

Institut Mines-Télécom

Exploring Human Interactions for Influence Modeling in Online Social Networks

Monika Rakoczy

Supervisors: Amel Bouzeghoub, Katarzyna Węgrzyn-Wolska, Alda Lopes Gancarski

Reviewers: Lynda Tamine Lechani, Przemysław Kazienko

Jury: Cedric Du Mouza, Bogdan Cautis, Salima Benbernou

Context and Motivation

- Various usages
- Multiple topics:
 - applications (advertising, recommender systems)
 - social network analysis (data mining)
- Changes in how people interact with environment and each other
- Interactions have impact on Social Network (SN): members behavior, structure, transformation

Social Media Landscape 2018

Alice wants information about a computer

Problematic

- Different ways of interacting!
- What impact on the overall influence different interactions should have?
- What happens with influence when we consider time?

TELECOM SudParis

Who is the most influential?

Agenda

- 1. Challenges
- 2. Related work
- 3. Contributions
 - 1. Modeling of Social Network Interactions
 - 2. Proposition of Theoretical Influence Model
 - **3. Action-Reaction Influence Model**
 - 4. Micro-influence
 - 5. Time Dependent Influence Estimation (TiDIE)
 - 6. Inference of Reputation from Influence
- 4. Summary and Perspectives

Challenges

Challenges (1)

- The notions are elusive to quantify, unclear and imprecise in the literature, and are often confused with one another
 - RQ 1: How to define, differentiate and specify properties of each of the notions: trust, popularity, influence, and reputation?
 - **RQ 2:** Is there a **link** between those notions? If so, how to **model the linkage**, so we can use it for evaluation?

Challenges (2)

- Influence between different entities in SN is particularly used and useful
- But, as it is a compound notion, modelization and evaluation of influence still leaves open problems
 - RQ3: How to modelize influence capturing its complexity, while being adaptive to different social network types and consider numerous methods of social interaction?
 - **RQ4:** How to include **time** for influence evaluation? How to **quantify influence over time**? How can influence **causal effect** be represented?

Challenges (3)

- Influence is broadly examined by searching for the most known and followed users, but we know that it exists as well for not widely-known entities
 - **RQ5:** How to find "promising" entities who could **still** have influence but are invisible (as they are less connected)?

Related Work

Influence

15

 Definition: process of changing both feelings and behavior of a particular person, due to the interaction with others [resulting] from an adaptation of one's opinions, believes revision to change of the behavior [Hwang, 2016]

Influence: literature comparison

Method	Connectivity	Immediacy (Intensity)	Content Recognition	Activity generation	Time dependency
Degree Centrality [Zafarani al, 2014]	v	×	×	×	×
Closeness/Betweenness Centrality [Zafarani al, 2014]	 	v	×	×	×
HITS [Manning, 2008]	 	✓	~	×	×
PageRank [Page, 1999]	 	✓	v	×	×
TSPR [Haveliwala, 2002]	v	 	~	×	×
Cataldi et al. [Cataldi, 2015]	v	v	v	×	×
MentionRank [Xiao, 2014]	×	×	~	×	×
TOIM [Li, 2012]	×	v	v	×	×
FLDA [Bi, 2014]	 	×	~	×	×
<i>Liu et al.</i> [Liu, 2010]	v	×	v	×	×
AWI [Yin, 2012]	×	×	×	 	
Li&Gillet [Li&Gillet, 2011]	~	×	v	 	×
Chikhaoui et al. [Chikhaoui, 2015]	 	×	×	 	
H-index [Hirsch, 2005]	v	×	×	 	×
iFinder [Agarwal, 2008]	v	✓	~	×	×
ProfileRank [Eirinaki, 2012]	~	×	v	×	×
Klout [Rao, 2015]	v	unavailable	 	 	1/2

Influence: literature comparison

	1				
Method	Connectivity	Immediacy (Intensity)	Content Recognition	Activity generation	Time dependency
Degree Centrality [Zafarani al, 2014]	v	×	×	×	×
Closeness/Betweenness Centrality [Zafarani al, 2014]	v	v	×	×	×
HITS [Manning, 2008]	~	~	~	×	×
PageRank [Page, 1999]	V	v	v	×	×
TSPR [Haveliwala, 2002]	~	~	v	×	×
Cataldi et al. [Cataldi, 2015]	 	v	 	×	×
MentionRank [Xiao, 2014]	×	×	v	×	×
TOIM [Li, 2012]	×	v	 	×	×
FLDA [Bi, 2014]	 	×	 	×	×
<i>Liu et al.</i> [Liu, 2010]	v	×	v	×	×
AWI [Yin, 2012]	×	×	×	v	~
Li&Gillet [Li&Gillet, 2011]	v	×	 	v	×
Chikhaoui et al. [Chikhaoui, 2015]	~	×	×	v	~
H-index [Hirsch, 2005]	v	×	×	v	×
iFinder [Agarwal, 2008]	~	~	 	×	×
ProfileRank [Eirinaki, 2012]	v	×	v	×	×
Klout [Rao, 2015]	~	unavailable	~	v	1/2

Influence: literature comparison

Method	Connectivity	Immediacy (Intensity)	Content Recognition	Activity generation	Time dependency
Degree Centrality [Zafarani al, 2014]	v	×	×	×	×
Closeness/Betweenness Centrality [Zafarani al, 2014]	v	v	×	×	×
HITS [Manning, 2008]	~	✓	 	×	×
PageRank [Page, 1999]	v	v	 	×	×
TSPR [Haveliwala, 2002]	~	~	~	×	×
Cataldi et al. [Cataldi, 2015]	v	v	 	×	×
MentionRank [Xiao, 2014]	×	×	 	×	×
TOIM [Li, 2012]	×	~	 	×	×
FLDA [Bi, 2014]	~	×	 	×	×
<i>Liu et al.</i> [Liu, 2010]	v	×	 	×	×
AWI [Yin, 2012]	×	×	×	~	
Li&Gillet [Li&Gillet, 2011]	 	×	 	 	×
Chikhaoui et al. [Chikhaoui, 2015]	~	×	×	~	~
H-index [Hirsch, 2005]	v	×	×	v	×
iFinder [Agarwal, 2008]	~	✓	 	×	×
ProfileRank [Eirinaki, 2012]	v	×	v	×	×
Klout [Rao, 2015]	v	unavailable	 	~	1/2
Our Objective	v	~	V	V	V

Reputation

- Definition: what is generally said or believed about a person's or thing's character or standing [Josang et al., 2007]
- \approx Global trust \rightarrow Collective measure;

value based on many opinions of users

- Properties:
 - **Collectivity** [Hamdi, 2017; Song, 2005; Lee, 2015; Jha, 2017; Fu-Guo et al., 2009]
 - Dynamicity [Lee, 2015]
 - Long-term [Lee, 2015; Jha, 2017]
 - **Context-dependency** [Fu-Guo et al., 2009]

Reputation: literature comparison

Method	Collective	Dynamicity	Long-term	Context- dependence
Arithmetic mean	~	~	×	×
FCR [Hamdi, 2017]	~	×	×	×
FuzzyTrust [Song, 2005]	~	×	×	×
Binomial Rep Score [Josang, 2008]	~	×	1⁄2	×
Multinomial Rep Score [Josang, 2016]	~	1⁄2	1⁄2	×
ReMSA [Lee, 2015]	~	~	~	×
<i>Jha</i> [Jha, 2017]	~	×	~	1⁄2
<i>Fu-Guo et al.</i> [Fu-Guo et al., 2009]	~	×	×	
O'Donovan&Smyth [ODonovan, 2005]	~	×	×	×
Advogato [Levien, 1998]	~	×	×	×
Appleseed [Ziegler, 2005]	~	×	×	×

Reputation: literature comparison

Method	Collective	Dynamicity	Long-term	Context- dependence
Arithmetic mean	~	~	×	×
FCR [Hamdi, 2017]	 	×	×	×
FuzzyTrust [Song, 2005]	~	×	×	×
Binomial Rep Score [Josang, 2008]	~	×	1⁄2	×
Multinomial Rep Score [Josang, 2016]	~	1⁄2	1⁄2	×
ReMSA [Lee, 2015]	~	~	~	×
<i>Jha</i> [Jha, 2017]	~	×	~	1⁄2
Fu-Guo et al. [Fu-Guo et al., 2009]	 	×	×	
Odonovan&Smyth [ODonovan, 2005]	~	×	×	×
Advogato [Levien, 1998]	~	×	×	×
Appleseed [Ziegler, 2005]	~	×	×	×
Our Objective	 	 	v	

Trust

- Definition: a commitment to an action, based on a belief that the future actions of that person will lead to a good outcome [Goldbeck, 2005]
- Properties:
 - Asymmetry [Jamali 2009; Alexandridis 2013; Bedi 2012; Jiang 2016; Lumbreras 2015; Golbeck 2005; Sarda 2008]
 - Transitivity [Jamali 2009; Alexandridis 2013; Bedi 2012, Jiang 2016; Lumbreras 2015; Golbeck 2005; Sarda 2008]
 - Dynamicity [Bedi 2012; Jiang 2016; Lumbreras 2015]
 - Context dependence [Sarda 2008]

Popularity

- Two major concepts from sociology [Stopfer et al., 2013]:
 - perceived popularity well known
 - sociometric popularity well liked
- Social Network Analysis: perceived popularity only!
- Topological measure

Contributions

Contribution I

- RQ 1: How to define, differentiate and specify properties of each of the notions: trust, popularity, influence, and reputation?
 - Proposition of disambiguation of the terms for several state-of-the-art methods
 - Proposition of the hierarchical order of terms from the abstract complexity point of view
 - Definition of the network information scope needed to infer the trusted/influential/popular users

Contribution I: Disambiguation

Method	Literature Terminology	Our Terminology
Degree Centrality	Influence	Popularity
Closeness Centrality	Influence	Popularity
Betweenness Centrality	Influence	Popularity
FollowerRank	Influence	Popularity
O'Donovan&Smyth [ODonovan, 2005]	Trust	Reputation
<i>Fu-Guo et al.</i> [Fu-Guo et al., 2009]	Trust	Reputation
Advogato [Levien, 1998]	Trust	Reputation
Appleseed [Ziegler, 2005]	Trust	Reputation

Contribution I: Hierarchy of terms

straction Complexity			Individual relations between users		
		Influence	Spread of shared information		
			Structure of network		
			Group relations between users		
		Reputation	Individual relations between users		
			Structure of network		
		-	Spread of shared information		
		Trust	Structure of network		
Ä					
₹		Popularity	Structure of network		

Users Views on Others – Analysis of Confused Relation-Based Terms in Social Network, OTM 2016 Conferences CoopIS, C&TC, and ODBASE 2016, Springer, 2016.

PhD Defense of Monika Rakoczy

Contribution II

- RQ3: How to modelize influence capturing its complexity, while being adaptive to different social network types and consider numerous methods of social interaction?
 - Modelization of influence adaptive to multiple different social networks, and utilizing numerous ways of users' interaction
 - Practical instantiations and experimentations using the influence model

Action-Reaction schema

- Actions:
 - text (message, post)
 - photo
 - video...

- Reactions:
 - upvote
 - comment
 - share...

Action-Reaction schema

- Actions:
 - text (message, post)
 - photo
 - video
 - ..
- ► not targeted at particular user → Audience

- Reactions:
 - upvote
 - comment
 - share

. . .

PhD Defense of Monika Rakoczy

- Modelizing influence using Action-Reaction schema
- Proposition of ontology with new terms representing influence and influence-related terms
- Identification of four influence components:
 - time, intensity, spread, engagement
- Proposition of definitions of the terms intensity, spread, and engagement

PhD Defense of Monika Rakoczy

 Intensity - Property of influence relation determining the quantity of influencer strength per a reacting entity. It combines information about the number of reactions and their type. Depending on the type, the reaction can have different degree of importance.

 $ActionAvgIntensity(a,T) = \frac{\sum_{e_i \in Audience(e_s,a,T)} ReactionsIntensity(a,e_i,T)}{|Audience(e_s,a,T)|}$

 $\begin{aligned} ReactionsIntensity(a, e_t, T) &= w_1 * |R_u(e_t, T)| + w_2 * |R_c(e_t, T)| + w_3 * |R_s(e_t, T)| + w_4 * |R_u(e_t)| * |R_c(e_t, T)| \\ & w_5 * |R_u(e_t, T)| * |R_s(e_t, T)| + w_6 * |R_c(e_t, T) * |R_s(e_t, T)| + w_7 * |R_u(e_t, T)| * |R_c(e_t, T)| * |R_s(e_t, T)| \end{aligned}$

Spread and Engagement

Spread and Engagement

Spread and Engagement

??More influence??

 Spread - Property of influence relation determining the number of audience members per action performed by an influencer i.e. the number of users affected by influencer action.

$$Spread(e_s, T) = \sum_{a_i \in A} |Audience(e_s, a_i, T)|$$

Engagement - Property of influence relation determining the strength of the audience reactions per action performed by an influencer.

$$Engagement(e_s, T) = \frac{\sum_{a_i \in AllActions(e_s, T)} ActionAvgIntensity(a_i, T)}{|AllActions(e_s, T)|}$$

- Action-Reaction Influence Model (ARIM)
- Usage of influence components
 - time, intensity, spread, engagement
- Utilization of whole time period and additional favoring of less frequent posting:

ActionFreq
$$(e_s, T) = e^{\frac{1}{|A|}}$$

- Focus on **maximization** of all the parameters
- Evaluation of influence:

 $Influence(e_s, T) = Engagement(e_s, T) \times Spread(e_s, T) \times ActionFreq(e_s, T)$

- Experiments: Discovery of macro-influential users using three real-world datasets:
 - Facebook (social, reaction: comments)
 - Pinterest (social, reactions: upvotes, shares)
 - Microsoft Academic (scientific, reaction: citation)

Value
1 067 026
23 426 682
25 937 525
104 364 591

Facebook Dataset

Pinterest Dataset

Parameter	Value
Number of acting users	1 307 527
Number of users that reacted	8 314 067
Number of posts	2 362 006
Number of shares	37 087 685
Number of comments	19 332 254

Microsoft Academic Dataset

Parameter	Value
Number of citations between papers	1 609 103
Number of papers	554 532

C4 C5 C1 C2a C2b C3

Facebook

Position	Engage ment	Spread	#Actions
1	1.039	66181	96
2	1.216	19793	549
3	1.208	18093	148
4	1.204	17030	103
5	1.071	17817	200

Pinterest

All reactions equal

Position	UID	Engage ment	Spread	#Actions
1	2777	1.314	23386	1282
2	20703	1.249	19777	566
3	2367	1.367	13512	1025
4	5656	1.314	9843	535
5	4000	1.286	9908	360
6	1731	1.442	8553	328
7	5074	1.389	8876	465
8	820	1.262	9735	615
9	4968	1.301	9013	569

Shares more important

Position	UID	Engage ment	Spread	#Actions
1	2777	2.263	23386	1282
2	20703	1.935	19777	566
3	2367	2.283	13512	1025
4	820	2.224	9735	615
5	4000	2.133	9908	360
6	5656	2.133	9843	535
7	4968	2.262	9013	569
8	1731	2.36	8553	328
9	5074	2.256	8876	465

PhD Defense of Monika Rakoczy

Top three users comparison:

- ✓ Flexibility different SN, various properties of dataset
- Explicability possible analysis of users' order
- Easy to tune depending on the usage possibility of stressing each of the components
- Captures intuitional understanding of influence

Exploring Interactions in Social Networks for Influence Discovery, 22nd International Conference on Business Information Systems (BIS), Springer, 2019.

Contribution III

- RQ5: How to find "promising" entities who could still have influence but are invisible (as they are less connected)?
 - Definition and interpretation of the notion of a micro-influence
 - **Experimentation** using the proposed notion

A micro-influencer is an influencer that has:

- a limited spread value, that is audience size that is both non-empty and greatly smaller than the maximal audience size observed in the SN,
- the highest possible engagement value.

- Tests using ARIM with focus on maximization of engagement and limitation of spread
 - Audience size between 100 and 500
- Experiments with Facebook and Pinterest datasets
- Comparison with PageRank with same limits

Facebook								
ARIM:	UID	O ARIM Corresponding positon PageRank position		Engagement	Audience size			
top 3 users	11jh44w613qww	1		48262	5.779887	118		
	15rfcd2cgpdds	2		57692	3.085694	133		
	eaa43njsf6yo	3		73208	3.053465	150		
PageRank:	UID	PageRar position	ık	Corresponding ARIM positon	Engagement	Audience size		
top 3 users	-1jy1nmhvcdgcg		1	33383	1.49695	496		
	-qsiiojecsyyo		2	31415	1.150296	495		
	-fswnrkmo4yrk		3	32253	1.132718	486		

- Overall number of users with audience between 100 and 500: 82 972
- Engagement of top 5 users from previous ARIM experiments: ≅1.2

Facebook								
ARIM:	UID	ARIM Corresponding positon			Engagement	Audience size		
top 5 users	11jh44w613qww	1		48262	5.779887	118		
	15rfcd2cgpdds	2		57692	3.085694	133		
	eaa43njsf6yo	3	3 73208		3.053465	150		
PageRank:	UID	PageRank C position A		Corresponding ARIM positon	Engagement	Audience size		
top 3 users	-1jy1nmhvcdgcg		1	33383	1.49695	496		
	-qsiiojecsyyo		2	31415	1.150296	495		
	-fswnrkmo4yrk		3	32253	1.132718	486		

- Overall number of users with audience between 100 and 500: 82 972
- Engagement of top 5 users from previous ARIM experiments: ≅1.2

Contribution IV

- RQ4: How to include time for influence evaluation? How to quantify influence over time? How can influence causal effect be represented?
 - Instantiation of the theoretical influence model targeted at particularly time sensitive SN with focus on time effect on influence evaluation
 - Experimentation using the time-dependent application of influence model

• For influence determination **time** is especially important

Citation network

Of few works dealing with time-dependency aspect [Chikhaoui et al., 2015] focused on specific, **less dynamic and time embedded** type of network: **citation network**, using conferences as entities

- However, the method has **several drawbacks**:
 - lack of consideration of spread
 - lack of influence value → no possibility of comparing conferences
 - consideration of very specific conference set
- Our objective is to further investigate the idea and extend and improve the method

Time Dependent Influence Estimation (TiDIE):

- 1. Calculation of **intensity**, **engagement** and **spread** in one time snapshot
- 2. Pairwise measurement time dependence between pair conferences
- 3. Estimation of **influence value** of influential conferences, using time priority function

1. Calculation of intensity, engagement and spread in one time snapshot

- 2. Pairwise measurement time dependence between pair conferences
 - Use of Citation Ratio/Reference Ratio per time snapshot for pair of conferences to create time series for time interval
 - Use of **Granger Causality** in order to use dependency
 - Y(t) is causing X(t) if we are better able to predict X(t) using the history information of both X(t) and Y(t) than solely using the history information of only X(t)
 - Obtaining the information about **pairwise influence**

X(t)

Y(t)

- 3. Estimation of **influence value** of influential conferences, using time priority function
 - Use of Exponential Moving Average to put more weight to recent citations
 - Use of **time priority function** to treat historical citations

- Experiments: Microsoft Academic dataset
 - Comparison with H-Index and PageRank

Influence in Time-Dependent Citation Networks, 12th International Conference on Research Challenges in Information Science (RCIS), IEEE, 2018

Time-Dependent Influence Measurement in Citation Networks, Complex Systems Informatics and Modeling Quarterly (CSIMQ 17), Vol 17, 2018.

PhD Defense of Monika Rakoczy

Contribution V

- RQ 2: Is there a link between those notions? If so, how to model the linkage, so we can use it for evaluation?
 - Exploration of the link between influence and reputation
 - Combination of the influence information in order to obtain reputation about an entity

Contribution V: Inferring Reputation from Influence

- Influence and Reputation studied **separately**, while:
 - Different studies [Anderson&Kilduff, 2009], [Berger et al., 1980] show the connection between high levels of competence, skills and abilities and high position in a group
 - Study by [Cheng et al., 2013] stated that social influence is strictly connected to the notion of "sharing of expertise or know-how to gain respect"
- Our objective is to utilize this link in order to infer reputation from influence

Contribution V: Inferring Reputation from Influence

Reputation **TiDIE** (ReTiDIE):

- 1. Calculation of **influence rank** using TiDIE
- 2. Calculation of H-index rank
- 3. Creation of **Reputation Rank** by **merging** influence and H-index ranks, using one of the methods:

a. Cross Entropy Monte Carlo algorithm

b. Genetic algorithm with Spearman distance metrics

Contribution V: Inferring Reputation from Influence

- Experiments using Microsoft Academic dataset
 - Cross-Entropy Monte Carlo with Genetic Algorithm with Spearman distance metrics

Venue	Influence Rank	H-index	Reputation (CE)
ai	1	4	1
ijcv	10	3	2
neural netw	21	1	3
cvpr	6	13	4
ieee neural	8	12	5
prl	20	7	6
cviu	25	6	7
jair	17	10	8
jmlr	15	9	9
eccv	12	20	10

Spearman distance metrics

Venue	Influence Rank	H-index	Reputation (GA)
ai	1	4	1
nips	2	41	2
ijcv	10	3	3
acl	3	24	4
neural netw	21	1	5
dss	54	2	6
kbs	51	5	7
jmlr	15	9	8
ieee neural	8	12	9
prl	20	7	10

Reputation Prediction using Influence Conversion, 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications, IEEE, 2018.

Conclusion

Institut Mines-Télécom

PhD Defense of Monika Rakoczy

Theoretical model of influence: adaptive to different social networks, and utilizing numerous types of interactions

Perspectives

- Further adjustments of theoretical influence model to future needs (e.g. new types of interactions)
- Experimental evaluation of ARIM using other types of SNs
- Analysis of influence trends
- Forcasting the micro-influencers
- Application to Social Recommendation and Influence Diffusion
- Development of conference classification based on TiDIE
- Combining current evaluation of influence (ARIM, TiDIE) with sentiment analysis

Publications

- M.Rakoczy, A.Bouzeghoub, K.Wegrzyn-Wolska, A.Lopes Gancarski, *Exploring Interactions in Social Networks for Influence Discovery*, 22nd International Conference on Business Information Systems (BIS), 2019.
- M.Rakoczy, A.Bouzeghoub, A.Lopes Gancarski, K.Wegrzyn-Wolska, *Time-Dependent Influence Measurement in Citation Networks*, Complex Systems Informatics and Modeling Quarterly (CSIMQ 17), Vol 17, 2018.
- M.Rakoczy, A.Bouzeghoub, K.Wegrzyn-Wolska, A.Lopes Gancarski, In the Search of Quality Influence on a Small Scale – Micro-influencers Discovery, OTM 2018 Conferences: Confederated International Conferences: CoopIS, C&TC, and ODBASE 2018, Springer, 2018.
- M.Rakoczy, A.Bouzeghoub, K.Wegrzyn-Wolska, A.Lopes Gancarski, *Reputation Prediction using Influence Conversion*, 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications (IEEE TrustCom-18), IEEE, 2018.
- M.Rakoczy, A.Bouzeghoub, K.Wegrzyn-Wolska, A.Lopes Gancarski, *Influence in Time-Dependent Citation Networks*, 12th International Conference on Research Challenges in Information Science (RCIS), IEEE, 2018;
- M.Rakoczy, A.Bouzeghoub, K.Wegrzyn-Wolska, A.Lopes Gancarski, Users Views on Others – Analysis of Confused Relation-Based Terms in Social Network, OTM 2016 Conferences: Confederated International Conferences: CoopIS, C&TC, and ODBASE 2016, Springer, 2016.

Thank you !

Influence: literature comparison (2)

Method	Asymmetry	Transitivity	Topic dependency	Time dependency	Event Sensitivity
Degree Centrality	v	×	×	×	×
Closeness/Betweenness Centrality	v	×	×	×	×
HITS	v	 	×	×	×
PageRank [Page, 1999]	v	v	×	×	×
TSPR [Haveliwala, 2002]	1/2	~	 	×	×
Cataldi et al. [Cataldi, 2015]	v	v	v	×	×
RetweetRank [Xiao, 2014]	v	×	 	×	1/2
MentionRank [Xiao, 2014]	v	×	v	×	1/2
TOIM [Li, 2012]	v	✓	 	×	1/2
FLDA [Bi, 2014]	v	v	v	×	×
<i>Liu et al.</i> [Liu, 2010]	v	✓	 	×	×
AWI [Yin, 2012]	v	×	×	v	×
Li&Gillet [Li, 2013]	v	×	×	×	×
Chikhaoui et al. [Chikhaoui, 2015]	v	×	×	v	×
H-index [Hirsch, 2005]	v	×	×	×	×
iFinder [Agarwal, 2008]	v	×	×	×	×
ProfileRank [Eirinaki, 2012]	v	×	×	×	×
Klout [Rao, 2015]	v	×	×	1/2	X

Institut Mines-Télécom

Ontology example

Proposition: Time-focused Adaptation of Influence

- Time embedded
- Citation networks
- Predefined communities

Proposition: Time-focused Adaptation of Influence

- Influence identification problem useful: political/ marketing campaigns, recommending
- Current focus on individuals influencers (who is the most tweeted/shared...?) and overall ranking (e.g. PageRank)

BUT

- Loss of particular influence information (do l influence you/him/her?)
- Influencers ≠ communities !

Problem definition

- We have:
 - Time snapshots $\{t_1, ..., t_m\}$
 - Universe of conferences U
 - Set of predefined communities $S = \{C_1, ..., C_n\}$ $(S \subset U)$
- We want:
 - Determine pairwise Running Influence (RI) using citation information from each time
 - Estimate the value of the RI

Influence Discovery Steps: Step 1

 Pairwise Citation Ratio for each time snapshot based on the work of *Chikhaoui et al.*

$$CR_{A\to B}(t) = \frac{|cit_{B\Rightarrow A}(t)|}{\sum_{i=1}^{|S|} |cit_{B\Rightarrow i}(t)|}$$

- Global and Local Citation Ratio
- Additional use of weight function

Influence Discovery Steps: Step 2

- Using pairwise Citation Ratios in time period, we determine Running Influence using the notion of Granger Causality between them
 - Quick intuition behind Granger Causality:
 - Y(t) is granger causing X(t) if we are better able to predict X(t) using the history information of both X(t) and Y(t) than solely using the history information of only X(t)
- Thus, we know if confA is influencing confB for time period

Influence Discovery Steps: Step 3

- Hence, we can create the influence dependency graph
- Estimation of Running Influence value by using for each conference set of conferences that it influences
- Thus, we have the RI value, and the overall rank

Experiments

Microsoft Academic database

- 68 selected conferences
- 930 000 papers
- 2.8 million citations between papers

Results - Influence Dependencies

