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ABSTRACT
Network embedding, that aims to learn low-dimensional vector rep-

resentation of nodes such that the network structure is preserved,

has gained significant research attention in recent years. However,

most state-of-the-art network embedding methods are computa-

tionally expensive and hence unsuitable for representing nodes in

billion-scale networks. In this paper, we present LouvainNE, a hier-
archical clustering approach to network embedding. Precisely, we

employ Louvain, an extremely fast and accurate community detec-

tion method, to build a hierarchy of successively smaller subgraphs.

We obtain representations of individual nodes in the original graph

at different levels of the hierarchy, then we aggregate these rep-

resentations to learn the final embedding vectors. Our theoretical

analysis shows that our proposed algorithm has quasi-linear run-

time and memory complexity. Our extensive experimental evalua-

tion, carried out on multiple real-world networks of different scales,

demonstrates both (i) the scalability of our proposed approach that

can handle graphs containing tens of billions of edges, as well as (ii)

its effectiveness in performing downstream network mining tasks

such as network reconstruction and node classification.

CCS CONCEPTS
•Computingmethodologies→Machine learning algorithms;
• Mathematics of computing→ Graph algorithms.
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1 INTRODUCTION
Representation learning on graphs, or network embedding [11, 19],

involves a mapping of nodes in the graph to a low-dimensional

vector space, such that the topological structure of the network is

preserved. Such learned embedding vectors can be efficiently used

as features for carrying out various network mining tasks. Most of

the existing network embedding approaches employ random walks

on graphs, matrix factorization techniques and deep learning archi-

tectures [20, 36, 44] to represent nodes. However, these methods
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are computationally expensive for networks containing billions of

edges.

Recently, few embedding methods [9, 28, 29] that have proposed

hierarchical approaches to learn node embeddings have been de-

veloped. For instance, Ma et al. [29] captures the latent hierarchi-

cal taxonomy denoting categories of different granularity in the

learned vertex representations. HARP [9] and MILE [28] repeatedly

coarsens the original graph into a series of smaller graphs. Next,

vertex representations of the coarsened graphs are learned using

state-of-the-art embedding approaches, followed by a refinement

step to obtain the final node embeddings of original graph. However,

graph convolution network and gradient updates introduce a high

computational overhead. Recently proposed RandNE [54] is faster

than other approaches on large-scale networks, however it compro-

mises with the embedding quality unless its numerous parameters

are accurately tuned. Another recent method is ProNE [53] which

learns high quality embeddings, but do not scale well for networks

with billions edges.

In this paper, we leverage the notion of community structures

present in real networks [17] as an effective mechanism to compute

node embeddings. The nodes present in a single community have

similar types and are densely connected among themselves [31].

Hence, placing those nodes closely in the embedding space may

facilitate multiple graph mining tasks such as node clustering and

node classification, as well as network reconstruction and link pre-

diction. Partitioning the graph recursively into a series of coarsened

subgraphs (communities) can help to capture similarity between

nodes at different levels of proximity: the recursive partitioning es-

sentially creates a hierarchy of communities in the network, where

(a) the nodes present in the same community at the top level of

the hierarchy indicates a cluster of similar nodes with higher-order

structural relationships and (b) communities lower down in the

hierarchy preserve the neighborhood relationship between con-

nected pairs of nodes. Hence, generating the embedding vectors

for a node from its presence in the communities at various levels

of the hierarchy preserves the embedding quality and makes it

suitable for various graph mining tasks. Side by side, one may use

state-of-the-art fast community detection algorithms to make this

process scalable for large-scale networks [32].

The major contribution of this paper is to develop a fast and

scalable network embedding framework, LouvainNE, which is able
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to generate high quality embeddings for networks containing tens

of billions of edges. First, we define the problem of scalable net-

work embedding and explain the scope of community structures

present in the network to efficiently learn node embedding vectors

(Section 2). Leveraging these insights, we develop LouvainNE, a
framework for node embedding based on hierarchical community

detection. The development of LouvainNE involves three major

steps: (a) A hierarchical clustering method is proposed to build

a hierarchy of subgraphs. We use the Louvain algorithm [5] to

recursively coarsen a large graph into smaller communities and

construct the hierarchy of subgraphs. (b) Next, we generate the

level specific node embeddings for each subgraph in the hierar-

chy. We propose two different approaches to embed each subgraph

(i) stochastic embedding (ii) standard embedding. (c) Finally, we

combine the obtained embeddings at different levels of the hier-

archy into the final embedding of individual nodes in the graph

(Section 3). We introduce various real-world network datasets and

describe the state-of-the-art network embedding methods used as

baselines (Section 4). We perform extensive evaluation of the qual-

ity of the learned embedding vectors using LouvainNE on various

downstream graph mining tasks such as network reconstruction

and node classification. Our evaluation demonstrates the effective-

ness of LouvainNE in learning high quality embedding vectors,

which significantly outperform state-of-the-art methods, especially

for large-scale datasets (Section 5). We explore the different vari-

ants of LouvainNE implementations as well as investigate the effect

of tuning the model hyperparameters on the performance of Lou-
vainNE (Section 6). Finally, we perform scalability evaluation on

multiple real-world networks with up to 20 billions of edges which

shows that LouvainNE scales linearly with the size of the network,

while state-of-the-art algorithms fail to generate embeddings in a

reasonable amount of time (up to 5 days). We present the related

work in Section 8.

2 PROBLEM STATEMENT AND KEY IDEA
In this section, we first formulate the problem of scalable network

embedding. Next, we provide the detailed intuition behind the

proposed methodology.

2.1 Notations and Problem Definition
Let G = (V, E) denote an undirected graph whereV = {v1,v2,
. . . ,vN } is the set of N = |V| nodes and E is the set of M = |E |
undirected edges in G. In this paper, our objective is to find a map-

ping function f that learns a low-dimensional embedding vector

yv of dimension d for every node v ∈ G where d << N is the pre-

defined number of dimensions of the embedding. Mathematically,

we learn the function f : V → Rd such that ∀v ∈ V , f (v) = yv.
The function f is learned in such a way that it preserves various

network properties in the embedding space. For instance, (a) pre-

serving the neighborhood proximity between connected node pairs

(b) keeping the similar albeit non-adjacent nodes relatively close to

each other (c) ensuring that dissimilar and non-adjacent nodes are

placed far away (d) preserving higher-order structural relationships

in the embedding space (e) representing the graph topology, are

essential requirements of learning embedding vectors.

Apart from generating high quality node embedding vectors, our

aim is to ensure that the developed algorithm is fast and highly scal-

able for large-scale networks. It should be able to learn embedding

vectors in a network consisting of a few billion nodes and edges

efficiently in a reasonable time, without compromising the qual-

ity of embedding for effectively performing various downstream

network mining tasks.

2.2 Embedding and community: Key idea
behind LouvainNE

In real-world networks, the distribution of links is inhomogeneous,

with high concentrations of links within specific groups of nodes,

and low concentrations between these groups [10]. This feature

of real networks results in the formation of community structure,

where nodes inside the community are more densely connected,

than with the rest of the network [51]. Communities in a network

are groups of nodes which probably share common properties

and/or play similar roles within the network. We envision the

notion of community as a useful tool to compute node embeddings.

Indeed, it is intuitive to place nodes in the same community closely

in the embedding space, compared to the nodes in different commu-

nities. The node embedding vectors learned from this community

structure may facilitate to cluster the similar nodes in the graph,

as well as infer the node types effectively. Moreover, dense connec-

tions within community will also help to preserve the higher-order

structural relationships. Unfortunately, vanilla community struc-

ture does not capture the neighborhood property of the connected

node pairs. However, if we construct a hierarchy of subgraphs by

repeatedly identifying smaller sub-communities from the larger

communities in the network, this will help to preserve the local

proximity between node pairs in the network, since the neighbors

of a node are more likely to be in the same sub-community lower

down in the hierarchy. This will effectively preserve the neighbor-

hood relationship between two nodes and will help to accurately

reconstruct the original network. Finally, the presence of a wide

variety of fast community detection algorithms in the literature [32]

capable of detecting communities in massive-scale graphs in a very

short time, paves the way of utilizing community structure for

developing scalable node embedding algorithms. In this paper, we

leverage these aforesaid observations to develop LouvainNE.

3 DEVELOPMENT OF LouvainNE
LouvainNE involves three broad steps for learning the embeddings

in large-scale networks. First, we propose a fast method to create
a hierarchy of partitions of the original graph. Next, we generate

level specific node embeddings for each partition in the hier-

archy. Finally, we compute embedding vectors of each individual

node of the original graph by combining the embeddings of all
the partitions that contain this node. The detail follows.

3.1 Hierarchy construction
We use a graph partitioning algorithm to compute a partition P

of the set of nodesV of a graph G = (V, E), i.e., to compute a set

of nonempty subsets of V such that every node v ∈ V belongs

to exactly one of these subsets. Then, for each set of nodes S ∈ P,



we build the subgraphG[S] induced in G by S and repeat the par-

titioning process on G[S] for every set S . This induced subgraph

construction and partitioning is repeated recursively until the par-

titioning algorithm gives a trivial singleton partition that cannot

be further decomposed. This happens for instance if the considered

graph is a single node or a clique. In the end, when a single set

of nodes is obtained, we create a partition of singletons {v} for
each node v in that set. This procedure is general and any graph

partitioning algorithm could be used. However a fast and reliable

algorithm must be used to ensure the quality and scalability and

we therefore use here the Louvain algorithm [5].

This recursive procedure can be represented as a tree, which we

depict in Figure 1 (left for a graphical representation of the nested

partitions and middle for the corresponding tree). The constructed

tree has the following properties: (i) each tree-node contains a

subset of nodes of the input graph, (ii) the root node contains all

nodes in the graph, (iii) the children of a given tree-node contain

the sets of nodes corresponding to the partition of the subgraph

induced by the set of nodes in the tree-node and (iv) each leaf

contains a single node and there is a single leaf for every node of

the original graph.

We detail this procedure in Algorithm 1. The procedure is re-

cursive and calls itself in line 10. The input consists in the graph

of interest and a partition function, called in line 3. We used the

Louvain algorithm to partition a graph. The output consists in the

hierarchical tree.

Algorithm 1 Hierarchy construction

1: recpart(G)
2: function recpart(G)
3: C ← Partition(G) ▷We use Louvain for partitioning

4: if C contains a single set of nodes S then
5: for each node v in S do
6: output leaf {v}
7: else
8: for each cluster S in C do
9: output internal tree-node S
10: recpart(G[S])

3.2 Generating level specific embedding vectors
Once the hierachy is obtained, we compute an embedding vector

for each one of the tree-nodes except the root node. We propose

two embedding techniques.

(1) Standard embedding. Given any tree-node, including the

root but except the leafs, we construct a weighted undirected

meta-graph, where the nodes are the children of the consid-

ered tree-node and the weighted-edge between two children

S1 and S2 is given by:

wS1S2 =
|ES1S2 |

|S1 | · |S2 |
.

Here ES1S2 denotes the set of edges between the sets of nodes

S1 and S2 in the original graph. The normalisation
1

|S1 | · |S2 |
allows to obtained more relevant weights when the sets S
are of different sizes (two large sets of nodes may have a

large number of edges between them compared to two small

sets). We note that other weight functions can be used, we

defer this study to future work. Once the meta-graphs are

obtained, we apply a standard graph embedding algorithm

(for instance, node2vec [20] or DeepWalk [34]) to obtain an

embedding vector in dimension d of each one of these meta-

graphs independently.

(2) Stochastic embedding. For each tree-node, except the root,
we simply generate a random vector of dimension d from the

standard normal distribution Normal(0, 1) with zero mean

and unit variance. If d is large enough, then any two ran-

dom vectors will be roughly at the same distance (curse of

dimensionality) which is a good property for what we do

next. Interestingly, here, we somehow leverage the curse of

dimensionality.

In the case of Standard embedding, we note that the size of the

meta-graphs are much smaller compared to the size of the original

graph G, we can thus learn node embeddings of high quality in

a very short time. We also note that a given edge of the original

graph intervenes only in a single one of the obtained meta-graph

(as a contribution to a weighted edge). This makes the overall time

to compute all the embeddings no slower than the time that it

would require to compute the embedding of the original graph

with the chosen standard embedding method if the chosen standard

embedding method has a linear running time. And it makes it much

faster if it has running time slower than linear, say a quadratic

running time.

In the case of Stochastic embedding, we observe that the embed-

ding step does not directly depend on the structure of the input

graph and it only depends on the tree. The input graph can thus be

omitted as input for that step, which takes as input the tree only.

This step is thus extremely fast as it only consists in generating a

random vector for each tree-node.

3.3 Combining embeddings at different levels
Finally, we compute the embedding vectors yv for each node v ∈ G
such that (i) the pairwise neighborhood relationship is preserved

and (ii) similar nodes are close to one-another in the embedding

space.

We assume that the leaf {v} (where v is the node of interest) of

the tree is at depth h. We denote ytv for 1 ≤ t ≤ h the embedding

vectors of the h tree-nodes that lie on the path from the root the

the leaf {v} (excluding the root, but including the leaf).

We combine these h different embedding vector components in

order to obtain the final embedding vector yv of node v . For that
purpose, we introduce a parameter α (0 < α < 1) that regulates

the weighting of the embedding vector components at different

hierarchical levels t . We compute the final embedding vector as

follows:

yv =
h∑
t=1

α t−1ytv (1)

Equation 1 ensures that the contribution of the vector compo-

nents ytv gradually diminishes with increase in t as we move down

the hierarchy. Hence, two nodes which belong to the same com-

munity very low down in the hierarchy will be placed extremely

close to each other in the embedding space, compared to two nodes
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Figure 1: From graph to hierarchical tree to embedding

that are part of the same community at a top level of the hierarchy

but belong to different communities lower down in the hierarchy.

Nevertheless, in the second case too, the embedding vectors will

be placed relatively close. This helps to preserve the neighborhood

relationship between nodes in the embedding space, as well as place

similar nodes (part of the same community) relatively close in the

embedding space.

We illustrate this step of converting a hierarchy into an embed-

ding in Figure 1 (middle and right). For illustration purposes, we

set the number of dimensions to 2 and represent the non-leaf tree-

nodes in shaded grey at the coordinates given by Equation 1, but

where the sum is truncated at the depth of the tree-node.

4 EXPERIMENTAL SETUP
In this section, we describe the datasets and the state-of-the-art

algorithms used for evaluating the proposed LouvainNE algorithm.

4.1 Datasets
We use datasets of different scales for our experiments, see Table 1

for detailed statistics. We consider Blogcatalog as the moderate-

scale and Youtube and Flickr as the large-scale datasets. We will

consider larger graphs in Section 7.

(a) Blogcatalog (BC): This dataset contains the network of so-

cial relations [1] between bloggers on the Blog catalog website with
labels reflecting their categories of interest (say technology).

(b) Youtube dataset: This is a social network [2] consisting of

all user-to-user links in the Youtube video sharing website. The

labels denote groups that are subscribed to by users on Youtube
such as gaming.

(c) Flickr dataset: This is a network dataset [2] where nodes are
images shared on Flickr. Edges are formed between images sharing

common metadata in Flickr such as same location, submitted to

same gallery, sharing common tags, images taken by friends, labels

such as animal etc.

Dataset # Nodes # Edges # Labels
Blogcatalog 10312 333983 39

Youtube 1138499 2990443 47

Flickr 1715255 15555042 195

Table 1: Dataset statistics

4.2 Competing algorithms
We consider the following recent state-of-the-art methods for eval-

uating the performance of LouvainNE:
(a) HARP: This is a meta-strategy [9] for embedding graphs

preserving higher-order structural features. It employs a hierarchi-

cal embedding approach where it first coarsens the graph using

edge & star collapsing, followed by applying standard embedding

to learn representations on the coarsest graph. Finally, it refines

the embeddings from the coarsest to the finest graph. We used the

implementation of the authors in [9] with the default parameters:

the walk length= 10, number of walks= 40 and window size= 10;

node2vec is used to embed the coarsest graph with the return pa-

rameter p and in-out parameter q, selected by grid search over the

values {0.25, 0.5, 1, 2, 4}.

(b) MILE: [28] developed a framework similar to [9] where it

scales up the performance of a standard embedding method even

for large graphs. The proposed methodology includes a hybrid

matching strategy to coarsen the graph and a graph convolution

network to compute the refined final embeddings of the original

graph.We use the authors’ implementation with default parameters:

the number of coarsening levels= 2, learning rate= 0.001. We use

DeepWalk as the base embedding method and GCN is used to refine

embeddings with self-loop weight= 0.05.

(c) RandNE: [54] proposed a simple random projection based

network embedding approach using an iterative projection proce-

dure, that helps to learn embeddings for billion-scale networks. We

used the default parameter settings recomanded by the authors:

with q = 1, weights=[1, 0.1] and using the adjacency matrix for net-

work reconstruction. For classification, we have used the transition

matrix with parameter values q = 3 and weights=[1, 102, 104, 105].

(d) NetSMF: [35]relies on sparse matrix factorization and on

spectral sparsification of a dense random-walk matrix polynomial.

We have used the implementation provided by the authors with

default parameter settings of context window size T = 10, b = 1

and number of samples M = 10
3 ×T ×m wherem is the number

of edges in the graph.

(e) ProNE: [53] developed a fast and scalable network embed-

ding framework, which relies on spectral propagation to enhance

the quality of learned embeddings. We used the authors’ implemen-

tation with default parameter settings where term number of the

Chebyshev expansion k = 10, µ = 0.1 and θ = 0.5.



Dataset HARP RandNE MILE NetSMF ProNE LouvainNE
Blogcat. 0.733 0.712 0.702 0.725 0.747 0.683
Youtube 0.883 0.818 0.907 0.932 0.917 0.939
Flickr 0.806 0.797 0.899 0.902 0.913 0.908

Table 2: AUC scores for network reconstruction

Dataset HARP RandNE MILE NetSMF ProNE LouvainNE
Blogcat. 0.316 0.308 0.264 0.334 0.323 0.306
Youtube 0.305 0.303 0.304 0.307 0.296 0.307
Flickr 0.384 0.385 0.386 0.356 0.361 0.389

Table 3: Micro-F1 scores for node classification

(f) LouvainNE: Our proposed solution. Unless otherwise speci-

fied, we use the Stochastic embedding variant and set the value of

the parameter α = 0.01.

Unless otherwise specified, we have used the embedding dimen-

sion d = 128 for all the methods including LouvainNE.

5 EMBEDDING QUALITY EVALUATION
In this section, we evaluate the quality of the learned node repre-

sentations obtained from LouvainNE against the one obtained from

the competing algorithms based on standard downstream tasks.

5.1 Network reconstruction
In this task, the learned embedding vectors are expected to well

reconstruct the graph [33]. A good network embedding algorithm

should ensure that the embedding vectors can preserve the original

network topology, such that they can be used to reconstruct the net-

work. Precisely, we aim to predict the links in the original network

by ranking the node pairs based on the similarity of their learned

embedding vectors. The larger the similarity between embedding

vectors of a node pair, the higher is the probability for the node

pair to be connected by a link.

Evaluation procedure. We use the following two standard evaluation

metrics for the task of network reconstruction:

(a) precision@K: This metric [44] is measured as the fraction of

node pairs in the top-K ranked pairs that are connected by an edge.

In order to rank the node pairs, we compute the Euclidean distance

between embedding vectors of all node pairs and rank them in

increasing order of Euclidean distance (smaller Euclidean distance

denotes larger similarity). For computing precision@k for network

reconstruction, we rely on the following two ways depending on

graph size:

1. Classical evaluation: For a graph G of size N , we compute

the Euclidean distance for all

(N
2

)
pairs in the graph and sort these

pairs in increasing order of Euclidean distance. Then we compute

precision@K for top-K pairs over the entire ranked list of

(N
2

)
pairs. We follow this method to compute precision@K only for

the moderate-scale network of Blogcatalog.
2. Scalable evaluation: The classical evaluation becomes infea-

sible for the large-scale datasets of Youtube and Flickr since the

total number of node pairs in these networks are of the order of

10
13
. Hence, we perform graph sampling to reduce the number

of nodes and edges in the network and perform network recon-

struction considering only the node pairs in the sampled graph. For

Dataset HARP RandNE MILE NetSMF ProNE LouvainNE
Blogcat. 0.190 0.182 0.150 0.179 0.160 0.167
Youtube 0.153 0.189 0.155 0.190 0.192 0.189
Flickr 0.251 0.249 0.251 0.248 0.250 0.254

Table 4: Macro-F1 scores for node classification

graph sampling, we rely on the forestfire technique [22] to obtain
a subgraph of the original graph. We fix the size of the sampled

subgraph as the randomly chosen 1% nodes of the original graph.

We then rank the node pairs in this sampled subgraph based on

the computed Euclidean distance in increasing order. We compute

precision@K considering only the node pairs belonging to this sub-

graph. We repeat this process 100 times and report the average

precision@K. We apply this evaluation technique on the large-scale

networks of Youtube and Flickr.
(b) Area Under the Curve (AUC): This metric [16] measures

the probability that a randomly selected adjacent pair of nodes

(positive sample) is ranked higher than a randomly selected non-

adjacent pair of nodes (negative sample), in terms of similarity

between their respective embedding vectors. As the exact AUC is

resource intensive to compute due to the size of the considered net-

works, we compute an estimation of it by sampling. We sample an

adjacent pair of nodes and a non-adjacent pair of nodes; we check

whether the sampled adjacent pair is more similar than the sampled

non-adjacent pair. Here the similarity between a pair of nodes is

measured in terms of Euclidean distance between the learned em-

bedding vectors of the two nodes (the lower the Euclidean distance,

higher is the similarity). We repeat this procedure a large number of

times (100 times the number of edges in the corresponding graph)

and report the estimated AUC.

Results. To show the effectiveness of our proposed LouvainNE
method on network reconstruction task, we plot the precision@K
over increasing values of K for various datasets in Figure 2. We

observe that LouvainNE outperforms the state-of-the-art meth-

ods across all datasets in terms of the precision@K, though the

method ProNE performs comparably to LouvainNE on Blogcata-
log and Youtube datasets. Moreover, in Table 2, we show that the

proposed LouvainNE achieves good AUC scores outperforming all

state-of-the-art methods except ProNE. Importantly, LouvainNE has

comparable performance to ProNE in terms of AUC for the large-

scale Youtube and Flickr datasets.
This superior performance of LouvainNE for the network recon-

struction task is due to the fact that it relies on the construction of

hierarchy of subgraphs based on successively applying community

detection on the original graph (Section 3.1). This ensures that the

majority of a node’s neighbors will continue to belong to the same

community as the given node lower down in the hierarchy. Subse-

quently, the embedding and combining steps ensure that a node is

placed very close to its neighbors in the embedding space. Hence,

connected node pairs will have highly similar embedding vectors

compared to disconnected pairs, thereby preserving the pairwise

neighborhood relationships in embedding space.



(a) Blogcatalog (b) Youtube (c) Flickr

Figure 2: precision@K for network reconstruction

5.2 Node classification
In this section, we evaluate the quality of embeddings generated

by LouvainNE for node classification. Since a node can have one or

multiple ground truth labels in all our used datasets, the resultant

problem of classifying nodes is a multi-label classification problem.

Evaluation procedure. We apply the generated embedding vectors

as features in a supervised learning framework to classify a node

into the corresponding ground truth label(s). Specifically, we use

the classifier chain technique [37] of performing multi-label classi-

fication, that takes into account label correlations by constructing

a chain of binary classifiers, equal to the total number of ground

truth labels. We implement a Logistic Regression model to train this

multi-label classifier. We randomly sample 80% of the vertices as

the training set and evaluate the classifier performance on the re-

maining vertices that form the test set (20%). We predict the label(s)

of a node in the test set and report theMicro-F1 andMacro-F1 scores
averaged over 100 iterations.

Results. In Tables 3 and 4, we observe that the proposed LouvainNE
outperforms all state-of-the-art methods for the large-scale Youtube
and Flickr datasets. However, for the moderate scale Blogcatalog
dataset, NetSMF (Micro-F1) and HARP (Macro-F1) performs slightly

better. This stems from the variations in the structural character-

istics across the different networks, which impact the outcome of

the multi-label node classification task. The superior performance

of LouvainNE on the node classification task can be attributed to

the graph embedding step of LouvainNE (Section 3.2) that assigns

the same embedding vector to all nodes in a single community

(reflecting nodes of similar labels) at a given hierarchy level. This

ensures that the resultant embedding vectors of nodes belonging to

the same community, obtained after the graph combining step (Sec-

tion 3.3), will be placed very close to each other in the embedding

space.

6 DRILLING DOWN LouvainNE
In this section, we explore the variants of LouvainNE implementa-

tions as well as investigate the impact of the model parameters on

the performance of LouvainNE.

6.1 Embedding variants of LouvainNE
We compare the performance of variants of LouvainNE with dif-

ferent level specific embedding implementations in Section 3.2. We

0 2 4 6 8 10
Maximum depth

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
U

C

Blogcatalog

Youtube

1e-51e-41e-31e-2 0.1 0.5 0.9 1
alpha

0.5

0.6

0.7

0.8

0.9

1.0

1.1

A
U

C

Blogcatalog

Youtube

0 2 4 6 8 10
Maximum depth

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
ic

ro
-F

1

Blogcatalog

Youtube

1e-51e-41e-31e-2 0.1 0.5 0.9 1
alpha

0.0

0.1

0.2

0.3

0.4

M
ic

ro
-F

1

Blogcatalog

Youtube

Figure 3: Parameter tuning of LouvainNE: (top-left) AUC as
a function of the maximum depth; (top-right) AUC for net-
work reconstruction as a function of α ; (bottom-left) Micro-
F1 as a function of the maximum depth; (bottom-right)
Micro-F1 for node classification as a function of α .

implement node2vec [20] and DeepWalk [34] as Standard embedding
techniques as well as the Stochastic embedding and evaluate the

performance on downstream tasks. First, we compare the AUC of

network reconstruction across the model variants in Table 5. Next,

we compare the performance of multi-label node classification in

Table 6. We observe that all the variants of LouvainNE perform

pretty uniformly across the tasks. Nevertheless, DeepWalk imple-

mentation of Standard embedding is the best performing model

variant for the moderate scale Blogcatalog dataset, whereas Stochas-
tic embedding is the best performing variant of LouvainNE for the

large-scale Youtube dataset.

6.2 Parameter tuning
Here we investigate the impact of (i) varying the maximum num-

ber of levels (the maximum depth) hmax in the hierarchy and (ii)



Dataset Stochastic Node2vec DeepWalk
Blogcatalog 0.683 0.691 0.695
Youtube 0.939 0.923 0.925

Table 5: AUC for network Reconstruction of the variants of
LouvainNE: Stochastic, Node2vec and DeepWalk.

Dataset Stochastic Node2vec DeepWalk
Blogcatalog 0.306 (0.167) 0.311 (0.162) 0.314 (0.164)
Youtube 0.307 (0.189) 0.305 (0.186) 0.305 (0.187)

Table 6: Performance for node classification of LouvainNE
(Stochastic, Node2vec and DeepWalk) in terms of Micro-F1
(Macro-F1 in parentheses)

varying the parameter α , while combining embeddings at differ-

ent levels (Section 3.3), on the performance of LouvainNE. In that

section, we only consider the stochastic variant of LouvainNE.
(i) Effect of varying maximum depth hmax : We vary max-

imum depth hmax from 1 to 9 (as 9 is the maximum number of

levels encountered while building the hierarchy on Youtube and
Blogcatalog). In that, we modify the stopping condition in the re-

cursive Algorithm 1 by adding, line 4: "or if the depth is equal to

hmax ". We then generate the embedding vectors ytu using Stochastic
embedding and perform the combining of embedding vector compo-

nents. In Figure 3 (top-left) and Figure 3 (bottom-left), we compare

the respective AUC for network reconstruction and Micro-F1 for
multi-label node classification using the embedding vectors ob-

tained by LouvainNE over different values of hmax on Blogcatalog
and Youtube. We observe that AUC is pretty low for hmax = 1 for

both datasets, since the top level communities (due to their size) fail

to discriminate (in terms of learned embedding vectors) between

the connected and disconnected node pairs. Similar observation

holds true in case ofMicro-F1 for node classification. As t increases,
the performance improves gradually since the embedding vectors

can better distinguish between neighbors and non-neighbors inside

a community, as we go down in the hierarchy.

(b) Effect of varying α : We vary the value of α in the range

[10−5, 1] and generate node embeddings for each value of α . We plot

the AUC for network reconstruction using the embedding vectors

obtained for different values of α for Blogcatalog and Youtube in
Figure 3 (top-right). We observe that AUC is pretty high for low

values of α and decreases as α increases. This reveals that lower

values of α enable the learned embeddings to better preserve the

neighborhood relationships. It is rather intuitive, as for very small

values of α and given a node, the nodes closer to that node will

be the ones sharing the same community at the lower hierachical

level. We also plot the Micro-F1 for multi-label node classification

as a function of α in Figure 3 (bottom-right). Here we observe that,

contrarily to the problem of network reconstruction, the lower

value of α is not the better for classification. We indeed observe

a cap shape where medium values of α , say α = 0.01, perform

much better than low or high values. This may be due to a trade-off

between (i) the fact that low values of α are better as they put nodes

sharing the same community at a low hierachical level relatively

close to one-another and (ii) the smoothness of variation in the

vectors required by the subsequent machine learning algorithm

used to predict the label (logistic regression).

7 SCALABILITY EVALUATION
In this section, we push LouvainNE to its limits in order to demon-

strate that it can deal with the largest publicly available real-world

graphs. In order to evaluate our implementation of LouvainNE (with

the Stochastic embedding variant), we gathered three real-world

graphs with at least one billion edges (detailed statistics are pre-

sented in Table 7). We carried out these experiments on a Linux

machine equipped with a processor Intel Xeon CPU E5- 2660@ 2.60

GHz and with 512 GB of RAM DDR4 2133 MHz. We implemented

LouvainNE efficiently in C
1
.

We observed that none of the existing implementations of state-

of-the-art methods (including ProNE that shows comparable per-

formance to LouvainNE on downstream tasks) can compute an

embedding of such large graphs using such a computer withing

a reasonable amount of time. We thus re-implemented RandNE
efficiently in C

2
, in order to have a competitive baseline to compare

against and evaluate the scalability performance of LouvainNE.
We present the results in Table 7 where we report the time to

compute the hierarchy of LouvainNE, as well as the overall running
time of LouvainNE and RandNE for the embedding dimensions

d = 16, 128 and 512. We observe that when d is very small then

RandNE is faster than LouvainNE, but for medium or large values

of d LouvainNE is faster. For d = 128, LouvainNE is nearly 5 times

faster than RandNE and for d = 512, LouvainNE is nearly 10 times

faster.

Complexity analysis: The hierarchy construction step by apply-

ing Louvain [5] takes O(M · H ) time, where M is the number of

links (Louvain has a linear running time) and H is the height of

the hierarchical tree (note that we observe in practice that H is

very small, say around 10 or less). We note that this first step does

not depend on the number of dimensions d of the embedding. The

generation of level specific embedding vectors of dimension d and

combining embeddings take O(d · N ) time (where N is the number

of nodes), leading to an overall time complexity ofO(M ·H +d ·N ).
The memory complexity is in O(M · H ) in the worst case (we store

the input graph (in an adjacency array datastructure), as well as a

subgraph for each level of the hierarchy).

The time complexity of RandNE is in Θ(N · d2 + M · d) [54].
RandNE is thus significantly slow when d is large on large graphs

(both terms N ·d2 andM ·d are problematic). This is demonstrated

experimentally in Table 7.

We also note that, the construction of the hierarchy takes a sig-

nificant part of the overall running time of LouvainNE (say, 50%

for d = 512). In case of competing hierarchical approaches such as

HARP and MILE, either the graph coarsening step is complicated

(for HARP) or the graph combining step based on GCN is slow

(for MILE). This results in significantly increasing the overall run-

ning time, which makes these competing approaches unsuitable

for embedding large-scale networks.

1
Publicly available implementation: https://github.com/maxdan94/LouvainNE

2
Publicly available implementation: https://github.com/maxdan94/RandNE. We

do not perform the Gram-Schmidt process to obtain orthogonal projections as it takes

important additional time and memory. We use q = 2 in the experiments.

https://github.com/maxdan94/LouvainNE
https://github.com/maxdan94/RandNE


d = 16 d = 128 d = 512

Network # Nodes # Edges Hierarchy LouvainNE RandNE LouvainNE RandNE LouvainNE RandNE
Twitter09 [8] 5.2 × 107 1.6 × 109 1h21m 1h25m21s 48m27s 1h57m 5h49m 3h47m 22h59m

Friendster [27] 1.2 × 108 1.8 × 109 2h31m 2h37m 1h31m 3h17m 11h26m 5h36m 45h24m

MOLIERE [40] 3.0 × 107 3.3 × 109 4h44m 4h46m 2h25m 5h5m 17h57m 6h10m 71h13m

Table 7: Running time for the hierarchy construction step of LouvainNE and overall running time of LouvainNE and RandNE
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Figure 4: Linear time complexity of LouvainNE andRandNE

Finally, we evaluate the running time of LouvainNE as a function

of the number of edgesM . In order to do so, we relied on a publicly

available Twitter graph (users and follow links) crawled in 2012 [18].

We ignore edge orientations since this is a directed graph. This

graph has around 500 million users and the undirected version

has 20 billion edges. We sampled subgraphs of different sizes in

terms of number of edges and we measure the running time of

LouvainNE for d = 128 on each of these subgraphs comparing it

against RandNE. We present our results in Fig. 4 where we observe

that the running time of LouvainNE and RandNE scales linearly

with the number of edges, but that LouvainNE is about 5 times

faster than RandNE.
We conclude that our implementation of LouvainNE is faster than

our implementation of RandNE for medium values of d and much

faster for large values of d . However, we note that RandNE (without

the Gram-Schmidt process to obtain orthogonal projections) is

embarrassingly parallel and offers a good degree of parallelism.

LouvainNE can also be made parallel, but we defer the study of its

parallelism to future work.

8 RELATEDWORK
Earliest approaches on network embedding [3, 39, 42] relied on

various dimensionality reduction techniques for mapping nodes to

a low-dimensional vector space from high-dimensional adjacency

matrix such that adjacent nodes get placed close to each other in the

embedding space. However, these methods, with time complexity

in ≈ O(|V |2), were only suitable to process small graphs.

Recently, most of the existing state-of-the-art network embed-

ding approaches that are based on random walks [13, 20, 24, 26,

34, 38, 55] are inspired by the word2vec model [30] for learning

representations of words. These methods rely on generating large

number of walks for training the model, thus considerably slowing

down the learning process. On the other hand, network embedding

approaches employing matrix factorization techniques [6, 14, 23,

33, 36, 49] are inherently slow since they learn node representa-

tions using a dense objective matrix, often with millions of rows

and columns making them both memory and computationally in-

feasible. In addition, there also exist some embedding methods

that learn node representations on graphs mainly capturing local

neighborhood information using the knowledge of vertex-vertex

connections [41, 45, 48] or capturing the non-linearity of graphs

by employing deep learning methods that needs to optimize huge

number of parameters [7, 12, 21, 43, 44, 47]. Besides these, algo-

rithms have been developed for embedding nodes in heterogeneous

networks [13], signed networks [4, 25, 46, 52] and attributed net-

works [46, 50]. However, all these methods mainly capture the local

structural relationships as well as suffer from high computational

complexity.

More recently, there have been few works on hierarchical repre-

sentation learning [15, 29]. Probably, the closest approach to ours

are HARP [9] and MILE [28]. However, these approaches relies

on coarsening the original graph by repeatedly aggregating nodes

based on structural similarity followed by embedding the coarsest

graph using a state-of-the-art method (Deepwalk, node2vec etc.).
The embeddings of the coarsest graph are then successively refined

to get the final embeddings of the original graph. Our approach

differs in the way we construct the hierarchy of communities as

well as the embedding and combining steps to obtain the final

embeddings from this hierarchy.

Few works have relied on spectral graph sparsification tech-

niques [35, 53] and random projection [54] for obtaining scalable

network embedding. However, none of these approaches except

(our re-implementation of) RandNE [54] scales to networks with

tens of billions of edges.

9 CONCLUSION
We leverage the notion of community structure to develop Lou-
vainNE, a scalable graph embedding framework relying on three

steps: (a) constructing a hierarchy of subgraphs (b) computing level

specific embeddings for each subgraph in the hierarchy and (c)

combining these level specific embeddings. We use the Louvain al-

gorithm to recursively partition the graph and obtain the hierarchy.

We have shown that LouvainNE leads to high-quality embed-

dings, for downstream graph mining tasks, relatively to the state-

of-the-art. We have shown that our implementation of LouvainNE
is able to process graphs with tens of billions of edges, that its

running time scales linearly with the number of edges and that it

is much faster than its fastest competitor (our re-implementation

of RandNE).
For future work, we would like to study the parallelism of Lou-

vainNE, use partitioning algorithms other than Louvain, as well as



investigate other level specific embedding methods and combin-

ing steps. Can we use the hierarchy directly as input to machine

learning algorithms?
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