HUMAN MOBILITY INFORMATION EXTRACTED FROM MOBILE PHONE METADATA

Vincent Gauthier

S @vincentgauthier

Attp://complex.luxbulb.org/

CNRS SAMOVAR/Telecom-SudParis/Institut Polytechnique de Paris

- Introduction
- metadata
- Conclusion

 Trajectories mapping using mobile phone metadata Dynamic population estimation using mobile phone

Travel mode extraction using mobile phone metadata

MOBILITY IS A CHALLENGE FOR CITIES

With the rise of urbanization, cities all around the world are facing scaling and design issues.

Cities are not only a physical space, but a place that fosters people interactions

"In The New Science of Cities, Michael Batty suggests that to understand cities we must view them not simply as places in space but as systems of networks and flows."

Empirical studies point to a systematic acceleration of social and economic life with city size (superlinear scale-invariant $Y \propto N^{\beta}$ when $\beta > 1$)

• Economic output, wages, patents, violent crime and the prevalence of certain contagious diseases.

A functioning transport system is the mean that enables interactions inside cities.

• As a city grows, the number of interactions also increases:

c as consequence the mobility demand increases and puts enormous strain on the transport infrastructures of all sorts.

Information about the mobility at the macro level of a city enables us characterize and understand how a city is functioning.

The origins of scaling in cities Louis M.A. Bettencourt Markus Schläpfer, et al science 340 (6139), 1438–1441, 2013. J. R. Soc. Interface 2014.

The scaling of human interactions with city size

LITERATURE REVIEW

Predictable

Song, Chaoming, et al. "Limits of predictability in human mobility." Science 327.5968 (2010): 1018-1021.

Wang, Pu, et al. "Understanding road usage patterns in urban areas." Scientific reports 2 (2012).

Song, Chaoming, et al. "Modelling the scaling properties of human mobility." Nature Physics 6.10 (2010): 818-823.

de Montjoye, Yves-Alexandre, et al. "Unique in the Crowd: The privacy bounds of human mobility." Scientific reports 3 (2013).

LITERATURE REVIEW: SLOW EXPLORATION

Radius of Gyration:

$$R_g(t) = \sqrt{\frac{1}{N(t)} \sum_{i=1}^{N(t)} (\mathbf{r} - \mathbf{r_{cm}})^2}$$

Conclusion:

The human mobility can be easily model by a Levy Walk

Gonzalez, Marta C., Cesar A. Hidalgo, and Albert-Laszlo Barabasi. "Understanding individual human mobility patterns." Nature 453.7196 (2008): 779-782.

LITERATURE REVIEW: NETWORK MOTIF

Schneider, Christian M., et al. "Unravelling daily human mobility motifs." Journal of The Royal Society Interface 10.84 (2013): 20130246.

Daily Mobility Motif

- N distinct locations
- Directed edges mark trips between locations
- Must start and end at the same location
- Physical location no longer important

6

COULD MOBILE PHONE METADATA BE USEFUL TO DERIVE HUMAN MOBILITY ?

Human mobility information is of prime interest for:

- public safety authorities (large event management e.g. Olympic games)
- public transport authorities, transportation network companies (Uber, Lyft), bike sharing compagnies
- Public policies: the dynamic evolution of the mobility demand may affect cities policy such urban access regulations in case of pollution pic, low emission zones
- Up-to-date mobility information is a key element of a Mobility-as-a-Service (MaaS) system.

Questions to answer:

- Can we mesure the mobility at scale in realtime ?
- Can we measure the mode of transport ?
- can we measure precisely the delays in public transports ?

Pro and Cons

- capture mobility information at very lare scale and at relatively low price
- if a tool that aims toward the studies of events of meso/macro scale
- poor geospatial accuracy compared with GPS dataset
- privacy issues (GDPR in EU)

MOBILE PHONE NETWORK SIGNALIZATION

What is GTP?

A tunneling protocol that carries the data traffic between NodeB/ eNodeB to the point of presence (POP) toward internet.

What is the PDP context?

GTP-C the signalization protocol for GTP. Each time a network event triggers a GTP-C message, this information is stored inside a specific PDP-context at the GGSN.

PDP context:

- IMEI
- IMSI
- MSISDN
- RAT (radio access technology)
- ULI (user location information)
- APN (access point name)

GTP-C

Network event	GTPv1	GTPv1 direct tunnel
Change LAC	\checkmark	\checkmark
Create/destruct tunnel	\checkmark	\checkmark
Switch Technologie $(2G/3G/4G)$	\checkmark	\checkmark
Change RNC		\checkmark
Change TA		

GTPv2

PLATFORM FOR DATA CAPTURE

Data	Description
Timestamp	Packet's timestamp in micro
Anonymous ID	Randomly generated ID
Tunnel ID	tunnel ID carrying the traffic
Message Type	Create / update / delete
Sequence Number	GTP-C number
Mobile's IP address	IP address
TAC	Brand & manufacturer of the device
QoS	3GPP QoS information
Radio Access Technology	GPRS, EDGE, EUTRAN

Mobile Data Network Analysis Platform

A. Sultan, F. Benbadis, V. Gauthier, H. Afifi Proceedings of the 6th International Workshop on Hot Topics in Planet-Scale Measurement, 2015.

MOBILE PHONE METADATA (DATA CHANNEL)

PDP update freq. (second)

The sampling of mobile position is a complex spatio-

1 The PDP update interval depends on the mobile phone activity: e.g. call (vertical handover), data channel standby 2 The distribution of BS (base station) in space is regular but non uniform

SPATIAL SAMPLING filter threshold

Compute the distance distribution of all the pair of BS.

12

Experimentation 1: SFR Dataset

SOME EXPERIMENTATIONS

Fig 2.: Experimentation done over one week period in April 2015 in Paris vicinity. Number of distinct

Morning & afternoon pike

gyration under 2km)

15

Experimentation 2: Bouygues Dataset

TRAVEL TIME, JUMP LENGTH, SPEED

- 1. Travel time
- 2. Travel duration
- 3. Travel distance
- 4. Speed vs distance

DATASET:

- context)

•One couples of days of cellular network signalizations 30 GB (call, sms, PDP

Geographic area : Île-de-France
3.5 Millions of distinct IMSI, approx. 1/3 of the pop of IDF
1.6 Millions usable trajectories (real mobility)
40 000 cells sectors, 5000 BTSs
Preprocessing tool: Amazon Redshift

17

COMPARISON WITH THE EGT-H2020

EGT-H2020

Trajectories Mapping of Cellphone Metadata

Goals

- Study the human mobility with
- Map cellular user trai

- Datase • GTP

Application for public transport authorities Public safety: large event, i.e. olympic games public saley. unge www.ternet.org. transport modes Human mobility applications: e.g. volumetry of transport modes

TRAJECTORIES INFERENCE: GIS

GIS processing

- 1 Process each layer separately and form a graph
 - each road intersection is a node
 - each metro station is a node
- 2 Add cross layer links where it's needed, i.e.: between a road intersection close to a metro station
- ③ Collapse all the layers into one graph

$\mathbf{G} = (V, E, L, \Psi)$

- V : vertices
- E': edges
- : layers
- Ψ : fonction that associates a layer to a vertex

QUANTIFYING THE SEARCH COMPLEXITY IN GRAPH

Complexity of searching on a graph^{1,2}

I. K. Sneppen, A. Trusina, M. Rosvall, Hide-and-seek on complex networks, Europhysics Letters (EPL) 69 (2005) 853–859.
 I. M. Rosvall, A. Trusina, P. Minnhagen, K. Sneppen, Networks and cities: An information perspective, Phys. Rev. Lett. 94 (2005).

		Number		Avg.		
		Node	Edge	Degree	Length	Refe
{	Subway	303	356	2.35	0.757	OSN
	Train	241	244	2.025	3.07	OSN
	Road	14798	22276	3.01	1.34	IGN

Table: Different transportation networks with their properties

The average length between two consecutive intersections is rather heterogeneous across different transportation layers. As well as the number of nodes in each layer.

SEARCH COMPLEXITY OF THE MULTILAYER GRAPH Continued

Compute the search entropy: the average probability for a random walker to reach a given destination.

$$S_{avg} = \frac{1}{N(N-1)} \sum_{i=1}^{N} \sum_{j=1}^{N} \left[-\log_2 \sum_{\{SP\}} P_{i-1} \right]$$

For all combination of sources and destinations

for all degenerate paths

Conclusion

- Various level of complexity at each layer
- Searching in a multilayer graph is more complex than the sum of the search complexity of each layer

DESIGN OF THE HMM

Given a user trajectory

 $UT_i = \{ (BS_1, t_1), (BS_2, t_1), \dots, (BS_n, t_n) \}$

Discretize the problem, a given user can only be in a:

- Road intersection
- Train or metro station

Use the Viterbi algorithm to compute the most likely path

- Associate a probability to each possible position (e.g. road intersection)
- ② Define all possible transitions between all the possible states of the system

24

EMISSION PROBABILITY

Many different kernels can be used to model the emission probability, such as ray tracing technic to account for the terrain elevation for instance.

 $R_{O_t}^{max}$: is the maximum transmission radius of the base station that recorded the observation

TRANSITION PROBABILITY

Find the shortest path between any two nodes in the network

w_{ij} Condition

- 80 $\Psi(v_i) = \Psi(v_j) = \text{metro}$
- 90 $\Psi(v_i) = \Psi(v_j) = \text{road (highway)}$
- 60 $\Psi(v_i) = \Psi(v_j) = \text{road (principale)}$
- 40 $\Psi(v_i) = \Psi(v_j) = \text{road (regional)}$
- 30 $\Psi(v_i) = \Psi(v_j) = \text{road (local)}$
- 10 $\Psi(v_i) \neq \Psi(v_j) = \text{crosslayer}$
- 100 $\Psi(v_i) = \Psi(v_j) = \text{train}$

Table: Edge classification and weights for multilayer transportation network

$$T(S_i, S_J) = \left(\sum_{e \in SP(S_i, S_j)} (w_e)^{-1} l_e\right)^{-1}$$

 $SP(S_i,S_j)\;$: shortest path between node Si and Sj

 w_e : average speed on the link $oldsymbol{e}$

 l_e : geodesic distance of the link $oldsymbol{e}$

VALIDATION

Validation with a small sample of 10 people over a 1 month duration

- Experimentation 1: Sampling Frequency of the mobile position (BS) every 15 mins
- Experimentation 2: Sampling Frequency of the mobile position (BS) every 5 mins

Each person was equipped with a GPS

logger for ground truth

Move App

https://www.moves-app.com/

Around 1000 trajectories available that

cover Ile-de-France (Paris area):

- 70% are using road only
- 30% subway + train

ency nins ency ns

n/ **t**

ALGORITHM

Compute the emission probabilities

Compute the transition probabilities

3 Compute the most likely path

FUTURE WORK

Simplify the underlining map complexity by using a multiplex representation of the transport network as opposed to a multi-layer graph

travel time vs estimated travel time)

solution and the quality of the mapping

Develop a more robust framework for computing the transition probability, including the travel time (e.g. measured

- Develop more robust algorithms than the Viterbi algorithm.
- However there is a trade off between the scalability of the

Dynamic population estimation using mobile phone metadata

STUDIES OF THE DYNAMIC OF POPULATION DENSITY

Goals:

1 New approach to infer population density, overcoming censuses and surveys limitations (cost, scalability, time)

2 Automatic and realtime estimation of population density

Dataset: Telecom Italia Challenge Datasets

Locations (regions):

- Roma
- Turino
- Bari
- Palerno
- Milano
- Venizia

Datasets:

- Population data
- Callin/callout
- Cars traffic
- Cars Trajectories
- **Duration:**

BIGDATACHALLENGE2015

MODEL

Analysis of the telecommunication metadata for inference of the dynamic of the population density The landuse

information is extracted through clustering of the callpatterns of each cells

Population density

DYNAMIC OF THE POPULATION DENSITY

Population Density

$$\hat{\rho}_i(\lambda_i(t)) = e^{(\hat{a}_\alpha \lambda_i(t) + \hat{b}_\alpha)} \cdot \sigma_i^{(\hat{a}_\beta \lambda_i(t) + \hat{b}_\alpha)}$$

ONE DAY IN MILAN...

Dynamic distribution of population during a public march in Milan on April 25. Z-scores of the estimated population densities from 1 pm to 4 pm.

OF THE METHOD WITH FO

soccer cup in France in 2016 (euro2016)

Better result has been obtain with Bouygues Datasets for the UEFA European

36

Population Estimation from Mobile Network Traffic Metadata

Ghazaleh Khodabandelou*, Vincent Gauthier*, Mounim El Yacoubi*, Marco Fiore[‡]

* SAMOVAR, Telecom SudParis, CNRS, University Paris Saclay, France

‡ CNR-IEIIT, Italy

Novel approach to infer population densities

PARIS REGION'S STUDY (BT DATASET)

4
7
4
7
7
4
4
4
4

In order to validate our dynamic model during day time we estimated the population attending sport events. We collected spectators numbers hosted in two stadiums, Stade de France and Parc des Princes. Network antennas located inside both stadiums have long range signals with hypothetical circular areas. In this case, cells areas are erroneous as they cover several blocks surrounding the stadium. Consequently a substantial part of attendees is mapped over stadium neighboring blocks. The stadium blocks population was therefore largely underestimated. To overcome mapping bias, MPs presence was this time calculated at cellular resolution instead of blocks.

Table V: Results on Stadiums Attendances

Inferring Dynamic Origin-Destination Flows by Transport Mode using Mobile Phone Data

EXTRACTION OF THE TRAVEL MODE IN THE PARIS AREA

bayesian inference of travel mode:

- we compute the landuse of each mobile network cell sector (subway, train, road),
 semi-semi-supervised learning
- We use Bayesian inference to compute the transport mode of a given cellular trajectory

Major road Traveled In Paris region

Major Subway line In Paris region

Major train line In Paris region

40

Hour

OD FROM PARIS AREA PEXTRACTED FROM MOBILE PHONE DATA

6.4

Our main data are mobile network records representing billions of rows each day (Terabytes). The mobile operator providing the data has a market share of 11.7 % - 27 in France, at the time of the study. Records are collected for the Greater Paris region over a two months period during spring 2017. Records are produced at the start and end of voice calls, and every time a message is sent or received. Data records are generated at the start and end of 3G and 4G data sessions (i.e., IMSI attach/detach).

Survey : source: EGT 2010-Île de France Mobilités-OMNIII-DIRIEA)

Table 4

Total flows per transport mode in the Greater Paris for a typical business day. Flows are calculated with mobile phones (MP) before and after rescaling. In the column 'Survey' all road and rail trips from the 2010 survey are considered. In the column 'Survey*', we filter short-distance trips i.e., shorter than 1.5 km in suburb ring 1 and shorter than 2.5 km in suburb ring 2 to cope with the heterogeneous density and coarseness of the mobile network.

Mode	MP (raw)	MP (rescaled)	Survey	Survey* (
Rail flows Road flows Rail flows Road flows	12,27,284 21,28,750 0.55	63,83,103 1,10,34,581 0.58	59,99,183 1,82,15,180 0.33	58,43,650 1,13,68,5 0.51

1.5

11.3

(filtered)

597

42

MOBILE PHONE SURVEY VS EGT-H2020

EGT – H2020 – Cars

EGT – H2020 – Public transport

MAINS FINDING

1 Huge amount of mobility flow happen between suburbs.

- change the statu quo.
- car.
- but our result seems in line with it.
 - Change of behavior ≠ number of trips observed

3 During the public transport strike of Mai 2018

- No modal shift were observed
- for all

• The public transport infrastructure poorly supply the mobility between suburbs, the "Grand Paris" infrastructure is suppose to

• As consequence the majority of suburb to suburb trips are ride by

2 At the time of the study, we didn't have access to the EGT 2020,

• Reduction of the number of trip perceptible some days but not

Epidemic modeling using cellphone metadata

TELECOM APPLICATION OF THE MOBILITY

Can we diffuse public safety message through peer to peer mobile communication scale to country size ?

We use only mobile handset with D2D communications (device to device communication) (5G devices).

People carry the message in their mobile device throughout their daily trips.

Emergency Alert and Warning Systems: Current Knowledge and Future Research Directions National Academies of Sciences, Engineering, and Medicine. 2018. https://doi.org/10.17226/24935.

MOBILITY WITH META POPULATION

Mobility extracted from the D4D orange dataset

orange

Dataset

Ivory Coast

- 19 Regions
- 81 Departments
- 255 Sub

prefectures

• 1201 Antennas

Orange Subscribers CDR (Call Data Record)

- coarse grain
- fine grain

Data for Development: The D4D Challenge on Mobile Phone Data V. Blondel, et al, 2013.

GENERAL OVERVIEW OF THE MODEL

Balcan, D. et al.

Multiscale mobility networks and the spatial spreading of infectious diseases. Proc. Natl. Acad. Sci. U.S.A. 106, 21484–9 (2009).

γI

- Modelization of the population with mean field assumption:
 - Homogeneous mixing
- One relevant information:
 - Epidemic threshold
- Wildly used systems of equations to compute efficiently spreading behaviors

EPIDEMIC MODEL

MOBILITY DATA

POPULATION DATA

RESULTS

EVOLUTION OF THE CELLULAR NETWORK

4G networks:

- The voice channel is not used anymore
- All the mean of communication are using the data channel
- Geolocalization by triangulation possible but for a restricted set of mobiles?
- **5G networks**
 - Geolocalization by triangulation will be available at large scale (measurement of the Signal Strength more robust to the fading)
 - Low level metadata will be more easy to collect

51

Main Investigator

Vincent Gauthier Mounim El-Yacoubi Main Collaborators

Marco Fiore

Jakob Puchinger

References

Collaborators at TSP

- 🎓 Hossam Afifi
- Monique Becker

Collaborators outside TSP

Farid Benbadis (Thales)

Transport Mode Inference from Active Mobile Phone Data: a Case Study of the Greater Paris Region Danya Bachir, Ghazaleh Khodabandelou, Vincent Gauthier, Mounim El Yacoubi, Jakob Puchinger Transportation Research Part C, 2019. (In Press)

Estimation of Static and Dynamic Urban Populations with Mobile Network Metadata G. Khodabandelou, V. Gauthier, M. Fiore, M. A. E. Yacoubi IEEE Transactions on Mobile Computing, 2019. (In Press)

CT-Mapper: Mapping Sparse Multimodal Cellular Trajectories using a Multilayer Transportation Network F. Asgari, A. Sultan, H. Xiong, V. Gauthier, M. El-Yacoubi Computer Communications si in mobile analytics, 2016.

Large scale model for information dissemination with device to device communication using call details records R. Agarwal, V. Gauthier, M. Becker, T. Toukabrigunes, H. Afifi Computer Communications, vol. 59, pp. 1 – 11, 2015.

Population estimation from mobile network traffic metadata
 G. Khodabandelou, V. Gauthier, M. El-Yacoubi, M. Fiore
 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1 – 9, 2016.

