresponding degree distributions. According to the
method described in Figure 3.1, we suppose that we know n and m. Therefore, the
corresponding parameters λ (for RR strategy), α (for PP strategy) and the corre-
sponding theoretical degree distributions P λ and Pα can be derived from n and
m. By comparing the values KS(PRR, P λ) and KS(P PP , Pα) (or SD(PRR, P λ)
and SD(P PP , Pα)), we may then decide on the type of the underlying graph. If
the concluded type is the same as the type that we have used to generate the
underlying graph, and so is the same as the actual one, then our method has
succeeded.

We conducted experiments on Poisson model graphs with average degree from
3 to 50 (step is 0.1), and power-law model graphs with exponents from 2.01 to 2.50
(step is 0.01), which are typical values used in Internet modeling. In each case,
we consider graphs with 10000 and 100000 nodes, and all results in tables and
figures are averaged over ten samples. We display below the results for average
degrees 3 and 10 and for exponents 2.1 and 2.3, which are representatives of our
observations.

The general conclusion of our experiments is that for both cases of Poisson
and power-law, we succeed in deciding the type of the underlying graphs: for
Poisson model graphs, the type decided by our method is actually Poisson and for
power-law graphs, the type decided is actually power-law.

3.5.1 Poisson graphs

In Figure 3.3 we present the results for Poisson graphs with average degrees 3 and
10.

The degree distribution obtained with RR strategy is closer to the original one,
as expected. This is confirmed by KS and SD statistics (Table 3.1): the smallest
values are obtained with RR strategy.
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Figure 3.3: Reconstruction of a graph Poisson 3 and Poisson 10. We draw the
ICDD (Inverse Cumulative Degree Distribution) for three graphs: the original
graph G and the ones obtained with the RR and the PP strategies. Horizontal
axis: degree k; vertical axis: fraction of nodes with degree lower than or equal to
k.

Table 3.1: KS and SD for Poisson model graphs. The smallest KS or SD values
mean the smallest difference on degree distribution.

Poisson 3 Poisson 10
n = 10000 n = 100000 n = 10000 n = 100000
KS SD KS SD KS SD KS SD

RR 0.043 0.091 0.037 0.075 RR 0.025 0.116 0.014 0.048
PP 0.284 0.610 0.268 0.571 PP 0.119 0.444 0.111 0.446
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Figure 3.4: Reconstruction of a graph power-law 2.1 and 2.3. We draw the ICDD
for three graphs: the original graph G, and the ones obtained with the RR and
the PP strategies.

Table 3.2: KS and SD for power-law model graphs
Power-law 2.1 Power-law 2.3

n = 10000 n = 100000 n = 10000 n = 100000
KS SD KS SD KS SD KS SD

RR 0.201 0.432 0.194 0.405 RR 0.278 0.591 0.274 0.553
PP 0.038 0.138 0.049 0.180 PP 0.030 0.086 0.024 0.095

Notice that a Poisson graph with a higher degree gives better results. This is
probably due to the fact that we add more links in this case, and so strategies for
doing this make much more difference.

Finally, we conclude that our method succeeds in recognizing random Poisson
graphs. This is true for all average degrees (we tested from 3 to 50.), but performs
best on graphs with a relatively high average degree.

3.5.2 Power-law graphs

Similar to Poisson model graphs, we conduct our experiments with power-law
model graphs.

In Figure 3.4 we present obtained results for power-law graphs with exponent
2.1 and 2.3. To better show the characteristic of the power-law, all plots are in
log-log scale. Both the ICDD plot and the statistic test (Table 3.2) support our
conclusion for all exponents (we tested from 2.01 to 2.50.) and all sizes.
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Figure 3.5: ICDD of the Skitter-AS (left) and Radar-japon (right) graph G and
the ones obtained with RR and PP strategies.

3.6 Experiments on real-world data

Previous section shows that our method succeeds in making the difference be-
tween Poisson and power-law random graphs. It is clear however that, in practice,
considered graphs have neither perfect Poisson nor power-law degree distribution,
and are even not random.

We consider in this section several real-world datasets among the current
largest measurements of the Internet topology. Although obtained graphs are
still partial views and probably are strongly biased, they constitute current state-
of-the-art of available data and we use them as benchmarks.

Like in previous section, for each case of real-world graph G, we consider two
hypotheses: (H1) G has a degree distribution close to a Poisson law; (H2) G has
a degree distribution close to a power-law. Using strategies RR and PP , we build
graphs G′

RR and G′
PP , respectively. Our expectation is that if (H1) is true then

G′
RR degree distribution is close to the theoretical Poisson law; if (H2) is true then

G′
PP degree distribution is close to the theoretical power-law; and the converse is

not true.

3.6.1 Skitter-AS graph

We first try our method on an AS-level map collected by Skitter project of CAIDA
[KCC+07] (See the related resources in [9]). The obtained graph has 5775 nodes
and 12025 links.

Figure 3.5 (left) shows the ICDD obtained with our strategies and shows that
the entire Skitter-AS graph follows a degree distribution of type power-law (a
perfect power-law in a log-log scale is a straight line). The degree distribution
obtained with RR strategy is clearly far from a power-law. The one obtained with
PP strategy is much closer. Table 3.3 confirms this, even though the difference be-
tween RR strategy and PP strategy is as strong as for model graphs (see Table 3.1
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Table 3.3: KS and SD for Skitter-AS graph.
RR PP Decided Type

KS 0.166 0.082 Power-law
SD 0.359 0.235 Power-law

Table 3.4: KS and SD for Radar graphs.
RR PP Decided Type

Radar-japon n = 26698, m = 77545
KS 0.074 0.163 Poisson
SD 0.202 0.363 Poisson

Radar-cm n = 21185, m = 15728
KS 0.064 0.241 Poisson
SD 0.151 0.521 Poisson

Radar-ortolan n = 24262, m = 48516
KS 0.062 0.213 Poisson
SD 0.156 0.476 Poisson

Radar-enix n = 30433, m = 73576
KS 0.067 0.219 Poisson
SD 0.187 0.446 Poisson

and Table 3.2).
Finally, our method succeeds in deciding that Skitter-AS graph has a degree

distribution close to a power-law.

3.6.2 Radar graphs

A Radar graph is a part of the Internet topology observed by periodic running
traceroute-like measurements from one monitor to a set of targets during several
weeks [OML08], see also [6], for details and the original data. We use here several
instances of Radar graphs, from different monitors: Radar-cm (21185 nodes and
15728 links), Radar-japon (26698 nodes and 77545 links), Radar-enix (30433 nodes
and 73576 links) and Radar-ortolan (24262 nodes and 48516 links).

In Figure 3.5 (right), we plot the ICDD of Radar-japon graph and the corre-
sponding ICDDs obtained by RR and PP strategies. The shape of the original
ICDD indicates that the degree distribution of the underlying graph is likely to
be a mixture of both Poisson and power-law.

Table 3.4 shows numerical results for Radar graphs. All results show that the
difference between RR strategy and its corresponding theoretical distribution is
smaller than that of PP strategy. Therefore our method decides that the type
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of Radar graphs is more likely Poisson even though their distributions have a
long-tail. Note that the difference between RR and PP are much smaller than for
previous cases, thus indicating that the confidence in the conclusion is poor.

Finally, our method decides that Radar graphs are more likely to have Poisson
degree distribution, but with poor confidence (which is in accordance with their
actual type).

3.7 Conclusion

In this chapter, we presented a new approach to decide on the type of the degree
distribution of a graph when a complete BFS tree T , the number of nodes n
and the number of links m are known. According to the presupposed type of
the underlying graph, we use RR strategy for Poisson case and PP strategy for
power-law case to rebuild graphs expectedly similar to the original one. Then by
comparison with the presupposed distribution, we can decide on the type of the
graph, either Poisson or power-law. The validation of the methodology that uses
RR and PP strategies is first conducted on random model graphs: random Poisson
graphs and random power-law graphs. In both cases, our methodology allows to
decide well on the type of the underlying graph. Then we apply this methodology
to real-world graphs: Skitter-AS graph shows a power-law and Radar graphs a
Poisson degree distribution.

As we have mentioned several times, the hypotheses that we use in this chapter
are very strong and not attainable in practice. We explore a method to reduce
them in the next chapter.
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4.1 Introduction

In Chapter 3, we have introduced a methodology for deciding on the type of
the degree distribution of a graph from its number of nodes n, its number of
links m and one of its BFS tree T . In this chapter, we develop and improve our
methodology to estimate the type without m but only n and T .

Section 4.2 describes the methodology and Section 4.3 the corresponding results
on model graphs and real-world graphs.

4.2 Methodology and algorithm

We extend our approach to get information on the degree distribution of a graph
when the number of links m is not known but only n and T . In that case we use
our rebuilding strategies for a wide range of possible values of m and infer the
most probable type of degree distribution as in the previous chapter.

We proceed as follows: for each building strategy, we compute KS distance
between the obtained distribution and the theoretical one for a wide range of
realistic values of m. We then plot this distance as a function of m and select the
value m′ which gives the minimum KS value. If the minimum value is given by RR
strategy, we conclude that the degree distribution of the original graph is Poisson,
whereas if m′ is given by PP strategy, we conclude that the degree distribution is
power-law. See Figure 4.1.

We can rewrite this procedure as Algorithm 2. We call it SB(RR,PP ) which
means that we decide without knowing m with a single BFS tree using RR and
PP strategy.

The value mbegin and mend are assigned with values that correspond to the
background of application. A general principle is that mbegin should be greater
than double number of nodes in order to ensure the connectivity of the tested
graph, while mend can be a value of scores times of the number of nodes. The
step ∆m corresponds to the accuracy of our algorithm. As a variant, we can use
parameter λ for Poisson and α for power-law to replace m in the loop and then
we use ∆λ and ∆α as the loop step. Generally, in our work we set ∆λ = 0.1 and
∆α = 0.01, holding a good balance between accuracy and speed.

4.3 Experiments

As in the previous chapter, we experiment on model graphs and real-world graphs.
Each experiment leads to a decision on the type of the degree distribution of the
considered graphs and an estimate of its number of links m. We then compare
these results to reality. In the following we only mention the results of KS tests,
but the results of SD are similar. In both cases our method succeeds in deciding
on the type.
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Data: The number of nodes n, a complete BFS tree T .
Result: Type of the underlying graph and estimated number of links m.
Compute the set of allowed positions Eallowed according to T ;1

KSmin ←∞ ;2

foreach hypothesis in {Poisson, power-law} do3

for mtest ← mbegin to mend Step ∆m do4

G′
hypothesis,mtest

← T ;5

madd ← mtest − n+ 1 ;6

while madd > 0 do7

if hypothesis Poisson then8

Randomly (RR) choose a position uv from Eallowed ;9

else10

Preferentially (PP) choose a position uv from Eallowed ;11

end12

Add uv to G′
hypothesis,mtest

: G′
hypothesis,mtest

← G′
hypothesis,mtest

+uv ;13

madd ← madd − 1 ;14

end15

Compute the theoretical distribution P hypothesis,mtest corresponding16

(hypothesis,mtest) ;

KStest ← KS(P hypothesis,mtest , PG′

hypothesis,mtest ) ;17

if KStest < KSmin then18

KSmin ← KStest ;19

type← hypothesis ;20

m← mtest ;21

end22

end23

end24

Return (type,m) ;25

Algorithm 2: SB(RR,PP ): Algorithm for deciding the type of the degree
distribution of a graph from a single BFS tree using RR and PP strategy.
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Figure 4.1: Schema for deciding on the type of degree distribution without m with
a single BFS tree and n: G1,1, G1,2, G1,3,... are graphs built with RR strategy,
respectively with parameters m1, m2, m3. Similarly G2,1, G2,2, G2,3,... are graphs
built with PP strategy. For each Gi,m, we compute KS value between the degree
distribution of Gi,m and the corresponding theoretical distribution. Then we de-
cide on the type and estimate the number of links by selecting the minimum of
these KS values.

Table 4.1: Results for Poisson model graphs
n=1000 KS m m’ n=10000 KS m m’

Poisson 3 0.068 1500 2085 Poisson 3 0.027 15000 23750
Poisson 5 0.074 2500 2835 Poisson 5 0.025 25000 36250
Poisson 10 0.096 5000 5650 Poisson 10 0.041 50000 68750

4.3.1 Poisson model graphs

We show how the obtained KS test evolves as a function of the value of λ = 2m
n

in Figure 4.2 for a typical case. RR strategy performs much better than PP one,
and KS reaches a minimal for a value m′ close to the actual value of m.

Table 4.1 shows the results in a different way, for Poisson model graphs of size
1000 and 10000. First, since the minimum KS is always observed in the case of
RR strategy, we conclude that the type of graph is Poisson. Second, according to
the minimum value of KS we can estimate the value of λ and thus the value of
the (unknown) number of links of the original graph.

For example for n = 1000, Table 4.1 shows that the minimal value for KS is
obtained for m′ = 2085 for a Poisson 3 graph (whereas the real value is m = 1500,
corresponding to a Poisson model graph with λ = 3).
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Figure 4.2: Results obtained for a Poisson model graph with average degree 3. We
plot KS as a function of the supposed degree. In the left plot we use RR strategy,
which shows minimum KS of 0.05 in the region of λ = 5. In the right figure we
use PP strategy , which shows much bigger values of KS. Thus we conclude that
the underlying graph is Poisson.

Table 4.2: Results for power-law model graphs
n=1000 KS m m’ n=10000 KS m m’

power-law 2.10 0.07 4233 3002 power-law 2.10 0.06 42326 28129
power-law 2.15 0.09 3662 2936 power-law 2.15 0.04 36622 25043
power-law 2.20 0.07 3220 2550 power-law 2.20 0.03 32198 25043
power-law 2.25 0.07 2873 2418 power-law 2.25 0.03 28730 21085
power-law 2.30 0.06 2598 2168 power-law 2.30 0.03 25982 21377
power-law 2.35 0.05 2378 2200 power-law 2.35 0.02 23780 20534
power-law 2.40 0.06 2200 2109 power-law 2.40 0.02 21996 20274

Notice that our estimate m′ of m is always overestimated. We have no clear
explanation for this observation, but will show how to reduce this error in next
chapter.

4.3.2 Power-law model graphs

In Table 4.2 and Figure 4.3, we give the results of our experiments for power-law
graphs with exponents between 2.10 and 2.40.

Again, the method succeeds in deciding the appropriate type of the graph:
with PP, the value of KS test is smaller than with RR. The estimate m′ of m is
reasonable, but lower than the actual value.

4.3.3 Real-world graphs

We finally apply our method to some real-world graphs, see Table 4.3 and Fig-
ure 4.4. As before, our method succeeds in deciding that Skitter-AS graph is very
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Figure 4.3: Results for a power-law model graph with exponent 2.2. The left plot
is the result with the RR strategy and has a minimum greater than 0.1. The right
plot is the result with the PP strategy with a minimum less than 0.1.

Table 4.3: Results for real-world graphs
RR PP m m′ Decided Type

Skitter-AS 0.109 0.091 12025 8297 Power-law
Radar-ortolan 0.150 0.435 48516 50686 Poisson
Radar-japon 0.067 0.162 77545 60899 Poisson
Radar-cm 0.051 0.225 15728 25500 Poisson
Radar-enix 0.058 0.175 73576 68004 Poisson

close to a power-law graph, while Radar graphs are closer to a Poisson graph, but
are actually in between. In both cases, we obtain reasonable estimates m′ of the
number of links m.

Figure 4.4: KS for Skitter-AS graph.

4.4 Conclusion

We presented in this chapter a method for deciding on the type of the degree
distribution of a graph from its number of nodes n and one of its BFS tree T , but
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without its number of links m. It consists in trying values of m in wide ranges
of possible values, and then by selecting the case in which we obtain the smallest
value for KS (or SD) statistics. This provides both a decision on the type of
the degree distribution of the considered graph and an estimate of its number of
links m. Although this estimate is not very precise, it already provides reasonable
insight and, more importantly, in all our experiments the decision on the type is
correct.
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5.1 Introduction

In practice, it is possible to have several BFS-like measurements of the Internet
topology by using several monitors. In this chapter we explore how this may be
used to improve our results. We now focus on the topic that decides on the type
of degree distribution of a graph with multi-BFS trees. First we are interested
in the ratio of the link-detection, which impact the number of BFS trees that we
use. Then we propose a new schema and algorithm that fit with multi-BFS trees.
The experiments are conducted on the same dataset in order to compare with the
single version described in the precedent chapter.

5.2 Methodology

Our methodology is sketched in Figure 5.1. As before, G is an unknown graph
on which we perform a measurement which gives its number of nodes n and a set
of BFS trees T1, T2... Tk. First, we merge these BFS trees into a graph Gbfs.
We then consider two different type of hypotheses: (H1) G has a Poisson degree
distribution with average degree λ or (H2) it has a power-law degree distribution
with exponent α. Both parameters λ and α are equivalent, for the given n, to
the number of links m. Then we build two families of graphs G1,m and G2,m in
accordance with these two hypotheses and different m. We then compare the
degree distribution of G1,m to the expected one of G if (H1) was true, and the one
of G2,m to the expected one of G if (H2) was true. The hypothesis which leads to
the most similar degree distributions is expected to be correct.

We call MB(RR,PP ) denote the algorithm for deciding the type of a graph
without knowing m but with multi-BFS trees and using RR and PP strategies.
See Algorithm 3.

This algorithm is very similar to SB(RR,PP ) (Algorithm 2) except for two
different points: (1) Eallowed is the intersection of allowed positions of all BFS
trees; (2) the rebuilt graph begins with one graph merged from a set of BFS trees.

In this case, it contains the only set of possible positions for the missing links.
Figure 5.2 shows an example. BFS 1 is rooted at node 1 and BFS 3 is rooted at
node 3. E1 and E2 are the corresponding sets of allowed positions for these two
BFS trees. The right part is the result: the graph is obtained by merging from
BFS 1 and BFS 2 and the allowed positions E are the intersection of E1 and E2.
We explore this in more details in the next section.

Two reasons make the use of several BFS trees more accurate than the use of
only one BFS tree. First, we build graphs from a merged graph Gbfs instead of
only a BFS tree T . There is no doubt that Gbfs contains more links than T . In
addition, each BFS tree comes with its own set of allowed positions for missing
links, and the set of allowed positions for Gbfs is the intersection of all these sets.
It therefore decreases significantly with the number of BFS trees, and so the graph
we build is chosen to the original one.
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Data: The number of nodes n, several complete BFS trees T1, T2...Tk.
Result: Type of the underlying graph and the number of links m.
Compute the set of allowed positions Eallowed according to {Ti} ;1

KSmin ←∞ ;2

foreach hypo in {Poisson, power-law} do3

for mtest ← mbegin to mend Step ∆m do4

Let G′
hypo,mtest

← ⋃

Ti ;5

madd ← mtest − |E(G′
hypo,mtest

)| ;6

while madd > 0 do7

if hypo = Poisson then8

Randomly (RR) choose a position uv from Eallowed ;9

else10

Preferentially (PP) choose a position uv from Eallowed ;11

end12

Add uv into G′
hypo,mtest

: G′
hypo,mtest

← G′
hypo,mtest

+ uv ;13

madd ← madd − 1 ;14

end15

Compute the theoretical distribution Dhypo,mtest
corresponding16

(hypo,mtest) ;

KStest ← KS(P hypo,mtest , PG′

hypo,mtest ) ;17

if KStest < KSmin then18

KSmin ← KStest ;19

type← hypo ;20

m← mtest21

end22

end23

end24

Return (type,m)25

Algorithm 3: MB(RR,PP ): Algorithm for deciding the type of the degree
distribution of a graph from with several BFS trees using RR and PP strategy.
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Figure 5.1: Schema of our method, in the case when m is unknown and several
BFS trees are given. G is an unknown graph on which we perform a measurement
which gives its number of nodes n and a set of BFS trees T1, T2... Tk. First, we
merge these BFS trees into a graph Gbfs. We then consider two different types
of hypotheses: (H1) G is Poisson with average degree λ and (H2) G is power-law
with exponent α. Both parameters λ and α are equivalent to the number of links
m. Then we build two families of graphs G1,m and G2,m in accordance with these
two hypotheses and different m = m1,m2,m3.... We then compare the degree
distribution of G1,m to the expected one of G if (H1) is true, and the one of G2,m

to the expected one of G if (H2) is true, for all m. The hypothesis which leads to
the most similar degree distributions is expected to be correct.

5.3 Discovery of links with several BFS trees

In this section, we conduct experiments to address the following key problem:
How many BFS trees are needed to decide on the type of the degree

distribution of a graph and estimate its number of links?
In parallel, we also explore the impact of the choice of monitors (roots of our

BFS trees) for the measurement. To do so, we consider two scenarios:

• Random: we choose roots of BFS trees at random;

• Maxdegree: we choose the nodes with greatest degrees.

We give in Table 5.1, the discovery probability of links with random andmaxde-
gree strategies for root selection. All graphs have a size of 10000 nodes and are
tested with 1, 2, 5, 10, 20, 50 and 100 roots (i.e. 1, 2, 5, 10, 20, 50 and 100 BFS
trees).

First, for those graphs with high average degree, they need more BFS trees to
cover all links of the underlying graph. Such as a Poisson 3 graph need about 20
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Figure 5.2: Left: the underlying graph G; Center: two BFS trees rooted at node 1
and node 3; E1 and E2 are corresponding sets of allowed positions for each BFS
tree; Right: a graph merged from two BFS trees, while the allowed positions are
the intersection of those of two BFS trees.

BFS trees to cover the entire graph, while a Poisson 10 graph need about 50 BFS
trees. Second, power-law graphs need more BFS trees to cover than Poisson ones.
As power-law 2.1 graph, although 100 BFS trees (one tenth of total nodes) are
used, some links are still uncovered. Third, random-root strategy and maxdegree-
root strategy have little impact with Poisson model graphs; while for power-law
graphs, in case of small number of roots, maxdegree-root strategy has always a
better result than random-root strategy.

5.4 Experiments

In this section, we present experiments on various graph types including real-world
cases with various number of BFS trees.

5.4.1 Random model graphs

In Table 5.2, we show the estimation of m we obtain using several BFS trees of
random model graphs. Each graph has 10000 nodes and the estimated number
of links are averaged over 10 samplings. The first column is the type and the
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Table 5.1: Discovery probability of links in several scenarios: Poisson 3, 5 and
10 and power-law 2.1, 2.2, 2.3 graphs, each with the random and maxdegree root
selection strategies, and with 1, 2, 5, 10, 20, 50 and 100 BFS trees.

Graph root choice
number of BFS trees

1 2 5 10 20 50 100
Poisson 3 Random 0.6397 0.8433 0.9852 0.9994 1 1 1

Maxdegree 0.6397 0.8472 0.9870 0.9997 1 1 1
Poisson 5 Random 0.4006 0.6283 0.9069 0.9904 0.9998 1 1

Maxdegree 0.4006 0.6291 0.9075 0.9893 0.9999 1 1
Poisson 10 Random 0.1994 0.3590 0.6696 0.8880 0.9860 1 1

Maxdegree 0.1994 0.3583 0.6670 0.8853 0.9870 1 1

Power 2.1 Random 0.3757 0.4494 0.6386 0.7676 0.8541 0.9413 0.9772
Maxdegree 0.3757 0.4776 0.6415 0.7765 0.9013 0.9928 0.9997

Power 2.2 Random 0.5316 0.6216 0.7353 0.8334 0.9238 0.9833 0.9979
Maxdegree 0.5316 0.6344 0.7925 0.9002 0.9716 0.9989 0.9999

Power 2.3 Random 0.5525 0.6526 0.7887 0.8648 0.9320 0.9849 0.9976
Maxdegree 0.5525 0.6537 0.8021 0.9044 0.9697 0.9991 0.9996

parameter of the considered graphs. The second column is the mode of selection
of the root(s). The third column is the actual number of links in the considered
graph. The fourth, fifth, sixth, seventh columns represent the estimated number
m′ of links with respectively 11, 2, 5, 10 roots. The last column shows the strategy
that shows the best result. Notice that each estimation (the content of each cell in
Table 5.2) is the result of the whole execution of Algorithm 3 and corresponds to
the minimum KS value. We choose the steps ∆λ = 0.1 for Poisson and ∆α = 0.01
for power-law, which is reasonable concerning time consuming, and moreover, as
in the case of a single BFS, the results are not improved by diminishing the step.

First, we observe that our strategy can distinguish well the type of graphs. For
all Poisson model graphs, the best estimation is given by RR strategy. On the
contrary, for those power-law graphs, PP strategy shows a better estimation.

Also, in most cases, the selection strategy for roots of BFS is not an important
factor in our methodology.

However we can see that with 2 BFS trees the results are poor, sometimes even
worse than with a single BFS tree, which is suspecting and counter-intuitive.

In general, however the more BFS trees we use, the more precise is the result
we observe. In case of Poisson model graphs, single BFS strategy always overes-
timates the number of links; while in case of power-law model graphs, single BFS
underestimates the number of links. When we use about 5 or 10 BFS trees, the

1This is exactly the case that was treated in Section 4.3
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Table 5.2: Results with several BFS trees on random model graphs

n=10000 root choice m
number of BFS tree

Best strategy
1 2 5 10

Poisson 3 Random 15728 25500 21500 15000 15000 RR
Poisson 3 Maxdegree 15728 23000 20050 18000 15000 RR
Poisson 5 Random 25379 35000 30000 27500 26000 RR
Poisson 5 Maxdegree 25379 38000 30500 27500 26000 RR
Poisson 10 Random 50010 69000 71000 63000 57000 RR
Poisson 10 Maxdegree 50010 66000 69000 60000 54500 RR

Power 2.1 Random 29358 14365 9662 16099 21163 PP
Power 2.1 Maxdegree 29358 14365 12991 18311 21163 PP
Power 2.2 Random 20719 12990 11890 18311 18311 PP
Power 2.2 Maxdegree 20719 11890 11890 18311 18311 PP
Power 2.3 Random 21679 14365 14365 16099 16099 PP
Power 2.3 Maxdegree 21679 14365 14365 16099 18311 PP

estimation of the number of links is much better.

5.4.2 Real-world graphs

We present in Table 5.3 the results for typical real-world graphs.
We only display results when roots of BFS trees are chosen at random. Indeed,

results with the other strategy are very similar. We conduct our experiments with
1, 2, 5 and 10 roots and all results are averaged over ten samplings.

Table 5.3: Results with several BFS on real-world graphs.

n m
BFS number

Best strategy
1 2 5 10

Radar-cm 21185 15728 25500 21500 15000 15000 RR
Radar-enix 30433 73576 68004 89642 75731 74186 RR
Radar-japon 26698 77545 60899 67665 73078 79845 RR
Radar-ortolan 24262 48516 50686 54395 49450 49450 RR
Skitter-AS 5775 12025 8297 8294 10576 13368 PP

For Radar graphs, the minimum values of KS are always given by RR strategy,
in other words the estimated type is more likely Poisson. Although the results
with 2 BFS is sometimes worse than those with only one BFS, the results with 5
and 10 BFS lead to much better estimates.

The results for Skitter-AS are similar, but this time with a power-law type.
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5.5 Conclusion

In this chapter, we studied how the fact that we may obtain measurement from
several monitors, modeled by several BFS trees, improves our results. This is
particularly relevant for our estimate of the number of links m, which was poor in
the previous chapter.

To explore this, we designed a multiple BFS methodology, MB(RR,PP ) and
conducted experiments on a wide variety of cases. The obtained results are very
good and clearly show that even a small number of combined BFS trees is sufficient
to accurately estimate m, while still being able to correctly decide on the type of
the degree distribution of the considered graph. This is due not only to the fact
that several BFS uncovered a larger proportion of all links, but also to the fact
that they identify many forbidden positions for invisible links, which plays a key
role in our method.
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6.1 Introduction

In previous sections, we designed several methodologies for deciding on the type
of a graph from its BFS tree(s): we distinguish the type (for example Poisson
versus power-law) of the degree distribution and estimate the number of links of
an unknown graph G from the knowledge of one of its BFS tree T (or several BFS
trees). These methodologies can be significantly improved when some supplemen-
tary informations concerning the profile of the BFS tree is given. In this chapter
we show that the knowledge of the number of nodes at each level of the BFS tree,
and the number of missing (invisible) links between two consecutive levels of the
BFS tree, allows a reconstruction process which leads to a graph with a more
similar topology to the original one.

As mentioned in Chapter 2, we consider BFS trees of random graphs described
a given node degree sequence. A node degree sequence is defined as an ordered
j-tuple: (d1, d2..., dj), which means that there are dj nodes with node degree j;
with a degree sequence, the number of nodes is n =

∑

j dj and the number of

links is 1
2

∑

j jdj. We use the configuration model [Bol01] to construct a random
(multi)graph with a given node degree sequence: for each node of degree j, we
create j copies, and then define the links of the graph according to a uniformly
random matching on these copies. Recently Achlioptas, Kempe, Clauset and
Moore [AKCM05] proposed a random BFS process on a given node degree sequence
in which configuration model [Bol01] is used as the generator of graphs. The profile
of such BFS is a random structure concerning all possible BFS trees from a set of
graphs generated by a degree sequence.

The profile of BFS trees involves to several aspects: (1) the node degree dis-
tribution; (2) the number of nodes at each level {nk}; (3) the number of invisible
links at each level {ek}. The node degree distribution has been proved both math-
ematically and experimentally [AKCM05, CGW07] to be biased (it is always a
power-law) with respect to that of the underlying graphs or the underlying se-
quence that is used to generate the graphs. In this chapter, we particularly focus
on the second and the third problem and prove two theoretical properties (Theo-
rem 8 concerning the number of nodes at each level and Theorem 9 concerning the
number of invisible links at each level), that can further be used in experiments
to improve the deciding methodology in the next chapter (Chapter 7).

This chapter is organized as follows. We first present in Section 6.2 the BFS
algorithm on configuration model. In Section 6.3 we evaluate some quantities
regarding nodes and copies, which will be used in the following sections. In Sec-
tion 6.4 we describe the schema that we shall follow to carry out the analysis of
the profile: from the behavior of the queue to the urn problem. We state our key
results in Section 6.5. Section 6.6 and Section 6.7 give the proofs of our theorems.
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6.2 BFS on configuration model

Given a graph G, a BFS tree of G is built one node at a time as follows. At each
step, every node in G is in explored, untouched or pending state. The process is
initialized by labeling the root node as pending, and all other nodes as untouched.
Then, the process consists in exploring one pending node at a time, until there is
no pending node remaining. Exploring a pending node consists in turning all its
untouched neighbors to pending state and then turning itself to explored state.
Therefore a node is explored if both it and its neighbors are in the tree; untouched
if it is not yet reached by the process; and pending if it is on the boundary of
the tree. Links between the pending nodes and its untouched neighbors are called
visible links. This leads to a tree defined by the set of all visible links during the
process. Other links are said to be invisible. If pending nodes are considered in a
first-in-first-out (FIFO) order, then the obtained result is a BFS tree.

In [AKCM05], the authors show that this is equivalent to the following. First
suppose that we have as many copies of each node as its degree, and let us call
two copies of the same node siblings. Therefore, there are m =

∑

j dj =
∑

j ajn
copies, where {aj} denotes the degree distribution and n the number of nodes (m
is twice the number of links). Now let us label each copy with an integer chosen
uniformly at random in [1,m] in a way such that no two copies have the same
label. We initialize a FIFO queue Q with the copy with maximal label, which we
put in enqueued state, all other copies being untouched state initially. A BFS is
then constructed by iterating the following process [AKCM05]. At each step, we
consider u the unexposed (that means either enqueued or untouched.) copy with
largest label. Then we match it with the first element v of the queue (which we
thus remove from Q) and turn u to exposed state. If v is untouched then (u, v)
belongs to the BFS tree and we add v′s siblings to Q. This process naturally ends
after m steps, as each copy is then exposed. See Algorithm 4 and the example
below.

Example 4. Figure 6.1 illustrates the process step by step. In this example, a
degree sequence (0, 1, 0, 1, 2) is given (two nodes with degree 4, one node with degree
3 and one with degree 1). This leads to 2 × 4 + 1 × 3 + 1 × 1 = 12 copies, each
randomly tagged with an index between 1 and 12. In this example, copy tagged by
4 is chosen as the root, then we have:

• Initialization: Copy 4 is chosen as the root and put in the queue Q.

• Step t = 12: At time 12, match copy 4 (at the head of Q) and copy 12 (with
index equal to t); as copy 12 is untouched, reveal the visible link 4− 12 and
put the siblings of 12 (i.e. 9, 7, 3) into Q.

• Step t = 11: At time 11, match copy 9 (at the head of Q) and copy 11 (with
index equal to t); as copy 11 is untouched, reveal the visible link 9− 11 and
put the siblings of 11 (i.e. 1, 2, 6) into Q.
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Data: A degree sequence {dj}
Result: A sampling BFS tree T , corresponding to a graph G with degree

sequence {dj}.
For each node of degree j, create j copies; m←∑

jdj ;1

Index the copies with a random permutation of [1..m];2

Set all copies untouched ;3

Randomly choose a copy r, add it at the head of an empty queue Q;4

Append r’s siblings to Q and set all copies in Q enqueued ;5

for i← m to 1 do6

Let v be the copy with index i;7

if v is not exposed then8

Let u be the copy popped from the head of Q;9

if v is untouched then10

Add link (u, v) to T ;11

(Add link (u, v) to G);12

Append v′s siblings to Q ; set them enqueued ;13

else14

%v is enqueued% ;15

(Add link (u, v) to G);16

Remove v from Q;17

end18

Set u and v exposed ;19

end20

end21

Algorithm 4: Constructing a BFS of a model graph.
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• Step t = 10: At time 10, match copy 3 (at the head of Q) and copy 10 (with
index equal to t); as copy 10 is untouched, reveal the visible link 3− 10 and
put the siblings of 10 (i.e. 8, 5) into Q.

• Step t = 8: At time 8, match copy 7 (at the head of Q) and copy 8 (with
index equal to t); as copy 8 is touched, reveal the invisible link 7− 8.

• Step t = 6: At time 6, match copy 1 (at the head of Q) and copy 6 (with
index equal to t); as copy 6 is touched, reveal the invisible link 1− 6.

• Step t = 5: At time 5, match copy 2 (at the head of Q) and copy 5 (with
index equal to t); as copy 5 is touched, reveal the invisible link 2− 5.

Here, we do not show t = 9, 7, 4, 3, 2, 1, because at these times the corresponding
copies (ex. at time t = 9, the copy with index 9) had been exposed.

Two kinds of links either visible (both in the graph and in the BFS tree) or
invisible (only in the graph), are revealed. The invisible links are those who are
get rid off during the process of BFS. They come from the event that the copy at
the head of Q have a partner who has been touched, also in the Q. Obviously, the
duplicated links (such as link between 6 and 5) and the self-loop links (such as link
between 12 and 7) are certainly invisible ones in a BFS tree.

6.3 Evolution of nodes, copies and POP opera-

tion

As described in the last section, the sampling BFS trees may be different from
each other according to the permutation generated at random. So the profile
that we mention here is concerned to all permutations of m elements, namely m!
possibilities for m copies, then m! BFS trees. Using Algorithm 4, we can trace
the number of copies (or nodes), either untouched, enqueued or exposed. First,
we introduce a useful concept.

Definition 6. Maximum index: the maximum index of a node is the maximum
index of all its copies’ indices.

At any time i, the untouched nodes are precisely those whose maximum index
is less than i, and the explored or pending nodes (whose copies are exposed or
enqueued) are those whose maximum index is greater than i. This observation
allows us to carry out an explicit analysis as a function of time. Then we have the
following properties:

Property 1. [AKCM05] At time i, the indices of the unexposed copies, both inside
and outside the queue, are random in [1, i].



64 CHAPTER 6. ANALYSIS OF THE PROFILE OF BFS TREES

Figure 6.1: An example of BFS from degree sequence (0, 1, 0, 1, 2), i.e. two nodes
of degree 4, one of degree 3 and one of degree 1.
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Proof. At a time, we match the copy at the head of queue Q with the copy with
the same label as the corresponding time, so all copies that have an index i′ greater
than i must be exposed by two ways:

• At time i′′ with i′′ > i′ > i (recall that the time is decreasing from m to 1),
copy i′ is at the head of queue Q. Copy i′ and copy i′′ are matched.

• At time i′ with i′ > i, another copy at the head of queue Q matches copy i′.

6.3.1 Properties of nodes

The distribution of the number of untouched nodes can be specialized by the
following property:

Property 2. [AKCM05] Let Nunto,j(i) denote the random variable of the number
of untouched nodes of degree j at time i, then the expectation and the variance of
Nunto,j(i) with n nodes and a given degree distribution {aj} are:

E[Nunto,j(i)] = aj

(

i

m

)j

n (6.1)

V [Nunto,j(i)] = aj

(

i

m

)j
(

1−
(

i

m

)j
)

n (6.2)

Proof. The probability that a node of degree j has maximum index less than i is

exactly
(

i
m

)j
and there are ajn nodes with degree j, so the number of untouched

nodes follows binomial distribution B(ajn,
(

i
m

)j
).

Property 3. [AKCM05] Let Nunto(i) denote the random variable of the total
number of untouched nodes at time i. Then the expectation and the variance of
Nunto(i) with n nodes and a given degree distribution {aj} are:

E[Nunto(i)] =
∑

j

aj

(

i

m

)j

n (6.3)

V [Nunto(i)] =
∑

j

aj

(

i

m

)j
(

1−
(

i

m

)j
)

n (6.4)

Proof. The binomial distributions of Property 2 are independent of each other, so
we can add the expectation and variance.

As the extension of the Property 3, the next property gives an asymptotic
distribution of the number of untouched nodes at time i.
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Property 4. Let Nunto(i) denote the random variable of the total number of un-
touched nodes at time i. Then it is distributed normally with mean and variance
as follows1,

Nunto(i) ∼ N
(

∑

j

aj

(

i

m

)j

n,
∑

j

aj

(

i

m

)j
(

1−
(

i

m

)j
)

n

)

(6.5)

Proof. If a suitable continuity correction is used when n is large enough, then an
excellent approximation toB(n, p) is given by the normal distributionN (np, np(1−
p))2. The approximation generally improves as n increases. As we know that the
sum of two independent normally distributed random variables is normal, with its
mean being the sum of the two means, and its variance being the sum of the two
variances.

6.3.2 Properties of copies

With the properties of nodes, the corresponding properties of copies are directly
developed.

Property 5. [AKCM05] Let Cunto(i) denote the random variable of the number
of untouched copies at time i, then the expectation of Cunto(i) with n nodes and a
given degree distribution {aj} is:

E[Cunto(i)] =
∑

j

jaj

(

i

m

)j

n (6.6)

Proof. Notice that Cunto(i) =
∑

j jNunto,j(i).

Property 6. [AKCM05] Let Cunex(i) denote the random variable of the number
of unexposed copies at time i, then the expectation and the variance of Cunex(i)
are:

E[Cunex(i)] = δ

(

i

m

)2

n =

(

i

m

)2

m =
i2

m
(6.7)

V [Cunex(i)] = δ

(

i

m

)2
(

1−
(

i

m

)2
)

n =

(

i

m

)2
(

1−
(

i

m

)2
)

m (6.8)

where n is the number of nodes and δ = m
n
(recall m = 2|E|) is the average degree.

Proof. To calculate E[Cunex(i)], recall that the copy at the head of the queue has
a uniformly random index conditioned on being less than i. Therefore, the process
forms a matching on the list of indices as follows: take the indices in decreasing

1The notation X ∼ N
(

µ, σ2
)

means the random variable X is distributed normally with
mean µ and variance σ.

2binomial distribution, see http://en.wikipedia.org/wiki/Binomial_distribution

http://en.wikipedia.org/wiki/Binomial_distribution
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order from m to 1, and at time i match the index i with a randomly chosen index
less than i. This creates a uniformly random matching on the δn indices. Now,
note that a given index is still remaining at time i if both it and its partner are
less than i, and since the indices are uniformly random in [1,m] the probability of

this is
(

i
m

)2
. So the probability follows the binomial distribution B(m,

(

i
m

)2
).

With the random variables Cunex(i) and Cunto(i), the random variable of the
number of copies enqueued Cenqu(i) can be calculated directly:

Property 7. Let Cenqu(i) denote the random variable of the number of enqueued
copies at time i, then the expectation of Cenqu(i) with n nodes and a given degree
distribution {aj} is:

E[Cunto(i)] = δ

(

i

m

)2

n−
∑

j

jaj

(

i

m

)j

n (6.9)

Proof. From the relation Cenqu(i) = Cunex(i)− Cunto(i).

All these properties can be specified with a given distribution.

Example 5. In Table 6.1, we give the expectation of Cunex(i) and Cunto(i) for
some graphs with typical types.

Table 6.1: E[Cunex(i)] and E[Cunto(i)] for regular, Poisson and power-law graphs.
Distribution aj E[Cunex(i)] E[Cunto(i)]

Regular r ar = 1 r
(

i
m

)2
n r

(

i
m

)r
n

Poisson λ aj =
eλλj

j!
λ
(

i
m

)2
n ieλ(

i
m
−1)

Power-law α aj =
1

∑

j1−α j
−α

∑

i1−α
∑

i−α

(

i
m

)2
n

∑

j1−α( i
m)

j

∑

j−α n

6.3.3 Properties of POP operation

We now turn to the expectation of the number of POP operations. In Algorithm 4,
at time i, the copy u at the head of queue Q is popped only when the copy v with
index i is in unexposed state. There is no POP operation if the copy with index
i has been exposed before time i (that is to say, this copy has arrived at the head
of Q before time i, such as for t = 9, 7, 4, 3, 2, 1 in Figure 6.1).

Property 8. Let PPOP (i) denote the number of POP operation (either 1 or 0)
at time i, then the expectation of PPOP (i):

E (PPOP (i)) =
2i− 1

2m
(6.10)
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Proof. After a POP operation , two copies are exposed, so the probability of a
POP satisfies:

E(Cunex(i− 1)) = (1− E(PPOP (i)))E(Cunex(i)) + E(PPOP (i)) (E(Cunex(i))− 2)
(6.11)

And the expectation of PPOP (i) can be directly calculated from Equation (6.7)
and Equation (6.11).

Finally, the expected number of POP operations during a sequence of steps is
easily computed.

Property 9. Let XPOP (ik, ik+1) denote the number of POP operations between
time ik and ik+1 (ik > ik+1), then the expectation of XPOP (ik, ik+1) is:

E(XPOP (ik, ik+1)) =

ik+1
∑

i=ik

E (PPOP (i)) =
i2k − (ik+1 − 1)2

2m
(6.12)

6.4 Schema of our analysis: scanning the queue

This section is contributed to how to rephrase the process of BFS in form of an
urn model.

6.4.1 Critic timing ik

Our analysis of the BFS profile relies on the study of the FIFO queue during
the BFS process, by exhibiting the relationship between the construction of the
successive levels and the evolution of the queue.

We are interested in the moment ik when the exploration of level k of the BFS
begins: during the time between ik and ik+1 the nodes at level k are exposed,
(and also the invisible links between levels k and k + 1 are “revealed”). Time
i1 represents the moment when the root of the BFS is exposed and time ik+1

represents the moment when all copies that in Q at time ik are finally in the state
exposed. For example, in Figure 6.1, i1 = 12, i2 = 8 and i3 = 5.

At time ik, there are Cenqu(ik) copies in the queue Q. When these copies are
exposed, the construction of level k is done and the BFS process begins to explore
the next level. Since a POP operation always corresponds to the head of the
queue (and its partner) being exposed, the number of copies at level k is equal to
the number of POP operation between time ik and ik+1.

In Equation (6.12), the number of POP operation between ik and ik+1 is
expressed as a simple function of ik and ik+1. Thus if we can evaluate the number
of POP , we can then give an iterative expression of ik+1 in function of ik.

The evaluation of the number of POP between ik and ik+1 can be rephrased
in terms of urn model. Let us denote by X the set of enqueued copies at time ik
and denote by Y the set of untouched copies at time ik.
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Property 6 shows that at time i the probability that a copy has been exposed

is
(

i
m

)2
, which is independent to the degree of node that is attached. Therefore

all copies have a uniform probability to present at the head of Q. If we colorize
all enqueued copies in Q as white balls and all untouched copies as black balls,
the problem of the BFS process may be reduced to a corresponding urn model
problem.

6.4.2 Basic concept of urn models

To familiarize this kind of problem, we introduce first some basic concepts of urn
models. In the context of this thesis, only the case of two colors is considered. At
the beginning, there are a0 white and b0 black balls in the urn. At each step, a ball
is chosen (not take it out of the urn) at random from the urn, then we examine its
color and add or remove balls according to the color. Generally speaking, if the
tested ball is white, then a white balls and b black balls are put into (or remove
from) the urn, while if the tested ball is black, then c white balls and d black balls
are put into (or remove from) the urn. The value a, b, c, d ∈ Z are fixed integer

(could be negative) and the urn is specified by the transition matrix M =

(

a b
c d

)

.

We are also allowed on occasion to describe M linearly as (a, b; c, d). With the help
of the expression of matrix, urn models with r types of colors can be described in
an analogous way by using an r × r transition matrix.

The urn model is said to be balanced if a+b = c+d, in which case the common
sum s of the matrix rows is the balance. After n step, there will be n × s balls
added. If the sum s is negative, the urn is a diminishing model.

For urns with negative diagonal entries, as a ≤ −2, we have to ensure that
the process of removing balls from the urn would not be blocked. To do that, the
initial configuration of the urn must satisfy a|a0 and similarly for black balls. We
call this restriction the condition tenable. For the urn involving substraction for

both a and d in

(

a b
c d

)

, such as a = −1 and d = −2, the condition of tenability

is broken. To deal with this kind of diminishing urn, we use the halt condition
ak <= min(a, d) instead of ak = 0.

In the reference book of Johnson and Kotz (1977) [JK77], many kinds of urn
model have been described. In recent years, researchers developed the problem
of urn models and some general methodologies have been established. [FGP05]
describes a purely analytic approach to urn models of the generalized or extended
Pólya-Eggenberger type, in the case of two types of balls and constant “balance”;
In [FDP06], a fundamental isomorphism between discrete-time balanced urn pro-
cesses and certain ordinary differential systems, which are nonlinear, autonomous,
and of a simple monomial form. As a consequence, all balanced urn processes
with balls of two colors are proved to be analytically solvable in finite terms. In
[HKP07], several exactly solvable urn models with a diminishing character are
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studied.

6.4.3 POP problem

In the BFS construction, at each step when a POP operation occurs, the copy u
at the head of the queue Q matches another copy v which is either in X or in Y ,
and then we throw out both u and v. If v belongs to X, two copies are thrown
out of X, whereas if v belongs to Y , one copy is thrown out from X and the other
one from Y .

First we describe POP rule: this is a variant of the diminishing urns with

transition matrix M =

(

−2 0
−1 −1

)

. POP rule consists of two steps:

• choose randomly a white ball and throw it off.

• if there is still white ball, choose randomly a ball (white or black) among all
balls in the urn and throw it off.

Notice that the halt condition is that there is less than or equal to one white ball
instead of no white ball in order to avoid abnormality after having thrown the first
white ball.

The POP problem is described as follows:

Definition 7. POP problem: The problem of the number of POP operation,
when we apply iteratively POP rule, either two copies of X are removed, or one
copy of X and one copy of Y are removed. The initial configuration is p = |X|
enqueued copies (as white balls) and q = |Y | untouched copies (as black balls).

In the form of diminishing urn model, our problem is described as follows:
In our work, we are interested in the number of POP while X becomes empty.
The POP problem can be modeled as an equivalent diminishing urn model. It is

similar to the lower triangle case M =

(

−a 0
−c −d

)

in [HKP07] (In our case, the

denominator is p − 1 instead of p). The problem is a variant of the diminishing
urns with the transition matrix: M = (−2, 0;−1,−1). But the general solution is
too complex to extract the coefficient.

6.5 Statement of our results

In this section, we list the main results of our work. It relies on the configuration
model which we have described in Section 6.2. In order to analyze more rigorously,
we use the generating functions3.

3A generating function is a formal power series in one indeterminate, whose coefficients encode
information about a sequence of numbers an that is indexed by the natural numbers. Generating
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Data: An initial configuration (p, q), p white balls and q black balls.
Result: The number of step k.
k ← 0;1

while p > 1 do2

p← p− 1: choose a white ball and remove it;3

choose a ball at random and check the color;4

if white ball then5

p← p− 1: remove the white ball ;6

else7

q ← q − 1: remove the black ball ;8

end9

k ← k + 1 ;10

end11

Return k ;12

Algorithm 5: The diminishing urn model equivalent to POP problem.

Theorem 6. Let hp,q,k denote the probability that for a urn with p white balls
and q black balls, after k steps there is no white ball in the urn using POP
rule described. The corresponding generating function is denoted H(x, y, z) =
∑

p,q,k hp,q,kx
pyqzk. Then the hp,q,k =

[

xpyqzk
]

H(x, y, z) is the extracted coeffi-
cient of H, where H(x, y, z) = H1(x, y, z)+H2(x, y, z)+H3(x, y, z) and H1, H2,
H3 are

H1 (x, y, z) =

∫ 1

0

x4wz2 (xw + 1)

yF 2 (1− x2w2z)
1
2 (1− x2z)

3
2

dw

H2 (x, y, z) =

∫ 1

0

x4wz (1 + 2xwz) (1− x2w2z)
1
2

y (1− x2z)
3
2 F (F − xw)

dw

H3 (x, y, z) =

∫ 1

0

x5w2z2 (1− x2w2z)
1
2 (2F − xw)

y (1− x2z)
3
2 F 2 (F − xw)2

dw

where F =

(

1 +
(

x
y
− 1
)(

1−x2w2z
1−x2z

) 1
2

)

.

In Subsection 6.6.3, we simulate the behavior of the queue by a decreasing
urn model. POP problem is modeled as a decreasing urn model with transition
matrix (−2, 0;−1,−1). The next Theorem 6 gives the explicit solution of Partial
Differential Equation (PDE) of the corresponding system.

functions are often expressed in closed form (rather than as a series), by some expression involving
operations defined for formal power series. These expressions in terms of the indeterminate x

may involve arithmetic operations, differentiation with respect to x and composition with (i.e.,
substitution into) other generating functions; since these operations are also defined for functions,
the result looks like a function of x. See also details in [FS09, S.W93].
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In Subsection 6.6.4, we focus on the problem how to extract the exact coefficient
of the solution H. The explicit exact coefficients of H is so complicated that we
cannot give an intuitive explanation. The next Theorem gives an expression of
∑

k khp,q,k, namely the expected number of POP operation.

Theorem 7. Let hp,q,k denote the probability that for a urn with p white balls and
q black balls, after k steps there is no white ball in the urn using POP rule. Then
the expected number of POP is

Ep,q(k) =
∑

k

khp,q,k = p− p2

2 (p+ q)
+O

(

p√
q
√
p+ q

)

(6.13)

The analysis of the POP problem helps us to develop the relation between the
number of nodes of the consecutive levels, as described in the following theorem
and the proof and the examples will be given in Subsection 6.6.5.

Using Theorem 7, two main results of the profile of a BFS tree are inferred.
See detail in Section 6.7. The first one concerns the expected number of nodes at
level k in T .

Theorem 8. Let nk denote the number of nodes of level k in the BFS tree, re-
spectively, nk−1, nk−2,..., n1 the number of nodes of level k − 1, k − 2,... , 1 and
a degree distribution {aj} in form of generating function g(z) =

∑

j=1 ajz
j, then

the expected number of nodes E(nk+1) of level k + 1 in the BFS tree is:

E (nk+1) = n−
k
∑

i=0

ni − ng





g′
(

g−1
(

1−∑k

i=0
ni

n

))

g′ (1)



 (6.14)

Applying Theorem 8, we can compute the expected number of nodes at level
k+1 from the numbers of nodes of the first k levels. In practice, we replace nk in
Equation (6.14) with E (nk). Then n1, n2...nk can be iteratively computed.

The second one concerns the expected number of invisible links at level k
(which are useful for the strategy of reconstruction of a graph from a BFS).

Theorem 9. Let ek denote the number of invisible links between level k and level
k+1 in the BFS tree, and a degree distribution {aj} in form of generating function
g(z) =

∑

j=1 ajz
j, then the expectation of E(ek) is:

E (ek) =
i2k − n2g′

(

ik
m

)2

2m
−m

(

g

(

ik
m

)

− g

(

g′
(

ik
m

)

g′ (1)

))

(6.15)

The term ik is decided by expression ik+1 ∼ ng′
(

ik
m

)

(See detail in Section 6.7).
The rest of this chapter is contributed to the proof of the theorems listed in

this section.
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6.6 Analysis of POP problem

The queue Q make a crucial role in the process of Algorithm 4. In this section
we analyze the behavior of the Q, particularly on the problem: number of POP
operation. In Subsection 6.6.1, we describe the relevance between our model and
the urn model. Subsection 6.6.2 and Subsection 6.6.3 explain how to get the
corresponding PDE and the solution from our POP problem. Subsection 6.6.4
is contributed to the extraction of coefficients. Subsection 6.6.5 gives an explicit
expression of the expected number of POP problem.

6.6.1 Description of POP problem

After having thrown a white ball (after step 1 of POP rule) out, there are still
p + q − 1 balls in the urn. So the probability that a white ball is selected as the
second ball is p−1

p+q−1
, while the probability of a black ball is q

p+q−1
.

We denote hp,q,k the probability that with exactly k steps and an initial con-
figuration (p, q), there is no longer white ball. So we have the recursive relation
of hp,q,k:

hp,q,k =
q

p+ q − 1
hp−1,q−1,k−1+

p− 1

p+ q − 1
hp−2,q,k−1 p > 1, q > 0, k > 0 (6.16)

The Equation (6.16) can be expressed as

(p+ q − 1)hp,q,k = qhp−1,q−1,k−1 + (p− 1)hp−2,q,k−1 (6.17)

The initial condition of hp,q,k is: h0,q,0 = 1 (when there is no white ball, 0 POP
operation will take place) and h1,q,1 = 1 (when there is only one white ball in the
urn, exactly one POP operation will take place).

Then we rewrite hp,q,k in form of generating function:

H(x, y, z) =
∑

p≥2

∑

q≥1

∑

k≥1

hp,q,kx
pyqzk (6.18)

With help of the generating function, the recurrence Equation (6.17) can be trans-
lated into a first order linear partial differential equation (PDE).

The proof of Theorem 6 consists of two parts: (1) get the expression of a partial
differential equation (in Subsection 6.6.2); (2) resolve the corresponding PDE (in
Subsection 6.6.3).

6.6.2 Expression of PDE

Lemma 4. Using POP rule, the corresponding PDE is:
(

x− x3z
)

Hx +
(

y − xy2
)

Hy −
(

1 + x2z + xyz
)

H = F (x, y, z)

F (x, y, z) =
x2yz2 (x+ 1)

1− x2z
+ x2y2z2

(

1

(1− y)2
+

1

1− y

)

+
(

x2z + 2x3z2
) y

1− y

(6.19)
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In fact, the reduced PDE (x− x3z)Hx + (y − xy2)Hy − (1 + x2z + xyz)H =

0 of Equation (6.19) is decided by the transition matrix

(

−2 0
−1 −1

)

and the

F (x, y, z) is only impacted by the initial conditions h0,q,0 = 1 and h1,q,1 = 1.

Proof. Left term of Equation (6.17)
First, we conduct the addition on the term (p+ q − 1)hp,q,k according to Equa-

tion (6.18),
A =

∑

q≥1

∑

p≥2

∑

k≥1

(p+ q − 1)hp,q,kx
pyqzk

= xHx + yHy −H
(6.20)

The first term of the right part of Equation (6.17)
We conduct the addition on the term qhp−1,q−1,k−1.

B =
∑

q≥1

∑

p≥2

∑

k≥1

qhp−1,q−1,k−1x
pyqzk

= xyz
∑

q≥1

∑

p≥2

∑

k≥0

(q + 1)hp,q,kx
pyqzk + xyz

∑

p≥1

∑

k≥0

hp,0,kx
pzk

+xyz
∑

q≥1

∑

k≥0

(q + 1)h1,q,kxy
qzk

= xyz
∑

q≥1

∑

p≥2

∑

k≥0

(q + 1)hp,q,kx
pyqzk + xyz

∑

p≥1

∑

k≥0

hp,0,kx
pzk

+xyz
∑

q≥1

∑

k≥0

(q + 1)h1,q,kxy
qzk + xyz

∑

q≥1

∑

p≥2

(q + 1)hp,q,0x
pyq

= xyz (yHy +H) + xyz
∑

p≥1

∑

k≥0

hp,0,kx
pzk + x2yz2

∑

q≥1

(q + 1) yq

(6.21)

where, the term
∑

q≥1 (q + 1) yq equals:

∑

q≥1

(q + 1) yq =
y

(1− y)2
+

y

1− y
(6.22)

The probability hp,0,k corresponds to the case that there is only white ball in
the urn. Therefore, when p > 2, we choose always 2 white balls with POP rule.
We have the recursive relation:

hp,0,k = hp−2,0,k−1 p ≥ 2 and k ≥ 1 (6.23)

with the initial conditions: h0,0,0 = 1 and h1,0,1 = 1 as we have mentioned above.
For any k is not 0, there are only two ways to make the hp,0,k non-zero, that is the
case p = 2k (With Equation (6.23), we finally get h2k,0,k = h0,0,0) or p = 2k − 1
(h2k−1,0,k = h1,0,1).

∑

p≥1

∑

k≥0

hp,0,kx
pzk =

∑

k≥1

h2k,0,kx
2kzk +

∑

k≥1

h2k−1,0,kx
2k−1zk

=
∑

k≥1

x2kzk +
∑

k≥1

x2k−1zk

= x2z+xz
1−x2z

(6.24)
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The second term of the right part of Equation (6.17)

We conduct the addition on the term (p− 1)hp−2,q,k−1.

C =
∑

q≥1

∑

p≥2

∑

k≥1

(p− 1)hp−2,q,k−1x
pyqzk

= x2z
∑

q≥1

∑

p≥0

∑

k≥1

(p+ 1)hp,q,kx
pyqzk + x2z

∑

q≥1

∑

p≥2

(p+ 1)hp,q,0x
pyq

+x2z
∑

q≥1

h0,q,0y
q + 2x2z

∑

q≥1

h1,q,1xy
qz

= x2z (xHx +H) + (x2z + 2x3z2) y

1−y

(6.25)

PDE

Together with Equations (6.20), (6.21), (6.25), we finally get a partial differ-
ential equation:

(x− x3z)Hx + (y − xy2)Hy − (1 + x2z + xyz)H

= x2yz2(x+1)
1−x2z

+ x2y2z2
(

1
(1−y)2

+ 1
1−y

)

+ (x2z + 2x3z2) y

1−y

(6.26)

6.6.3 Solution of PDE

In the following subsections, we introduce a methodology to resolve the PDE (6.19).
Some useful techniques to resolve PDEs are introduced in [Cod89, Str92, Pol01].
The process of the resolution of PDEs is described as below:

Data: A first-order partial linear differential equation (PDE):

f1(x, y)
∂H(x,y)

∂x
+ f2(x, y)

∂H(x,y)
∂y

+ f3(x, y)H(x, y) = f4(x, y)
Result: The solution of the PDE
Obtain the corresponding characteristic differential system:1

dx(t)
dt

= f1 (x (t) , y (t)) and
dy(t)
dt

= f2 (x (t) , y (t)) ;

Resolve differential equation y′ = dy

dx
= f2(x,y)

f1(x,y)
and get solution C = g(x, y).2

A first integral is ξ(x, y) = g(x, y) ;
Apply a transformation from (x, y) to (η, ξ), where η = x and ξ = ξ(x, y)3

and obtain a PDE in form of f5 (η, ξ)Hη (η, ξ) + f6 (η, ξ)H (η, ξ) = f7 (η, ξ) ;
Resolve reduced PDE f5 (η, ξ)Hη (η, ξ) + f6 (η, ξ)H (η, ξ) = 0 and the4

solution is H [h] (η, ξ) ;
Calculate the particular solution using equation:5

H [p] (η, ξ) = H [h] (η, ξ)
∫ η

0
f7(q,ξ)
f5(q,ξ)

1
H[h](q,ξ)

dq ;

Transform H [p] (η, ξ) back to H [p] (x, y) which is the solution of the original6

PDE. ;

Algorithm 6: Resolve the PDE.
In the following, we detail and specialize the Algorithm 6.
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As the first step, we consider the corresponding reduced partial differential
equation, which is given by

(

x− x3z
)

Hx +
(

y − xy2
)

Hy −
(

1 + x2z + xyz
)

H = 0 (6.27)

To resolve PDE (6.27), we first obtain the system of characteristic differential
equations:

dx(t)
dt

= x (t)− x (t)3 z
dy(t)
dt

= y (t)− x (t) y (t)2 z

The arising differential for y = y(x) is given by

dx

x− x3z
=

dy

y − xy2z
(6.28)

The Equation (6.28) is a Bernoulli type4, the solution is C =
x
y
−1

(1−x2z)
1
2
, from which

we obtain the first integral

ξ(x, y) =

x
y
− 1

(1− x2z)
1
2

(6.29)

We then use a transformation from (x, y)-coordinates to (η, ξ)-coordinates via

η = x

ξ =
x
y
−1

(1−x2z)
1
2

or equivalently
x = η
y = η

ξ(1−η2z)
1
2+1

Then we obtain an inhomogeneous equation for H(η, ξ) = H(x(η, ξ), y(η, ξ)). As
Hx = Hη

∂η

∂x
+Hξ

∂ξ

∂x
and Hy = Hη

∂η

∂y
+Hξ

∂ξ

∂y
, the corresponding terms are given by

∂η

∂x
= 1

∂ξ

∂x
=

1
y (1−x2z)

1
2+xz(x

y
−1)(1−x2z)

−
1
2

1−x2z
∂η

∂y
= 0

∂ξ

∂y
= − 1

y2
x

(1−x2z)
1
2

In fact, we can obtain a more easily resolvable PDE (there arise only the partial
differential of variable η), if a transformation inspired from the first integral is
applied.

η
(

1− η2z
) ∂H (η, ξ)

∂η
−
(

1 + η2z +
η2z

1 + ξ (1− η2z)
1
2

)

H (η, ξ) = G (η, ξ) (6.30)

4An ordinary differential equation of the form y′ + P (x)y = Q(x)yn is called a Bernoulli
equation. Dividing the equation by yn and a change of variable w = 1

yn−1 , we yield a linear

first-order differential equation: w′

1−n
+ P (x)w = Q(x).
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Finally, we get a PDE with only one partial differential. So it is can be considered
as an ordinary differential equation (ODE).

The right term G (η, ξ, z) can be calculated by the right part of Equation (6.19)

G (η, ξ, z) = η3z2(η+1)
(

1+ξ(1−η2z)
1
2

)

(1−η2z)
+ η4z2
(

1+ξ(1−η2z)
1
2−η

)2

+

(

ηz

1+ξ(1−η2z)
1
2
+ 2ηz + 1

)

η3z

1+ξ(1−η2z)
1
2−η

(6.31)

From Equation (6.30), we resolve first the corresponding reduced equation:

η
(

1− η2z
) ∂H [h] (η, ξ)

∂η
−
(

1 + η2z +
η2z

1 + ξ (1− η2z)
1
2

)

H [h] (η, ξ) = 0 (6.32)

The solution of the homogeneous differential equation is given by

H [h] (η, ξ) = C (ξ)
η
(

1 + ξ (1− η2z)
1
2

)

(1− η2z)
3
2

(6.33)

The solution has the form H = H [p]+CH [h]. But the problems of the diminishing
urn model lead always C = 0. So the solution is just H [p]. The particular solution
of Equation (6.30) can be expressed as H [p] = µ (η)H [h].
In general, given a PDE:

a (η)
∂H (η, ξ)

∂η
+ b (η)H (η, ξ) = r (η)

Replace H by µ(η)H:

µ′ (η)H [h] (η, ξ) =
r (η)

a (η)

µ (η) =

∫ η

0

r (t)

a (t)

1

H [h] (t, ξ)
dt

Replace t by ηw:

µ (η) =

∫ 1

0

η
r (ηw)

a (ηw)

1

H [h] (ηw, ξ)
dw

In Equation (6.30) a (ηw) = ηw (1− η2w2z), so we have:

H [p] (η, ξ, z) =
η
(

1 + ξ (1− η2z)
1
2

)

(1− η2z)
3
2

∫ 1

0

r (ηw) (1− η2w2z)
1
2

ηw2
(

1 + ξ (1− η2w2z)
1
2

)dw

where r (ηw) = G (ηw, ξ, z).



78 CHAPTER 6. ANALYSIS OF THE PROFILE OF BFS TREES

To simplify the analysis, we rewrite H(x, y, z) = H1 +H2 +H3

H1 (x, y, z) =

∫ 1

0

x4wz2 (xw + 1)

yF 2 (1− x2w2z)
1
2 (1− x2z)

3
2

dw

H2 (x, y, z) =

∫ 1

0

x4wz (1 + 2xwz) (1− x2w2z)
1
2

y (1− x2z)
3
2 F (F − xw)

dw

H3 (x, y, z) =

∫ 1

0

x5w2z2 (1− x2w2z)
1
2 (2F − xw)

y (1− x2z)
3
2 F 2 (F − xw)2

dw

where F = 1 +
(

x
y
− 1
)(

1−x2w2z
1−x2z

) 1
2
.

Finally, we resolve the Equation (6.19). The final solution H [p] is one with an
integral. It is not necessary to reduce the integral. In the following step, there is
no difficulty to extract the coefficients from a solution with an integral.

6.6.4 Extraction of the coefficient of H(x, y, z)

In this section we compute the exact coefficient ofH(x, y, z). The relative methods
are referred from [HKP07, SF95, FS09].

Extraction of the coefficient of H1(x, y, z)

H1 (x, y, z) =

∫ 1

0

x4wz2 (xw + 1)

yF 2 (1− x2w2z)
1
2 (1− x2z)

3
2

dw (6.34)

[xpyqzk]H1 replace x2z with t

= [xp−2kyq+1tk−2]

∫ 1

0

w (xw + 1)
(

1 +
(

x
y
− 1
)

(

1−tw2

1−t

)
1
2

)2

(1− tw2)
1
2 (1− t)

3
2

dw

= [xp−2k+qtk−2]n

q−1
∑

i=0

(

q − 1

i

)

(−1)q−i−1

∫ 1

0

w2 (1− t)
q−i−2

2
(

1− tw2
)

i−q−2
2 dw

+[xp−2k+q+1tk−2]n

q−1
∑

i=0

(

q − 1

i

)

(−1)q−i−1

∫ 1

0

w (1− t)
q−i−2

2
(

1− tw2
)

i−q−2
2 dw

= [xp−2k+q]q

q−1
∑

i=0

(

q − 1

i

)

(−1)q−i−1

∫ 1

0

w2

k−2
∑

j=0

[tj] (1− t)
q−i−2

2 [tk−j−2]
(

1− tw2
)

i−q−2
2 dw

+[xp−2k+q+1]q

q−1
∑

i=0

(

q − 1

i

)

(−1)q−i−1

∫ 1

0

w
k−2
∑

j=0

[tj] (1− t)
q−i−2

2 [tk−j−2]
(

1− tw2
)

i−q−2
2 dw
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= [xp−2k+q]q

q−1
∑

i=0

(

q − 1

i

)

(−1)q−i−1
k−2
∑

j=0

(

j + i−q

2

j

)(

k − j + q−i

2
− 2

k − j − 2

)

1

2 (k − j)− 1

+[xp−2k+q+1]q

q−1
∑

i=0

(

q − 1

i

)

(−1)q−i−1
k−2
∑

j=0

(

j + i−q

2

j

)(

k − j + q−i

2
− 2

k − j − 2

)

1

2 (k − j)− 2

The Equation (6.35) implies that only if p + q = 2k or p + q + 1 = 2k, the
coefficient [xpyqzk]H1 is not zero.

Extraction of the coefficient of H2(x, y, z)

H2 (x, y, z) =

∫ 1

0

x4wz (1 + 2xwz) (1− x2w2z)
1
2

y (1− x2z)
3
2 F (F − xw)

dw (6.35)

where F = 1 +
(

x
y
− 1
)(

1−x2w2z
1−x2z

) 1
2
.

[xpyqzk]H2 replace x2z with t

= [xp−2k−1yq+1tk−1]

∫ 1

0

w (x+ 2tw) (1− tw2)
1
2

(1− t)
3
2

(

1 +
(

x
y
− 1
)

(

1−tw2

1−t

)
1
2

)(

1 +
(

x
y
− 1
)

(

1−tw2

1−t

)
1
2 − xw

)dw

= [xp+q−2k+1tk−1]

q
∑

i=0

(

q

i

)∫ 1

0

(x+ 2tw) (xw − 1)i
(

1− tw2
)− i

2 (1− t)
i−2
2 dw

−[xp+q−2k+1tk−1]

q
∑

i=0

(

n

i

)∫ 1

0

(x+ 2tw) (−1)i
(

1− tw2
)− i

2 (1− t)
i−2
2 dw

= [xp+q−2k]

q
∑

i=0

(

q

i

)∫ 1

0

(xw − 1)i
k−1
∑

j=0

[tj]
(

1− tw2
)− i

2 [tk−1−j] (1− t)
i−2
2 dw

+[xp+q−2k+1]

q
∑

i=0

(

q

i

)∫ 1

0

2w (xw − 1)i
k−1
∑

j=0

[tj]
(

1− tw2
)− i

2 [tk−2−j] (1− t)
i−2
2 dw

−[xp+q−2k]

q
∑

i=0

(

n

i

)∫ 1

0

(−1)i
k−1
∑

j=0

[tj]
(

1− tw2
)− i

2 [tk−1−j] (1− t)
i−2
2 dw

−[xp+q−2k+1]

q
∑

i=0

(

n

i

)∫ 1

0

2w (−1)i
k−1
∑

j=0

[tj]
(

1− tw2
)− i

2 [tk−2−j] (1− t)
i−2
2 dw

If p+ q 6= 2k and p+ q 6= 2k − 1, then

[xpyqzk]H2(x, y, z)
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= [xp+q−2k]

q
∑

i=0

(

q

i

) k−1
∑

j=0

(

j + i
2
− 1

j

)(

k − j − 1− i
2

k − j − 1

)∫ 1

0

(xw − 1)i q2jdw

+[xp+q−2k+1]

q
∑

i=0

(

q

i

) k−2
∑

j=0

(

j + i
2
− 1

j

)(

k − j − 2− i
2

k − j − 2

)∫ 1

0

(xw − 1)i 2q2j+1dw

If p ≤ 2k − 1, then

[xpyqzk]H2(x, y, z)

=

q
∑

i=0

(

q

i

) k−1
∑

j=0

(

j + i
2
− 1

j

)(

k − j − 1− i
2

k − j − 1

)(

i

p+ q − 2k

)

× (−1)i−p−q+2k 1

p+ q − 2k + 2j + 1

+2

q
∑

i=0

(

q

i

) k−2
∑

j=0

(

j + i
2
− 1

j

)(

k − j − 2− i
2

k − j − 2

)(

i

p+ q − 2k + 1

)

× (−1)i−p−q+2k−1 1

p+ q − 2k + 2j + 3

Extraction of the coefficient of H3(x, y, z)

H3 (x, y, z) =

∫ 1

0

x5w2z2 (1− x2w2z)
1
2 (2F − xw)

y (1− x2z)
3
2 F 2 (F − xw)2

dw (6.36)

where F =

(

1 +
(

x
y
− 1
)(

1−x2w2z
1−x2z

) 1
2

)

.

[xpyqzk]H3 replace x2z with t

= [xp−2k−1yq+1tk−2]

∫ 1

0

w2 (1− tw2)
1
2

(

2

(

1 +
(

x
y
− 1
)(

1−tw2

1−t

) 1
2

)

− xw

)

(1− t)
3
2

(

1 +
(

x
y
− 1
)

(

1−tw2

1−t

)
1
2

)2 (

1 +
(

x
y
− 1
)

(

1−tw2

1−t

)
1
2 − xw

)2dw

= −2[xp+q−2k+2tk−2]

∫ 1

0

(1− t)
q

2
−1

(1− tw2)
q

2

(

(

1− tw2

1− t

)
1
2

− 1

)q

dw

−2[xp+q−2k+2tk−2]

∫ 1

0

(1− t)
q

2
−1

(1− tw2)
q

2

(

(

1− tw2

1− t

)
1
2

+ xw − 1

)q

dw

+2[xp+q−2k+2tk−2]

∫ 1

0

(1− t)
q

2
−1

(1− tw2)
q

2

(

(

1− tw2

1− t

)
1
2

− 1

)q

dw
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−n[xp+q−2k+1tk−2]

∫ 1

0

w (1− t)
q

2
−1

(1− tw2)
q

2

(

(

1− tw2

1− t

)
1
2

− 1

)q−1

dw

+2[xp+q−2k+2tk−2]

∫ 1

0

(1− t)
q

2
−1

(1− tw2)
q

2

(

(

1− tw2

1− t

)
1
2

+ xw − 1

)q

dw

+n[xp+q−2k+1tk−2]

∫ 1

0

w (1− t)
q

2
−1

(1− tw2)
q

2

(

(

1− tw2

1− t

)
1
2

+ xw − 1

)q−1

dw

If p+ q − 2k + 1 6= 0

[xpyqzk]H3

= q[xp+q−2k+1tk−2]

∫ 1

0

w (1− t)
q

2
−1

(1− tw2)
q

2

(

(

1− tw2

1− t

)
1
2

+ xw − 1

)q−1

dw

= [tk−2]q

∫ 1

0

(1− t)
q

2
−1

(1− tw2)
q

2

(

q − 1

p+ q − 2k + 1

)

wp+q−2k+2

(

(

1− tw2

1− t

)
1
2

− 1

)2k−p−2

dw

If p ≤ 2k − 2

[xpyqzk]H3

= [tk−2]q

∫ 1

0

2k−p−2
∑

i=0

(

2k − p− 2

i

)

(

1− tw2
)

i−q

2 (1− t)
q−i

2
−1

× (−1)2k−p−i−2

(

p− 1

p+ q − 2k + 1

)

wp+q−2k+2dw

= q

∫ 1

0

2k−p−2
∑

i=0

(

2k − p− 2

i

)

(−1)2k−p−i−2

(

p− 1

p+ q − 2k + 1

)

wp+q−2k+2

×
k−2
∑

j=0

[tj]
(

1− tw2
)

i−q

2 [tk−2−j] (1− t)
q−i

2
−1 dw

= q

2k−p−2
∑

i=0

(

2k − p− 2

i

)

(−1)2k−p−i−2

(

p− 1

p+ q − 2k + 1

)

×
k−2
∑

j=0

(

k − j − 2− q−i

2

k − j − 2

)(

j + q−i

2
− 1

j

)

1

p+ q − 2k + 2j + 3

We obtain a complex expression that is a solution of computation but gives
little intuitive impression. For the further analysis we rely on average value of the
number of iterations.
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6.6.5 Expectation of the number of POP

In the last subsection, we developed the coefficients of H(x, y, z) in an explicit
form. These expressions have not much intuitive meaning, therefore we resolve
the expectation by another approach.

Theorem 7. Let hp,q,k denote the probability that for a urn with p white balls
and q black balls, after k steps there is no white ball in the urn using POP rule.
Then the expected number of POP is

Ep,q(k) =
∑

k

khp,q,k = p− p2

2 (p+ q)
+O

(

p√
q
√
p+ q

)

(6.37)

Proof. We denote Xk (respectively Yk) the random variable of the number of white
balls (black balls) in the urn after k times POP rule have been conducted, while
the initial conditions are X0 = p and Y0 = q. Then we have,

Xk+1 =
Xk − 1

Xk + Yk − 1
(Xk − 2) +

Yk

Xk + Yk − 1
(Xk − 1)

Yk+1 =
Xk − 1

Xk + Yk − 1
Yk +

Yk

Xk + Yk − 1
(Yk − 1)

Xk + Yk = X0 + Y0 − 2k

By reducing the variable Yk, we simplified the system of equations as follows :

Xk+1 =
(X0 + Y0 − 2k − 2) (Xk − 1)

X0 + Y0 − 2k − 1
(6.38)

The Equation (6.38) is a standard recursion with form: Xk+1 = ak+1Xk+ bk+1,
where ak+1 = X0+Y0−2k−2

X0+Y0−2k−1
and bk+1 = −ak+1. We divide both sides by the factor

ak+1ak...a0, then we have:

Xk+1

ak+1ak...a1a0
= X0 +

k
∑

i=0

bi+1

ai+1...a1a0
(6.39)

The {Xk} is a decreasing sequence, so at some moment k, we have ⌊Xk⌋ = 0.
To resolve the corresponding k, we consider the left part of the Equation (6.39)
equals to 0. The right part then can be simplified as follows.

We denote T = X0 + Y0, then p = X0 =
k−1
∑

i=0

1
ai...a1a0

p =
k−1
∑

i=0

1

ai...a1a0
=

k
∑

i=1

1

ai...a1
as ak =

T−2k
T−2k+1

=
k
∑

i=1

(T − 1)!!

(T − 2i− 1)!!

(T − 2i− 2)!!

(T − 2)!!
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=
k
∑

i=1

T !
(

T
2

)

!
(

T−2
2

)

!
2−2i

(

T−2i−2
2

)

!
(

T−2i
2

)

!

(T − 2i)!

=
k
∑

i=1

T !
(

T
2

)

!
(

T−2
2

)

!

√

π

2
e2−T+1

√
T − 2i− 2

(T − 2i− 2)
T−2i−2

2

(T − 2i)
T−2i

2

(

1 +O

(

1

T − 2i

))

Applying Stirling formula with error term O
(

1
T−2i

)

=
k
∑

i=1

T !
(

T
2

)

!
(

T−2
2

)

!

√

π

2
e2−T+1

(

1− 2

T − 2i

)
T−2i

2 1√
T − 2i− 2

(

1 +O

(

1

T − 2i

))

=
T !

(

T
2

)

!
(

T−2
2

)

!

√

π

2
2−T+1

k
∑

i=1

1√
T − 2i− 2

(

1 +O

(

1

T − 2i

))

where
(

1− 2
T−2i

)
T−2i

2 → e−1

=
T !

(

T
2

)

!
(

T−2
2

)

!

√

π

2
2−T+1

(√
T − 2−

√
T − 2k − 2 +O

(

1√
Y0

))

where T
2
≫ 0

=
√
T − 2

(√
T − 2−

√
T − 2k − 2 +O

(

1√
T

))(

1 +O

(

1

T

))

=
√
T − 2

(√
T − 2−

√
T − 2k − 2

)

(

1 +O

(

1√
Y0

√
T

))(

1 +O

(

1

T

))

=
√
T − 2

(√
T − 2−

√
T − 2k − 2

)

(

1 +O

(

1√
Y0

√
T

))

Then we have Ep,q(k) = X0− X2
0

2T
+O

(

X0√
Y0

√
X0+Y0

)

= p− p2

2(p+q)
+O

(

p√
q
√
p+q

)

.

In the proof, we apply several big O expression. In case when T ≫ 0, all
conditions are satisfactory.

Theorem 7 has an intuitive explanation: if X0 ≫ Y0, almost each step we
throw two white balls, then EX0,Y0(POP ) ≈ X0

2
; whereas when Y0 ≫ X0, at each

step we throw one white ball and one black ball, then EX0,Y0(POP ) ≈ X0.

6.7 Analyzing the profile of BFS tree

With the expected number of POP operation between time ik and ik+1, we may
then express ik+1 as a function of ik, and deduce the expected values of the inter-
esting quantities of the profile.

In the following we shall make use of the generating function of degrees given by
g(z) =

∑

j ajz
j where {aj} is the degree distribution. We obviously have g(1) = 1

and g′(1) = m
n
.
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Lemma 5. Given a degree sequence {dj} in the form of a generating function
g(z) =

∑

j djz
j, the time ik+1 when the BFS process begins the exploration of the

nodes at level k + 1 satisfies:

ik+1 ∼ g′
(

ik
m

)

(6.40)

Proof. Using Equation (6.9) and Equation (6.7), the expected number of enqueued
copies is:

X = δn

(

i

m

)2

− i

m
g′
(

i

m

)

n (6.41)

The expected number of untouched copies is:

Y =
i

m
g′
(

i

m

)

n (6.42)

From Equation (6.11), we get

ik+1
∑

i=ik

POP (i) =
Cue (ik)− Cue (ik+1)

2
(6.43)

The left side of Equation (6.43) is just the number of POP for an initial configu-
ration (X, Y ). Using Theorem 7, we have

Cue(ik)−Cue(ik+1)

2
=

∑ik+1

i=ik
POP (i)

= X − X2

2(X+Y )

=
i2
k

2m
− n

2δ
g′
(

ik
m

)2

Then we draw the conclusion ik+1 ∼ ng′
(

ik
m

)

.

Applying Lemma 5, some typical cases can be easily computed,

Corollary 1. For a Regular r graph with n nodes:

ik+1 ∼ rn

(

ik
m

)r−1

Corollary 2. For a Poisson λ graph with n nodes:

ik+1 ∼ nλeλ(
ik
m

−1)

Corollary 3. For a power-law α graph with n nodes:

ik+1 ∼ n

∑

j j
1−α
(

ik
m

)j−1

∑

j j
−α
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Theorem 8. Let nk denote the number of nodes of level k in the BFS tree,
respectively, nk−1, nk−2,..., n1 the number of nodes of level k− 1, k− 2,... , 1 and
a degree distribution {aj} in form of generating function g(z) =

∑

j=1 ajz
j , then

the expected number of nodes E(nk+1) of level k + 1 in the BFS tree is:

E (nk+1) = n−
k
∑

i=0

ni − ng





g′
(

g−1
(

1−∑k

i=0
ni

n

))

g′ (1)



 (6.44)

Proof. Using Lemma 5, we have:

E (nk+1) = ng

(

ik
m

)

− ng

(

ik+1

m

)

E (nk+1) = ng

(

ik
m

)

− ng

(

g′
(

ik
m

)

g′ (1)

)

From Theorem 8, for three typical types of the degree distribution, we have:

Corollary 4. For a regular r graph with n nodes:

E (nk+1) = n

(

ik
m

)r

− n

(

ik
m

)r(r−1)

(6.45)

Corollary 5. For a Poisson λ graph with n nodes:

E (nk+1) = neλ(
ik
m

−1) − ne
λ

(

e
λ( ik

m −1)−1

)

(6.46)

Corollary 6. For a power-law α graph with n nodes:

E (nk+1) = n

∑

j−α
(

ik
m

)j

ζ (α)
− n

∑

j−α

(

∑

j1−α( ik
m )

j−1

ζ(α−1)

)j

ζ (α)
(6.47)

Theorem 9. Let ek denote the number of invisible links between level k and
level k + 1 in the BFS tree, and a degree distribution {aj} in form of generating
function g(z) =

∑

j=1 ajz
j, then the expectation of E(ek) is:

E (ek) =
i2k − n2g′
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ik
m
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+O

(

1

m
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(6.48)
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Proof. At time i, the conditioned probability that an invisible link appears is:

PIL(i) = E (POP (i))×
(

1− E (Cunto (i))

E (Cunex (i))

)

(6.49)

The first factor of the right part of Equation (6.49) is the probability that at time
i, a POP occurs. The second factor of the right part is the probability that the
partner of the copy at the head of queue Q is also located in the Q (that means an
invisible link). Using Lemma 5, we have the critic points of time that indicates the
beginning of a level. Then from time ik to ik+1, the expected number of invisible
links is:

E (ek) =

ik+1
∑

i=ik

2i− 1

2m

(

1− ig′
(

i
m

)

δn
(

i
m

)2

)

= m

∫

ik+1
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m

t
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1− g′ (t)
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)

dt+O
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m
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=
i2k − i2k+1

2m
− n

(

g

(

ik
m

)

− g

(

ik+1

m

))

+O

(

1

m

)

6.8 Conclusion

We studied the profile of BFS trees originated from a set of graphs given by
a degree sequence. Our analysis is based on configuration model for random
graphs, manipulating copies of the nodes. In the configuration model, the process
of constructing a BFS tree, uses a queue to record the behavior of the copies.
Discretizing time into an interval from m to 1, we establish a method to trace the
queue, particularly the number of copies and the number of nodes at a certain
time.

The core problem of the analysis is POP problem, that may be transformed
into a classic balanced diminishing urn model. This diminishing urn model is
characterized by a partial differential equation whose solution has an integral
form, and we can extract the exact coefficients hp,q,k. However, the expression of
the hp,q,k is so complex that the computation of the expectation and the variance
is not so practical. Then we directly calculate the expectation

∑

k khp,q,k which
has a relatively simple expression and using the expectation we get the results
concerning the number of nodes at each level (Theorem 8) and the number of
invisible links at each level (Theorem 9).

Other properties of the profile should be also attainable with our method, such
as the height of the BFS tree. But in practice this property plays a relatively light
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role (because it grows too slowly with respect to the size) in distinguishing the
type and predict the number of links.

Since we directly calculate the expectation
∑

k khp,q,k, we cannot trivially fur-
ther develop higher moments: the computation of variance for example, appeals
to probability generating function [HKP07, FS09]. The next step of our work
will be first to try and simplify the expression hp,q,k and hope to find an explicit
distribution to describe it.
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7.1 Introduction

In this chapter, we decide on the type of an unknown graph using not only a BFS
tree but also the information of profile that we study in the previous chapter.
In Subsection 7.2, we introduce two new strategies RRIL and PPIL, which are
the counterparts of RR and PP strategy. In RRIL and PPIL strategies, we use
the number of invisible links at each level to refine the process of rebuilding. In
Subsection 7.3, we make use of the number of nodes at each level, from which we
may decide on the type and the number of links using a bounded BFS tree.

7.2 RRIL and PPIL strategies

As we know the profile of BFS tree, some improvements can be applied in the
process of rebuilding. In Chapter 3, two rebuilding strategies, RR strategy (Sub-
section 3.3.1) and PP (Subsection 3.3.2) strategy, have been described. In this
section, we introduce a methodology that rebuilds graphs using the analytic re-
sults of the profile of BFS tree. Two new strategies RRIL and PPIL take place of
RR and PP strategy. The process of RR and PP strategy is one that retrieves the
invisible links, in other words to retrieve the links that present in the underlying
graph but not in the tested BFS tree. However, in the process of RR and PP, we
have missed an important factor that the links near around the root, namely the
monitor from which we conduct traceroute, have a bigger probability to be visible
[DAHB+06]. Therefore, there are less invisible links located around the root.

An intrinsic bias is introduced by the fact that RR and PP strategies uniformly
choose from all allowed positions. But in strategies RRIL and PPIL, we improve
the adding process by considering the fraction of missing links at each level. For
example, if we have a sequence of missing links: {ek} = (1, 4, 5, 1), then one link
will be added on level 1, four links on level 2, five links on level 3 and one link on
level 4.

In mathematics, the number of invisible links at level k is a random variable
that depends on the number of nodes n, degree sequence {dj} and the correspond-
ing level k. Its expectation E(ek) is given by the expression of Theorem 9.

Then, we propose a process of rebuilding graphs. We call it SB(RRIL, PPIL)
which means the algorithm of deciding on the type without m with a single BFS
tree using RRIL and PPIL strategies. See Algorithm 7.

Remarks:

• The theoretical value ek is not guaranteed to be an integer. Therefore, in
practice, we just take the integer part and we neglect those levels that have
a value ek < 1.

• The ek links are randomly chosen among all allowed positions between levels
(k, k) and levels (k, k+1). The number of possible positions is n′

k =
nk(nk−1)

2
+
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Data: The number of nodes n, a complete BFS tree T .
Result: Type of the underlying graph and the number of links m.
Compute the set of allowed positions {Eallowed,k} according to T for each1

level k;
KSmin ←∞ ;2

foreach hypothesis in {Poisson, power-law} do3

for mtest ← mbegin to mend Step ∆m do4

The rebuilt graph G′
hypothesis,mtest

← T ;5

for k ← 1 to levelbfs do6

madd ← ek ;7

while madd > 1 do8

if hypothesis Poisson then9

Randomly choose the first endpoint u and the second10

endpoint v from Eallowed,k (RRIL) ;
else11

Preferentially choose the first endpoint u and the second12

endpoint v from Eallowed,k (PPIL) ;
end13

Add link uv into G′
hypothesis,mtest

,14

G′
hypothesis,mtest

← G′
hypothesis,mtest

+ uv ;

madd ← madd − 1 ;15

end16

end17

Compute the theoretical distribution P type,m corresponding to18

(type,m) ;
KStest ← KS(P type,m, PG′

type,mtest ) ;19

if KStest < KSmin then20

KSmin ← KStest ;21

type← hypothesis ;22

m← mtest23

end24

end25

end26

Algorithm 7: SB(RRIL, PPIL): Algorithm of deciding on the type of
graph without m with a single BFS tree using RRIL and PPIL strategies.



92 CHAPTER 7. DECIDING WITH THE PROFILE OF BFS TREES

nknk+1 − nk+1. The first term indicates the number of links between (k, k);
the second term indicates the number of links between (k, k + 1); the third
term indicates the number of links that exist in BFS tree. So the randomness
rebuilding is to choose ek links from n′

k possible positions. However, in
practice, n′

k may be smaller than ek, the real program must handle this
problem. We propose that at each level we take the minimum of ek and n′

k.

• Two kinds of methods to retrieve a link, randomly or preferentially, we call
the two strategies RRIL and PPIL strategy, respectively.

• RRIL and PPIL strategies are more sensitive to the form of BFS tree than
RR and PP strategies. In theory, the profile of BFS tree should be exponen-
tially increasing at the first levels, while in practice we observe sometimes a
real measure has one node at level 1, one node at level 2, one node at level 3
and then it disperse to a large number of nodes at level 4. Such a BFS tree
like this will make our strategy a little stupid, but there is no much impact
with RR and PP strategies.

7.2.1 Random model graphs

First, we apply RRIL and PPIL strategies on random model graphs with 1000
nodes. The second column of Table 7.1 is the estimated type and parameters
where the process gave the minimum KS value. The third and the fourth columns
are m, the number of links in the underlying graph, and the estimated number of
links m′.

Table 7.1: RRIL and PPIL strategies on random model graphs.
Decide Type m m′

Poisson 3 Poisson 3 1612 1500
Poisson 5 Poisson 4.7 2486 2350
Poisson 10 Poisson 9.9 4863 4950
Power 2.1 Power 2.2 2461 1795
Power 2.2 Power 2.25 1254 1436
Power 2.3 Power 2.3 1083 1299

This application is similar to the methodology that we decide on the type
of a graph without m described in Section 4.2. Comparing with Table 4.1 and
Table 4.2, RRIL and PPIL strategies run still well for deciding on the type. With
the help of the profile of BFS tree, the estimate of the number of links looks like
better than the previous estimate. In practice, RRIL and PPIL can be considered
the improvement of RR and PP strategies.
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7.2.2 Real-world graphs

Then, we apply RRIL and PPIL on some real-world graphs.

Table 7.2: Using RRIL and PPIL strategies on real-world graphs.
Decided Type m m′

Skitter-AS Power-law 12025 8008
Radar-japon Poisson 77545 46012
Radar-cm Poisson 15728 36431

Radar-ortolan Poisson 48516 40796
Radar-enix Poisson 73556 52549

First for deciding on the type, in all cases Algorithm SB(RRIL, PPIL) gives
the same decided type to Algorithm SB(RR,PP ). But for estimating the number
of links, it is even worse than SB(RR,PP ). This may be due to the abnormal
structure of Radar graphs. Specially speaking, if a tested BFS tree has not an
approximately exponentielly increasing form, RRIL and PPIL are not comptatible
in this case and they are lack of the stability. The stability of stategy means that
two samplings may not differ significantly from each other.

7.3 Deciding from a bounded BFS tree

As we have mentioned in Theorem 8, with a given degree distribution or a degree
sequence and the node number n, we can compute a theoretical vector V of node
numbers {nk}, where nk is denoted as the number of nodes at level k in the BFS
tree T . For a fix n, a suite of vectors V , such as VPoisson3, VPoisson4 and VPowerlaw2.1,
VPowerlaw2.2, are determined, where each V is a BFS tree vector:

Definition 8. BFS tree Vector V : V = (n1, n2, ...nk...), where nk corresponds
to the number of nodes at level k in a BFS tree T .

Remark: The BFS tree vector from a real BFS tree contains only integer
elements; while the vector from a theoretical profile contains real number elements.

Then we propose a process of deciding the type of a graph from its BFS tree.
It is described in Figure 7.1. G is an unknown graph on which we perform a
measurement which gives its number of nodes n and a BFS tree T , which is
possible to be a bounded BFS tree (limited by the number of hops, that is to
say, a partial BFS tree with first i levels). In practice, we usually choose from 5
to 10 upper levels of a BFS tree. Then for each type, such as regular, Poisson
and power-law, we build a family of graphs, where Vi,j means the theoretical BFS
profile computed with type i and parameter j. In the comparison step, we compare
the difference of two BFS vectors, Vbfs and one Vi,j and decide on the type and
the corresponding parameter according to where there is least difference.
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Figure 7.1: G is an unknown graph on which we perform a measurement which
gives its number of nodes n and a BFS tree T , which is possible to be a bounded
BFS tree (limited by the number of hops, that is to say, a partial BFS tree with
first k levels). In practice, we usually choose from 5 to 10 upper levels of a BFS
tree. Then for each type, such as regular, Poisson and power-law, we build a family
of graphs, where Vi,j means the theoretical BFS profile computed with type i and
parameter j. In the step of comparison, we compare the difference of two BFS
vectors, Vbfs and one Vi,j and decide on the type and the corresponding parameter
according to where there is least difference.
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From the statistic view, there are a lot of methods to quantify the difference
between two vectors, such as Manhattan distance (1-norm distance:

∑n

i=1 |xi −
yi|), Euclidean distance (2-norm distance:

∑n

i=1 (|xi − yi|2)
1
2 ), Chebyshev distance

(infinity norm distance: limp→∞
∑n

i=1 (|xi − yi|p)
1
p ) etc (see [ED06]). Then we have

Algorithm 8 and we call it NV which means algorithm decides on the type using
Node Vector.

Data: The number of nodes n, a bounded by k levels BFS tree Tk.
Result: Type of the underlying graph and the number of links m.
Compute a node vector of Tk: Vbfs ← Tk ;1

MDmin ← 1 ;2

foreach type in {Poisson, power-law} do3

for mtest ← mbegin to mend Step ∆m do4

The rebuilt graph G′
type,mtest

← T ;5

Compute the corresponding node vector: Vtype,m6

MDtest ←MD(Vbfs, Vtype,m) ;
if MDtest < MDmin then7

MDmin ←MDtest ;8

Record the position of mtest ;9

end10

end11

end12

Algorithm 8: NV : Algorithm of deciding on the type of graph without m
with a single (Bounded) BFS tree using node vector.

Then we apply the methodology with two kinds of graphs: random model
graphs and real-world graphs.

7.3.1 Random model graphs

With the process described in Figure 7.1, we conducted the experiments with
random model graphs, each graph has 100000 nodes. In Table 7.3, we show the
results of four typical cases: Poisson 3, Poisson 10, Power-law 2.1 and Power-law
2.3. The first column is the type of the tested graphs, while the second is the
result estimated by a complete BFS tree and the third is the result estimated
by upper levels of a BFS tree. The number of the upper levels is not fix and it
depends on the form of BFS tree, which is first increasing and then decreasing.
The appropriate number, considering of the reason in practice, is smaller than the
height of increasing stage. If it is too small, there is no enough information to
distinguish the type. On the contrary, it’s difficult (almost impossible) to obtain
a total view of the Internet to a too far distance. Therefore, we choose 6 upper
levels for Poisson 3 (see detail in Table 7.4), while 5 for Poisson 10, Power-law
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2.1 and Power-law 2.2. In all four cases, the type estimated with a complete BFS

Table 7.3: Result of deciding the type with BFS tree’s profile.
Tested graphs Estimate with complete levels Estimate with upper k levels
Poisson 3 Poisson 3 Poisson 3
Poisson 10 Poisson 10 Poisson 10

Power-law 2.1 Power-law 2.1 Power-law 2.1
Power-law 2.3 Power-law 2.3 Power-law 2.3

tree or with a bounded BFS tree is correct regarding to the underlying type. In
most cases, the number of links (there is a bijection from a parameter to m, if n
is fix.)is also well estimated. Only in the case of Poisson 10, there is a few times
that the best estimate is located at Poisson 11. This error comes probably from
the difference of the degree of the root of BFS tree.

Table 7.4: Manhattan Distance (MD) for a Poisson 3 graph.
Poisson theoretical profile

All levels First 6 levels
λ MD MD
3 19584 293
4 112060 708
5 161899 3163
6 172783 8177
7 188045 16886
8 189213 29893
9 193320 46472
10 195874 64176
11 196144 79619
12 196168 90320

Power-law theoretical profile
All levels First 6 levels

λ MD MD
2.05 188630 89676.3
2.1 185801 87127.8
2.15 182312 84089.9
2.2 178671 80499.2
2.25 175098 76286.1
2.3 171005 71378.9
2.35 166298 65716.6
2.4 160850 59270.6
2.45 154513 52078.5
2.5 147278 44283.2

7.3.2 Real-world graphs

In this example, we apply our methods on some real-world graphs: Skitter graphs
and Radar graphs. Here we observe quite different results, in Table 7.5 to that of
random model graphs. Radar-enix is more likely to be a Poisson 4 graph, in both
cases, with a complete BFS tree or a bounded BFS tree. In the case of Radar-cm,
the complete profile shows that it is probable to be a Poisson 3 graph; while the
bounded profile give a result between Poisson 3 and Poisson 4. In the case of
Radar-japon and Skitter-AS, the results are even a little strange. Different type
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Table 7.5: Result of deciding the type of real-world graphs with BFS tree’s profile.
Tested graphs Complete BFS Bounded BFS
Radar-cm Poisson 3 Poisson 3 or Poisson 4
Radar-enix Poisson 4 Poisson 4
Radar-japon Poisson 6 or Power-law 2.5 Poisson 4 or Power-law 2.5
Skitter-AS Poisson 18 or Power-law 2.1 Power-law 2.1

Skitter-Router Power-law 2.03 Power-law 2.03

is determined, when the BFS process running from different root. So we conclude
that the type of the graph Radar-japon and Skitter-AS is not significant with this
methodology.

7.4 Conclusion

Applying Theorem 8 and Theorem 9 in Chapter 6, we develop two new strategies
to decide on the type and to estimate the number of links.

RRIL and PPIL take the place of RR and PP strategies and consider the infor-
mation of the number of invisible links at each level. Then the random adding links
procedure is conducted more precisely and we observe indeed a better estimation
for random model graphs.

NV algorithm is a first trial that we use only a bounded BFS tree, which based
on the number of nodes at each level of BFS tree.

However these two methodologies have a strong drawback. They are too sen-
sitive to the selection of the root. From one root to another, the estimation of the
number of links, even the type may be changed.
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8.1 Summary

In this thesis, we have explored the possibility to deduce type of the degree dis-
tribution of a graph with traceroute-like measurements modeled by BFS trees.
Indeed, it is known that observing directly this property on actual measurements
gives a biased results. We therefore developed an orthogonal approach consist-
ing in modeling the measurement process and inferring from its properties the
ones of the underlying graph, in particular the type of its degree distribution.
More precisely, we focus on distinguishing between homogeneous degree distribu-
tions (modeled by Poisson laws) and heterogeneous ones (modeled by power-laws),
which is currently at the core of an important controversy in the area.

In Chapter 3 we assume that we know the number of nodes n, the number of
links m and a BFS tree T of an unknown graph G. We then introduce algorithm
SBm(RR,PP ) relying on the PP and RR strategies to build a graph from T and
decide on the type of the degree distribution of G. We validate this approach
with models graphs, thus in cases where G is known. This shows that our method
succeeds in deciding on the type of the degree distribution.

In Chapter 4, we improve this method: we get rid of the requirement of knowing
m by scanning large ranges of possible values of this parameter and selecting the
one which gives the best results. The obtained algorithm, SB(RR,PP ), still leads
to valid conclusions and provides an estimate of m in addition to the type of the
underlying degree distribution.

We explore in Chapter 5 the improvement obtained by using several BFS trees
rather than just one, a situation often met in practice. The obtained algorithm,
MB(RR,PP ), improves significantly the estimate of m previously obtained.

These first chapters only use limited information from the BFS tree; we explore
in Chapters 6 and 7 the possibility to use more detailed information, namely the
profile of the BFS tree, i.e. the number of nodes at each level. We first study
the formal properties of such profiles in Chapter 6 using generating functions
and queuing models. We apply obtained results in Chapter 7, where we develop
the RRIL and PPIL strategies to reconstruct a graph from a BFS and where we
explore the possibility to decide from a bounded BFS (i.e. only the first levels of
the BFS, which is much closer to real-world measurements). This leads to the
SB(RRIL, PPIL) algorithm for deciding on the degree distribution of a graph,
which improves further previous results, and to the NV algorithm which succeeds
in deciding on the type of the degree distribution of a graph from very limited,
and rather realistic, information.

All these results are summarized in Table 8.1, leading to the following com-
ments on the key features of our algorithms.

Deciding Type. All five algorithms work well for deciding the type, either
Poisson or power-law, of a graph.



8.2. PERSPECTIVES 101

Table 8.1: Comparison of algorithms: Y for Yes; N for No; 1 for the best and 5
for the worst.

SBm(RR, PP ) SB(RR, PP ) MB(RR, PP ) SB(RRIL, PPIL) NV

Estimate m? N Y Y Y Y
Exactness 4 2 3 1

Bounded BFS? N N N N Y
Speed 2 4 5 3 1
Stable? Y Y Y N N

Estimate m. Except SBm(RR,PP ), all other algorithms can estimate the num-
ber of linksm. SB(RR,PP ) always overestimatesm for Poisson model graphs and
underestimate m for power-law model graphs. SB(RRIL, PPIL) underestimate
for Poisson and overestimate for power-law, but the difference is much smaller
than SB(RR,PP ). MB(RR,PP ) gives an excellent estimate when enough BFS
trees are used. NV is the best algorithm to estimate m: for all model graphs, it
perfectly fits with the original one(same type and same m).

Bounded BFS. As a complete BFS tree is a too strong hypothesis in practice,
NV is an exciting algorithm which can decide on the type and estimate the number
of links according to the first levels of a BFS tree.

Speed. In practice, we have to deal with huge graphs with typically one million
nodes or even more. Hence the speed of the algorithm is important. The first four
algorithms rebuild a graph during the process of deciding and they must track the
degree of nodes. Usually graphs that have more than 100000 nodes are too heavy
for these algorithms, but NV can readily handle such large graphs.

Stability. AlthoughNV is very appealing regarding other feature, it is sensitive
to the choice of root, which is a problem in practice.

8.2 Perspectives

Our work is only a first step; it calls for several improvements in the future. We
group them in three categories: using less hypotheses, refining rebuilding strategies
and establishing methodology on more general graphs.

8.2.1 Using less hypotheses

The main limitation of our contribution is that we suppose the knowledge of a
complete BFS of the unknown graph in all stable algorithms. This hypothesis is
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not realistic, though, since practical measurements rather provide only paths to
a subset of the real graph nodes. Our main perspective therefore is to reduce
requirements on data, and design strategies needing bounded BFS (BFS until a
certain level) only, and partial BFS (that contain paths to a subset of all nodes of
the graph). Assuming that such measurements are available is much more realistic
[OML08].

NV is a first proposal using a bounded BFS tree, but it lacks the stability on
some real world graphs. One possible improvement is to introduce some additional
information to refine the theoretical computation. For example, in NV we do not
consider the degree of root node in the computation. If we did, the vector would
be (1, r, n2, n3...) where r is the root degree instead of (1, n1, n2, n3...) where n1

is always the average degree. The vector with information of root counteract the
impact of the randomness of the selection of root, which is very meaningful to
resolve the problem of stability. Then, we have to develop a new theorem to
compute a vector by considering root degree. Furthermore, if we know the exact
topology around the root, such as first three or four levels, this method can be
developed to more levels. However, the corresponding computation is not trivial.

If we know only a partial BFS tree, the corresponding estimate becomes more
complicated. In this case, the number of nodes is no longer known. A new
methodology, which estimates the total number of nodes or even the number of
nodes at each level, is necessary.

8.2.2 Refining rebuilding strategies

In future work, we also want to improve our strategies by investigating various
refinements.

Additional properties. We first may take into account more subtle properties
than the BFS, such as the clustering coefficient and the average distance.

Other distributions. We hope to extend the rebuilding strategies to other
types of distributions. In fact, few empirical phenomena obey power-law for all
degree. More often the power-law applies only for values greater than some min-
imum degree. A first step would be to mix RR and PP strategies for mixed
Poisson/power-law graphs. The obtained RP strategy would give a mixed Pois-
son power-law distribution, but still lacks a parameter to indicate the ratio of the
impact of Poisson or power-law. It is not difficult to develop the corresponding
strategies to rebuild a regular graph, but for other distributions, such as power-
law with exponential cut-off, the procedure seems nontrivial. Furthermore, how
to rebuild a graph, which may have an arbitrary degree sequence, from a BFS tree
is an open problem.
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8.2.3 Establishing methodology on more general graphs

In this thesis, we conducted experiments on two kinds of graphs: random model
graphs (from the configuration model) and real-world graphs. Besides configura-
tion model graphs, some other graphs are also used to model the Internet, like BA
graphs [BAJ99]. All our analysis and experiments do not suggest a trivial way
to manage these models. The profile of BFS tree of BA graphs is surely different
from the one of configuration model graphs. From a statistical viewpoint, we may
introduce some additional constraints to smooth the exception to randomness.
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[AB02] Réka Albert and Albert L. Barabási. Statistical mechanics of com-
plex networks. Reviews of Modern Physics, 74(1):47–97, 2002.

[AJB99] R. Albert, H. Jeong, and A. L. Barabasi. The diameter of the world
wide web. Nature, 401:130–131, 1999.

[AJB00] Reka Albert, Hawoong Jeong, and Albert-Laszlo Barabasi. Error
and attack tolerance of complex networks. Nature, 406(6794):378–
382, 2000.

[AKCM05] Dimitris Achlioptas, David Kempe, Aaron Clauset, and Cristopher
Moore. On the bias of traceroute sampling: or, power-law degree
distributions in regular graphs. In ACM Symposium on Theory of
Computing, pages 694–703, 2005.
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