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Context. Many real-networks, also refered to as complex networks, lend themselves to
the use of graphs in order to analyse their structure and model their properties. Since the
seminal papers of Barabási and Watts, one usually considers that, whatever the context
in which they emerge, all networks share non trivial properties such as a low density, a
low average distance, an heterogeneous degree distribution, a high local density, etc.

Such properties distinguish those networks from classic random graph models such
as the ones generated by the Erdős-Rényi model which only reproduce the density of
the networks. As a consequence, significant effort is dedicated to the elaboration of ran-
dom models able to capture more intricate properties. Among them, one can cite the
Barabási-Albert model which succeeds in producing a heterogeneous (scale-free) de-
gree distribution but fail in generating graphs with a high local density, the Watts and
Strogatz model which generates networks with the opposite features or the Configura-
tion Model [3] which generate random graphs with a prescribed degree sequence but
with a low local density. All in all, and despite the different attempts, generating a graph
exhibiting all expected properties is still an open issue.

The purpose of this study is to present a new step toward that goal by exploiting the
bipartite version of the configuration model. Indeed, although useful, the representation
of networks as unipartite graphs does not account for the inherent complexity induced
by the hierachical structure observed in most real networks. This observation led the
scientific community to turn to bipartite graphs to describe such complex structure
when possible. This formalism allows to define explicitly two disjoint sets of nodes and
the links only relate a node of one set to a node of the other set. The natural extension of
the configuration model to bipartite graphs allows to preserve the degree of every nodes
while shuffling the links, as depicted below:
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However, as illustrated in the picture, such a model can easily disturb key patterns
of the structure. Although the degree distribution is preserved, the two bicliques (in red
and green) completely vanish after the randomization due to a slight modification of

∗This work is funded in part by CNRS under grant n 245 709 (PICS project Récital).



the links. To that regard, recent studies showed that overlaps (top nodes connected to
common bottom nodes) are ubiquitous and important patterns in bipartite networks [4].

In order to overcome this issue, we propose in this paper a generative model able
to preserve both the degree sequence and the overlaps of real networks. It relies on the
encoding of those patterns in a third level, defining thus a tripartite graph, on which
we perform the randomization. More precisely, we first perform the enumeration of all
maximal bicliques in the bipartite graph, then encode the bicliques in a third level before
performing a randomization preserving the encoding. Finally, we project the obtained
tripartite graph into its corresponding bipartite structure:
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One key operation in this method relies on the tripartite encodings of the bipartite
structure. We tested several natural heuristics which select the bicliques in a given order
to create the tripartite encoding: a random selection, a selection that maximizes the
number of links encoded and one that maximizes the number of nodes captured.

Results show that all heuristics lead to generating bipartite graphs in which the over-
laps are preserved. We show in addition that several other properties emerge naturally
with much more accuracy than with a standard bipartite configuration model.

Results. In order to validate the approach, we tested the models on 9 datasets that have
an underlying bipartite structure. Due to space limitation, we only show the results on
three representative datasets: HepB is a network featuring scientists and the articles
that they coauthored, collected from Medline repository using the keyword Hepatitis B,
BPSE is a network built from the proteins of bacteria Burkholderia pseudomallei and
the biochemical reactions they take part in, and Youtube contains the membership of
Youtube users as collected in 2007 [2].

For each network, we computed several properties both on the original bipartite
graphs and on the ones generated by the models. More precisely, let G = (>,⊥,E) be
a bipartite graph, where > is the set of top nodes, ⊥ the set of bottom nodes, and E ⊆
>×⊥ the set of links between> and⊥. We denote by N(u) the set of neighbors of u in
the bipartite graph and by N2(u) its neighbors at distance 2. We computed several nodes
characteristics related to the overlaps: the bipartite coefficient [1] based on the Jaccard

index defined as bip(u) =
∑v∈N(u) cc(u,v)
|N(u)| where cc(u,v) = |N(u)∩N(v)|

|N(u)∪N(v)| , the dispersion
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Fig. 1. Inverse cumulative distribution of the degree distribution (first column), the bipartite clus-
tering coefficient (second column), the redundancy coefficient (third column) and the dispersion
coefficient (fourth column) for HepB (top), BPSE (middle) and Youtube (bottom).

coefficient [4] defined as disp(u) = |N2(u)|
∑v∈N(u) (|N(v)|−1) and the redundancy coefficient [1]

defined as rd(u) =
|{(v,w) ∈ N(u)×N(u) s.t. ∃u′ 6= u,(u′,v) ∈ E and (u′,w) ∈ E}|

|N(u)|(|N(u)|−1)
2

.

Figure 1 presents the results for the 3 datasets and the distribution of all characteris-
tics considered. For all features examined here the tripartite models succeed in preserv-
ing the properties better than the configuration model applied on the bipartite structure.
This is particularly true for the redundancy and dispersion coefficients.
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