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Abstract

Recommending appropriate items to users is crucial in many e-commerce plat-
forms. One common approach consists in selecting the N most relevant items
for each user. To achieve this, recommender systems rely on various kinds of
information, like item and user features, past interest of users for items and
trust between users. Current systems generally use only one or two such pieces
of information, which limits their performance. In this paper, we design and
implement GraFC2T2, a general graph-based framework to easily combine var-
ious kinds of information for top-N recommendation. It encodes content-based
features, temporal and trust information into a graph model, and uses person-
alized PageRank on this graph to perform recommendation. Experiments are
conduted on Epinions and Ciao datasets, and comparisons are done with sys-
tems based on matrix factorization and deep learning using F1-score, Hit ratio
and MAP evaluation metrics. The results show that combining different kinds
of information generally improves recommendation. This shows the relevance
of the proposed framework.

Keywords: Top-N Recommendation, Graph, Collaborative Filtering, Content,
Temporal information, Trust, PageRank, Link streams

1. Introduction

Many e-commerce platforms have large and fast growing sets of items to
present to users. For instance, Amazon had a total of 53.38 millions books as
on January 10th, 20181. Such huge quantities of products make it challenging
for users to search and find interesting items for them. Then, they often rely on
the help provided by recommender systems.

Various approaches co-exist, the most classical ones being rating prediction
and top-N recommendation [65]. Rating prediction estimates the rating value
that a user is likely to give to items. Top-N recommendation ranks items for a
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given user and selects the N most interesting ones, for a given N. Many research
works are dedicated to rating prediction. This requires explicit rating data
whereas, in many platforms dedicated for instance to e-commerce, ratings are
not available, and recommender systems have to deal with implicit data such
as users’ purchase, browsing and streaming history. In such situations, top-N
recommendation can still be carried out [12].

In addition to the previous remark, top-N recommender systems are every-
where from on-line shopping websites to video portals [11]. For all these reasons,
we focus here on top-N recommendation problem from positive implicit feed-
back, a problem already considered in many papers such as [60, 50, 62] and
[22].

One of the main families of techniques, called Collaborative Filtering (CF),
takes benefit from correlations between user interests. Initially, CF recom-
mender systems focused only on user-item interactions [32, 24, 61] and did
not integrate side information among the following list: item features like the
genre of a movie or the author of a song, context of interactions like location,
timestamps or weather, and trust between users. Since such side information
strongly influences user choices (for instance, users may listen to a new song
because they like the singer), performances of such systems may be limited.
In addition, side information helps solving problems like cold start and data
sparsity [8, 1, 47, 9].

For these reasons, much effort was devoted to the inclusion of side informa-
tion into CF techniques. For instance, hybrid systems incorporate item features
in order to combine CF and content-based filtering (CBF) [8, 10, 63]. Likewise, a
winning team of the Netflix competition [36, 34] included temporal information
into a CF system in order to track the dynamics of user interests and increase
recommendation accuracy. Including trust information in order to take into ac-
count the fact that people tend to adopt items already chosen by trusted friends
is also possible [56, 47, 22].

Some previous works consider only one type of side information, and there-
fore fail to capture the combined influence of several types of side information
on user interests. Others works suggest that progress in this direction may sig-
nificantly improve recommendation, and combine two kinds of side information
into CF [51, 71, 66, 52]. However, to the best of our knowledge, none of these ap-
proaches include content-based features, users’ preferences temporal dynamics
and trust relationships between users simultaneously.

Our goal in this paper is to propose a general graph-based recommender
framework that makes it easy to combine variety of side information. How-
ever, recommender systems are used in very diverse situations, which makes the
design of a fully general system out of reach. We therefore made several as-
sumptions which, although very general, do not apply to some contexts. First,
we focus on top-N recommendation task because it is prevalent in many on-line
shopping recommender systems like video portals. In addition, we considered
the situations where the recommender system aims at offering each user a prod-
uct that he/she has not yet selected in the past. In some situations, clients
may repeatedly buy the same product, but this is a quite different problem. We
also we assumed that recent activities are more important than older ones, a
situation known as concept drift. This is often but not always true in practice;
interest in a given kind of product may for instance be periodic, like for birth-
day gifts or seasonal needs. Extending our work in this direction is promising,
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when data is available. Finally, we consider positive links only (that typically
represent a purchase), as this is the most prevalent case in practice; considering
more subtle feedback from users, and in particular negative feedback, is a very
promising direction for future work.

Contribution

In this paper, we propose GraFC2T2, a general graph-based framework
for top-N recommendation combining content-based features, temporal infor-
mation, and trust into a personalized PageRank system. The design of this
framework is very modular in order to make it easy to include other side infor-
mation and/or replace personalized PageRank by another graph-based method.
Thanks to GraFC2T2, it becomes easy to explore the benefit of using various
kinds of side information, and then to find appropriate parameters for combining
them for particular applications. We conduct experiments on Epinions and Ciao
datasets to illustrate the use of GraFC2T2, and we show that it outperforms
state-of-the-art thanks to the increased use of side information.

Figure 1: The global architecture of GraFC2T2, our general purpose
graph-based recommender framework. Recommender graphs are built from
three components: a basic graph that models user-item relations, content-based
features that enrich basic graph, and link time-weight function that penalizes
old edges, see Sections 2 and 3. Then, we perform top-N recommendation over
this graph using user trust and personalized PageRank, see Section 4.

Figure 1 summarizes the global architecture of GraFC2T2, made of two big
parts: the recommender graph construction, and the use of this graph to per-
form recommendation. The recommender graph encodes available information
by combining a basic graph, which we detail in Section 2, with methods to cap-
ture content-based features and edge weight capturing time information, which
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we detail in Section 3. Then, we use the obtained recommender graph to per-
form recommendation, with a trust-aware personalized PageRank detailed in
Section 4.

Notice that our framework makes it possible to explore wide sets of modeling
choices, as well as to incorporate additional possibilities if needed. We illustrate
this on two real-world datasets from Epinions and Ciao in Sections 5 and 6.
Section 7 discusses related work.

This work builds upon our previous paper [52], which extends the Session-
based Temporal Graph proposed by [69] by adding time-weight and content-
based information. On the other hand, the data representation that we use is
the link stream formalism, presented in [37]. This model allowed us to propose
the Link Stream Graph [53].

We provide an implementation of our framework at https://github.com/

nzekonarmel/GraFC2T2 in order to help other researchers and practitionners
to conduct experiments on their own datasets, and to test the relevance of new
ideas and features.

2. Data modeling

We consider a set U of users, a set I of items, and a time interval T , and we
assume that we observed the past interest of users in U for items in I during
T . We model this data by a bipartite link stream L = (T,U, I, E) where E ⊆
T×U×I is a set of links: each link (t, u, i) in E represents a purchase (u bought
product i at time t), an interest in a cultural item (like movie watching or song
listening), or another user-item relational event, depending on the application
context. See [68, 38] for a full description of the link stream formalism. In the
following, we will illustrate definitions with the guiding example of Figure 2.
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Figure 2: Guiding example: we consider the link stream L = (T,U, I, E) in
which the set of users is U = {u1, u2}, the set of items is I = {i1, i2, i3, i4},
the observation period is T = [t1, t6], and E = {(t1, u1, i1), (t1, u2, i3),
(t2, u1, i2), (t2, u2, i3), (t3, u2, i4), (t4, u1, i3), (t5, u2, i4), (t6, u1, i2)}. This means
for instance that user u1 was interested in item i2 at time t2.

2.1. Classical bipartite graph

We first consider the most classical recommender graph introduced in the
literature [26, 4], that we denote by BIP. It is a directed bipartite graph (U, I, E′)
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where U and I are the set of users and items defined above, and E′ ⊆ U × I is
the set of links defined by E′ = {(u, i) : ∃t ∈ T, (t, u, i) ∈ E}. In other words,
u is linked to i in BIP if user u was interested in item i during the observation
period. Figure 3(a) displays the BIP graph for the guiding example.

2.2. Session-based temporal graph

In a first attempt to capture time information, we then consider Session-
based Temporal Graphs proposed by [69], that we denote by STG.

This graph encodes time information using a set S of session nodes defined

as follows. First, for a given ∆, the observation interval T is divided into |T |∆
time slices Tk = [(k − 1) ·∆, k ·∆] of equal duration ∆. Then, S contains the
couples (u, Tk) such that there exists a link (t, u, i) in E with t ∈ Tk. In other
words, each user leads to a session node (u, Tk) in S for each time interval Tk
during which this user was active.

This finally leads to the definition of STG as a tripartite graph (U, I, S,E′′)
with U , I, and S defined above, and E′′ = E′ ∪ {((u, Tk), i) : ∃t ∈ Tk, (t, u, i) ∈
E}. In other words, we add to BIP the nodes in S, and a link between each
session node (u, Tk) and the items selected by user u during time slice Tk.
Figure 3(b) shows the STG representation for the guiding example.

Notice that in the original model [69], any link from u to i has a weight 1
and any link from i to u has a weight η, where η is a parameter. For simplicity,
we do not consider this parameter here (or, equivalently, η = 1), but it may
easily be added if needed.

2.3. Link stream graph

In order to capture time information while avoiding the drawbacks of choos-
ing a time window size ∆ like for STG, we introduce the following link stream
graph, that we denote by LSG [53].

This graph is first defined by a set of nodes representing users and items
over time: {(t, u) : ∃i, (t, u, i) ∈ E} ∪ {(t, i) : ∃u, (t, u, i) ∈ E}. In other words,
each user u is represented by the nodes (t, u) such that a link involves u in L a
time t, and each item is represented similarly.

We then define the set of links {((t, u), (t, i)) : (t, u, i) ∈ E} ∪ {((t, u), (t′, u)) :
∃i, (t, u, i) ∈ E, t′ = min{x : x > t and ∃i′, (x, u, i′) ∈ E} ∪ {((t, i), (t′, i)) :
∃u, (t, u, i) ∈ E, t′ = min{x : x > t and ∃u′, (x, u′, i) ∈ E}. In other words, each
user node (t, u) is linked to both the item nodes (t, i) such that (t, u, i) ∈ E
and to the next user node representing u. Item nodes are linked similarly. See
Figure 3(c) for an illustration on our guiding example.

3. Adding content-based features and time-weight functions

Once a basic recommender graph is built as explained in previous section,
the GraFC2T2 framework adds elements to capture content-based and temporal
features. Again, we propose several choices, and we present them below.
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Figure 3: Classical bipartite graph, Session-based temporal graph and Link
stream graph obtained from our guiding example. The weight of each edge is 1.

3.1. Content-based features

Let C be the set of all possible content-based features and let g(i) ⊆ C
be the subset of content-based features associated with item i, for any i. One
element of g(i) can be the category, the brand or the color of item i. Following
the method proposed in [58, 71, 52], we model these features by content nodes
that we link to item nodes in basic recommender graphs.

In the cases of BIP and STG, we add a content node c for each content-
based feature c in C, and we link each item node i to the content node c for
each c in g(i). For LSG, we add a content node (t, c) for each (t, i) in the basic
graph such that c is in g(i), and we link (t, c) to (t, i). We call this inclusion of
content-based features CI because it adds links only between content and item
nodes. See Figure 4.

We also propose a strategy linking content nodes to both item and user
nodes, that we call CIU. The idea is to link user nodes to the content nodes of
the items they are interested in. Therefore, in addition to CI additions, CIU
adds to BIP a link (u, c) between each user node u and content node c whenever
there is an item node linked to both u and c; to STG a link between each session
node (u, Tk) and content node c whenever there is an item node linked to both
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Figure 4: Inclusion of nodes and links representing content-based features with
the CI strategy, for each basic recommender graph.

(u, Tk) and c; and to LSG a link between each user node (t, u) and content node
(t, c) whenever there is an item node linked to both. See Figure 5.
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Figure 5: Inclusion of nodes and links representing content-based features with
the CIU strategy, for each basic recommender graph.

Compared to CI, the CIU method increases the influence of content-based
features linked to items that the target user has already selected in the past.
In other words, the CIU method do a better promotion of items that have the
same features as the choices of the target user.

3.2. Time-weight functions

Until now, we modeled time information directly within the structure of
STG and LSG graphs, but their edge weights give a static view of previous user
interests. Since such interests evolve over time, as pointed out for instance in
[15], this is not sufficient. We therefore follow the methodology proposed in that
paper, consisting in adding time-dependent weights to the links of recommender
graphs.

The idea is to give a high weight to recent links, and to decrease this weight
with their age: the weight at time t of any link (a, b) whose most recent ap-
pearance time is te ≤ t, is of the form wt(a, b) = f(t − te) · w(a, b), where f()
is a decay function. Many different decay functions may make sense, and we
designed GraFC2T2 to make it easy to integrate those functions. We consider
here the two following classical choices.
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• Our first example is the exponential decay function (EDF) illustrated in
Figure 6(a): f(x) = e−x·ln(2)/τ0 , where τ0 is the radioactivity half life;
after a delay of τ0, the link weight is divided by 2.

• We also consider the logistic decay function (LDF) illustrated in Fig-
ure 6(b): f(x) = 1 − 1/(e−K(x−τ0) + 1) where K is the steepness of the
curve and τ0 is the sigmoid midpoint; if x = τ0 then f(x) = 0.5.

(a) Exponential decay function, EDF (b) Logistic decay function, LDF

Figure 6: Edge time-weight functions.

4. Recommendation with Personalized PageRank and trust

Once a recommender graph is built with a combination of choices proposed
in previous sections, we are ready to perform top-N recommendation from this
graph. We present below the personalized PageRank approach and an extension
to include the concept of trust between users.

4.1. Personalized PageRank

Personalized PageRank algorithm is defined by [54] for node ranking in
graphs so that nodes can be ranked efficiently in order of importance. The first
application was on web pages, especially in the Google search engine. Then this
algorithm has been widely used in recommender systems because of the good
prediction quality obtained [18, 31, 64].

Following this last observation, [69] proposed the Temporal Personalized
Random Walk (TPRW) to compute recommendations on STG. It was defined
to tackle temporal recommendation using the personalization idea of [23], cor-
responding to the following formula:

PR = α ·M · PR+ (1− α) · d (1)

Where PR is PageRank vector that contains the importance of each node at
the end of the propagation process that we want to compute; M is the tran-
sition matrix of the considered graph; α is the damping factor; and d is the
personalization vector indicating which nodes the random walker will jump to
after a restart. In other words, d allows to initialize the weight of source nodes.
This process favors the recommendation of products that are close to source
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nodes: items close to source nodes with large weights in vector d, are favored
(see below).

For a given user u at time t, we define the personalized temporal vector d as
follows, depending on the type of basic graph:

• for BIP, the walker always restarts from u: d(u) = 1 and d(v) = 0 if v 6= u;

• for STG, the walker either restarts from u or from its most recent session
node (u, Tk): d(u) = β, d(u, Tk) = 1−β, d(v) = 0 if v 6= u and v 6= (u, Tk);

• for LSG, the walker always restarts from the most recent temporal node
representing u, (t′, u): d(t′, u) = 1 and d(t′′, v) = 0 if (t′′, v) 6= (t′, u).

Then, we run PageRank over the recommender graph to compute the interest
of each user u for item i at time t, and output the N items with highest interest
(in LSG, the interest for item i is the sum of interests for (t, i), for all t).

4.2. Trust integration

Trust relationships are interesting for improving recommendation, especially
for cold users and cold items (users or items for which very limited information
is available). Some systems incorporate trust information explicitly specified by
users [28, 22, 55], but since such explicit information is rarely available, several
approaches infer implicit trust [59, 56, 27, 39]. In this section, we describe how
to include these both types of trust in our framework.

We assume trust relationships are modeled for each user u by a set TRu of
users trusted by u, and that trust(u, v) gives the trust level of u for all v in
TRu, with

∑
v∈TRu

trust(u, v) = 1. We denote the method where explicit trust
relationships are given by ET (Explicit Trust). We also use an implicit trust
metric based on similarity measures as proposed in [56] and denote this method
by IT (Implicit Trust). In this method, TRu = U is the set of all users, and
trust(u, v) = |Iu ∩ Iv|/|Iu ∪ Iv| is the Jaccard similarity between users u and v.
Note that other similarity measures may be used, such as cosine index.

We then update the personalized temporal vector d definition as follows
(with the same notations as in the initial definition above):

• for BIP, d(u) = 1 − γ, d(v) = (γ · trust(u, v))/|TRu| if v ∈ TRu and
d(v) = 0 otherwise;

• for STG, we share the jumping probability β between u and its trusted
users: d(u) = β · (1− γ), d(v) = (β · γ · trust(u, v))/|TRu| for all v ∈ TRu;
and we share the probability 1 − β between u most recent session node
and the ones of trusted users: d(u, Tk) = (1 − β) · (1 − γ), d(v, Tv) =
(1−β) ·γ · trust(u, v)/|TRu| where v ∈ TRu and (v, Tv) is the most recent
session node of v. We set all other entries of d to 0.

• for LSG, d(tk, u) = 1− γ, d(tv, v) = γ · trust(u, v)/|TRu| if v ∈ TRu and
(tv, v) is the most recent node representing v, and all other entries of d
are 0.
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5. Experimental setup

Previous sections defined our general graph-based framework GraFC2T2,
that gives wide levels of freedom for selecting and combining its various compo-
nents into a top-N recommender system. These component capture several kinds
of side information, in particular content-based, temporal, and trust features. In
this section, we describe an experimental setup that we use in the next section
to evaluate our framework. This setup consists in two real-world datasets, an
evaluation method relying on three metrics, and a parameter selection method
to optimize results.

5.1. Datasets

We use publicly available datasets extracted from product reviews Epinions
and Ciao 2 [67], where users can write reviews and give their opinions on a wide
category of products like Home, Health, Computers and Media. We model each
dataset as a set of review tuples (u, i, c, r, t) meaning that user u has assigned
the rating r ∈ {0, 1, 2, 3, 4, 5} to item i at time t, with c being a content-based
feature of item i. The explicit trust networks of these datasets are considered
such that for each user u, the set TRu is given for the ET method. Table
1 provides key information on these datasets: start and end dates, as well as
numbers of distinct users, items, content-based features, ratings, explicit trust
relationships, ratings density and trust relationships density.

Table 1: Basic data statistics

start date end date ‖U‖ ‖I‖ ‖C‖ ratings trust δr δt
Epinions 2010-01-01 2010-12-31 1 843 15 899 24 17 722 4 867 0.06% 0.14%
Ciao 2007-01-01 2010-12-31 879 6 005 6 8 109 23 121 0.15% 3%

Since our framework does not use ratings but only positive links between
users and items, we discard all tuples such that the rating it contains is lower
than 2.5 or the average rating of involved user.

5.2. Evaluation

Evaluating recommender systems is a difficult task. In this paper, we use
three classical metrics for top-N recommendations: F1-score (F1), Hit Ratio
(HR) and Mean Average Precision (MAP) [2]. Higher values of these metrics
indicate better recommendation performance.

F1-score is a trade-off between ranking precision and recall such that op-
timizing F1-score is more robust than optimizing precision or recall. Pre-
cision is the fraction of good recommendations over all recommended items
and recall is the fraction of good recommendations over all relevant items to

recommend. For one user u, Precision = hitN (u)
N , Recall = hitN (u)

Inew(u) and

F1 = 2 · Precision×RecallPrecision+Recall = 2 · hitN (u)
Inew(u)+N where N is the length of recommen-

dation list, hitN (u) denotes the number of good recommendations to u in the

2https://www.cse.msu.edu/~tangjili/trust.html
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top-N items and Inew(u) is the set of new items to recommend to u. For all

users the equation of F1-score is: F@N =
∑

u∈U 2×hitN (u)∑
u∈U (Inew(u)+N) .

Hit Ratio is the fraction of users to whom the recommender system has made

at least one good recommendation over all users: H@N =
∑

u∈U (hitN (u)>0)

|U | .

Mean Average Precision considers the order of items in the top-N recommen-
dation in order to give better evaluation scores to results that recommend better

items first: M@N =
∑

u∈U APN (u)

|U | where APN (u) = 1
hitN (u)

∑N
k=1

hitk(u)

k
×h(k)

is the average precision of top-N recommendations done to user u and h(k) = 1
if the k-th recommended item is a good recommendation and 0 otherwise.

These metrics evaluate a given top-N recommendation. Since we actually
can’t perform recommendations on live users, we perform evaluation on past
data described above. Following the classical method established by previous
works [42, 40, 9, 52], we partition data according to k+1 time windows of equal
duration, and we use them as follow. For each of the k first slices:

• we build recommender graphs that correspond to data of this slice and all
previous slices (training set),

• we compute top-N recommendations for users who have selected at least
one new item in the next time slice (test set),

• we compute for each evaluation metric M the numerator Mnumk
and the

denominator Mdenok of its definition, given above.

Once we have the values of Mnumk
and Mdenok of each of the k first win-

dows, we combine them into the Time Averaged (TA) value of the metric under

concern: TA(M) =
∑

kMnumk∑
kMdenok

. This leads to a time-averaged value of F1-score,

Hit ratio and MAP, that we all use for evaluation. Indeed, evaluation metrics
can be in disagreement [20], and so using several metrics is essential to obtain
accurate insight on result quality.

In our experiments, we set k to 7 in order to have large enough data slices
and meaningful averages. We consider exploring the role of this parameter, as
well as the use of more advanced evaluation metrics, as future work.

5.3. Parameter estimation

For each basic graph type, GraFC2T2 defines and implements 27 possible
combinations of side information modelings, see Figure 1. Our priority is to
explore the behaviors and differences of all these variants, and so we did our best
to keep the number of other parameters reasonable. Still, the different version of
recommender systems encoded in GraFC2T2 call for several parameter selection.

Exhaustive search for the best values is out of reach, and many subtle tech-
niques exist to explore the parameter space in search for good values. Since this
search is not the focus of this paper, we use a simple approach called Random-
ized Search Cross-Validation (more advanced methods may easily be included
in our framework, though) [6]. This method randomly selects parameter values
in a predefined set of possible values, usually designed to span well the whole
set of values. Here, we use 50 such random settings, sampled in the set defined
by Table 2.
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Table 2: Predefined values of parameters

parameter meaning predefined values
∆ STG session duration 7, 30, 90, 180, 365, 540, 730 days

β STG long-term preference 0.1, 0.3, 0.5, 0.7, 0.9
τ0 half life of EDF and LDF 7, 30, 90, 180, 365, 540, 730 days

K decay slope of LDF 0.1, 0.5, 1, 5, 10, 50, 100
γ influence of trusted users 0.05, 0.1, 0.15, 0.3, 0.5, 0.7, 0.9
α damping factor for PageRank 0.05, 0.1, 0.15, 0.3, 0.5, 0.7, 0.9

6. Experimental results

This section presents extensive experimentations on our GraFC2T2 frame-
work, in order to study its performances in practice, to explore the contribution
of each side information in these cases, and to compare obtained results to
state-of-the-art recommender systems.

6.1. Performances of GraFC2T2

Table 3 presents the results we obtained for Top-10 item recommendation
for Epinions and Ciao datasets. We chose N = 10 as for instance in [14], [69]
and [7], and other values we tested gave similar results as one may see in the
appendix (Section 7.4). In these tables, each column corresponds to a metric
and a basic recommender graph, and each row corresponds to a combination
of side information added to this recommender graph. Each cell contains the
value of the evaluation metric for the recommender graph made of basic graph
in column and side information in row. White color of cell corresponds to the
best result and dark color indicates lower performance.

We summarize the insight obtained from these results in Table 4. For each
basic recommender graph (vertically) and each evaluation metric (horizontally),
we selected the three recommender graphs that achieve the best performances
and we display on the corresponding row the performances obtained on the basic
graph (without side information), the best obtained performances (with side
information), the improvement percentage, and the name of the corresponding
version of recommender graph with side information.

All best improvements thanks to side information in GraFC2T2 are at least
46% for Epinions and at least 41% for Ciao. Table 4 also shows that the best
combination of side information for Epinions is CIU-EDF-IT for BIP and STG
basic graphs and CIU-LDF-IT for LSG basic graph. For Ciao, good results are
obtained with CIU-LDF-IT for all basic graphs. These results clearly confirm
the relevance of graphs extended simultaneously with content, time and trust
information.

6.2. Impact of side information

We now give details on the impact of side information and their combination
in GraFC2T2. This is context dependent, as observed behaviors vary with
datasets; one may however easily test the GraFC2T2 framework with his/her
own datasets and discover the best choices for the case under concern. The
discussion provided here is mostly an illustration of this.
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Table 3: Epinions and Ciao - Performance with optimal settings. Each cell
contains the value of an evaluation metric for the recommender graph made
of basic graph in column and side information in row. White color of cell
corresponds to the best result and dark color indicates lower performance

-
ET
IT
EDF
LDF
CI
CIU
EDF-ET
EDF-IT
LDF-ET
LDF-IT
CI-ET
CI-IT
CIU-ET
CIU-IT
CI-EDF
CI-LDF
CIU-EDF
CIU-LDF
CI-EDF-ET
CI-EDF-IT
CI-LDF-ET
CI-LDF-IT
CIU-EDF-ET
CIU-EDF-IT
CIU-LDF-ET
CIU-LDF-IT

EPINIONS BIP STG LSG
2.18 2.0 1.14
1.81 1.86 1.14
2.17 2.42 1.61
3.74 3.32 2.25
3.16 2.63 2.26
2.53 3.0 0.86
3.29 3.51 0.66
2.77 3.32 1.77
3.88 4.43 2.74
2.12 2.63 1.58
3.1 2.77 3.29
2.44 3.03 0.92
3.12 3.14 1.77
3.03 3.51 0.66
3.89 3.72 1.99
4.88 4.84 0.91
4.91 3.56 1.1
4.51 6.48 0.7
5.29 4.49 0.9
3.84 4.73 0.98
4.85 4.47 1.69
3.02 3.39 0.92
3.81 4.02 3.41
4.75 6.13 0.7
6.34 7.66 1.99
4.06 3.78 0.7
5.69 4.49 3.68

F1@10
BIP STG LSG

5.17 4.77 4.24
4.64 4.64 4.11
5.44 5.44 5.31
6.1 5.97 5.7
5.97 5.31 5.97
5.97 6.23 3.32
6.37 6.63 2.79
5.44 5.84 5.04
7.03 7.16 6.37
4.91 5.31 4.77
6.1 6.5 7.16
5.84 6.23 3.45
6.37 6.37 5.44
6.1 6.63 2.79
7.03 7.03 5.44
7.69 6.9 3.32
7.03 6.5 3.98
7.69 7.69 2.92
7.16 6.76 3.58
6.63 6.76 3.45
7.43 6.76 5.31
5.97 6.37 3.45
6.76 6.63 7.29
7.16 7.43 2.92
7.82 7.96 5.44
6.63 6.63 2.92
7.82 7.03 7.03

HR@10
BIP STG LSG

2.23 2.17 1.71
2.04 2.07 1.66
2.29 2.34 2.24
2.31 2.35 2.32
2.24 2.09 2.54
2.48 2.73 1.74
2.66 2.88 1.66
2.13 1.97 2.09
2.64 2.57 2.42
2.03 2.1 2.13
2.98 2.98 3.01
2.28 2.67 1.74
2.49 2.66 2.15
2.43 2.9 1.66
2.79 2.88 2.25
3.06 2.73 1.74
2.61 2.67 1.75
3.23 3.03 1.66
2.89 2.85 1.72
2.44 2.46 1.74
2.8 2.7 2.17
2.28 2.66 1.74
3.0 3.0 2.66
2.64 2.95 1.66
3.32 3.18 2.27
2.48 2.78 1.66
3.18 3.07 3.17

MAP@10

-
ET
IT
EDF
LDF
CI
CIU
EDF-ET
EDF-IT
LDF-ET
LDF-IT
CI-ET
CI-IT
CIU-ET
CIU-IT
CI-EDF
CI-LDF
CIU-EDF
CIU-LDF
CI-EDF-ET
CI-EDF-IT
CI-LDF-ET
CI-LDF-IT
CIU-EDF-ET
CIU-EDF-IT
CIU-LDF-ET
CIU-LDF-IT

CIAO BIP STG LSG
1.18 1.48 1.45
1.08 1.44 1.5
2.18 1.92 2.25
1.63 1.7 2.0
2.02 1.74 3.27
1.25 2.14 1.25
2.38 4.56 1.24
1.17 1.47 1.41
2.13 3.08 2.37
1.18 1.49 1.5
2.66 2.76 2.76
1.39 1.66 1.51
2.41 2.25 2.84
2.02 4.0 1.31
2.76 4.21 2.96
2.58 3.15 1.66
3.38 2.91 2.37
3.46 4.46 1.44
7.74 5.79 2.11
1.86 2.11 1.63
3.42 3.54 2.9
1.66 2.67 1.74
4.56 4.89 2.64
2.69 4.79 1.53
4.62 5.1 2.88
2.73 6.42 1.45
5.07 6.11 2.51

F1@10
BIP STG LSG

5.26 5.63 6.53
5.08 5.44 6.72
7.62 7.62 7.26
6.35 5.99 7.44
7.26 7.44 9.26
6.53 6.35 5.26
7.08 8.53 4.9
5.26 5.81 6.53
9.98 9.44 7.26
5.44 5.63 6.72
8.53 8.53 8.71
5.99 6.17 5.63
7.8 7.8 8.53
6.9 8.53 5.08
8.53 8.53 8.35
7.62 8.17 6.17
8.35 8.89 7.62
8.71 9.26 5.44
9.98 9.8 6.9
7.26 6.72 5.99
9.8 9.8 7.99
6.35 7.08 5.81
10.7 11.3 8.53
8.53 9.26 5.63
10.3 10.5 8.35
8.35 9.98 5.44
11.1 11.1 9.07

HR@10
BIP STG LSG
1.9 1.99 2.24
1.74 1.9 2.17
2.39 2.39 2.28
2.03 2.26 2.34
2.63 2.84 3.51
2.04 2.14 1.7
2.39 3.01 1.48
1.68 2.1 2.18
3.04 2.84 2.32
1.81 2.01 2.18
2.91 2.96 2.66
1.97 2.06 1.72
2.47 2.42 2.43
2.27 3.12 1.5
2.82 2.96 2.44
2.33 2.76 1.77
2.87 2.86 2.85
3.24 3.29 1.65
3.46 3.31 2.68
2.27 2.37 1.81
3.09 3.14 2.46
1.98 2.12 1.77
3.19 3.16 3.16
2.76 3.09 1.65
3.32 3.37 2.38
2.29 3.34 1.64
3.34 3.35 3.18

MAP@10
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Table 4: Best recommender graphs - Comparison of the three best recommender
graph combinations with the associated basic graph. We display the obtained
improvement percentage.

1
2
3

F@10

No
Epinions Dataset

2.18 6.34 190% CIU-EDF-IT
2.18 5.69 160% CIU-LDF-IT
2.18 5.29 142% CIU-LDF

Basic Best Imp. BIP-Best
BIP

2.0 7.66 282% CIU-EDF-IT
2.0 6.48 223% CIU-EDF
2.0 6.13 206%CIU-EDF-ET

Basic Best Imp. STG-Best
STG

1.14 3.68 221% CIU-LDF-IT
1.14 3.41 197% CI-LDF-IT
1.14 3.29 187% LDF-IT

Basic Best Imp. LSG-Best
LSG

1
2
3

H@10
5.17 7.82 51% CIU-EDF-IT
5.17 7.82 51% CIU-LDF-IT
5.17 7.69 48% CI-EDF

4.77 7.96 66% CIU-EDF-IT
4.77 7.69 61% CIU-EDF
4.77 7.43 55% CIU-EDF-ET

4.24 7.29 71% CI-LDF-IT
4.24 7.16 68% LDF-IT
4.24 7.03 65% CIU-LDF-IT

1
2
3

M@10
2.23 3.32 48% CIU-EDF-IT
2.23 3.23 45% CIU-EDF
2.23 3.18 42% CIU-LDF-IT

2.17 3.18 46% CIU-EDF-IT
2.17 3.07 41% CIU-LDF-IT
2.17 3.03 39% CIU-EDF

1.71 3.17 85% CIU-LDF-IT
1.71 3.01 76% LDF-IT
1.71 2.66 55% CI-LDF-IT

1
2
3

F@10

No
Ciao Dataset

1.18 7.74 556% CIU-LDF
1.18 5.07 330% CIU-LDF-IT
1.18 4.62 291% CIU-EDF-IT

Basic Best Imp. BIP-Best
BIP

1.48 6.42 332%CIU-LDF-ET
1.48 6.11 311% CIU-LDF-IT
1.48 5.79 290% CIU-LDF

Basic Best Imp. STG-Best
STG

1.45 3.27 125% LDF
1.45 2.96 104% CIU-IT
1.45 2.9 99% CI-EDF-IT

Basic Best Imp. LSG-Best
LSG

1
2
3

H@10
5.26 11.1 110% CIU-LDF-IT
5.26 10.7 103% CI-LDF-IT
5.26 10.3 96% CIU-EDF-IT

5.63 11.3 100% CI-LDF-IT
5.63 11.1 96% CIU-LDF-IT
5.63 10.5 87% CIU-EDF-IT

6.53 9.26 41% LDF
6.53 9.07 38% CIU-LDF-IT
6.53 8.71 33% LDF-IT

1
2
3

M@10
1.9 3.46 82% CIU-LDF
1.9 3.34 76% CIU-LDF-IT
1.9 3.32 74% CIU-EDF-IT

1.99 3.37 69% CIU-EDF-IT
1.99 3.35 68% CIU-LDF-IT
1.99 3.34 67% CIU-LDF-ET

2.24 3.51 57% LDF
2.24 3.18 42% CIU-LDF-IT
2.24 3.16 41% CI-LDF-IT

When we consider the basic graphs with no side information, in the case of
Epinions, BIP gives the best results for all evaluation metrics. Instead, LSG
gives the best Hit ratio and MAP, while STG gives the best F1-score in the case
of Ciao.

If we include only one kind of side information, we observe that explicit trust
(ET) does not improve the results, but implicit trust (IT) does for all basic
graphs. The insertion of time-weight always produces improvements. Finally,
content-based features increase performances for BIP and STG but not for LSG.
For Epinions, the best graph with one kind of side information is BIP-EDF in
F1-score and STG-CIU in Hit ratio and MAP. In Ciao, the best one is LSG-LDF
in Hit ratio and MAP, and STG-CIU is the best in F1-score. This shows that
the impact of a unique kind of side information highly depends on the basic
graph and on the data.

Recommendations using two kinds of side information perform significantly
better than with only one kind of side information. For instance, in the Epin-
ions case, performances increase from 3.74% to 6.48% in F1-score, from 6.63%
to 7.69% in Hit ratio and from 2.88% to 3.23% in MAP. Combining time-weight
with implicit trust performs better than time-weight and trust taken separately.
Similarly, combining content-based features with implicit trust is better than
content-based features or trust taken separately, but generally less interesting
than combining time-weight and implicit trust. Combining content-based fea-
tures and time-weight usually produces better improvements for BIP and STG
but no improvement for LSG. In Epinions, BIP-CI-EDF and BIP-CIU-EDF
perform best. In Ciao, BIP-CIU-LDF is always better. This confirms the rele-
vance of graphs that integrate content-based features and time, like time-weight
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content-based STG proposed by [52].
Using three kinds of side information does not greatly improve the best

performances achieved with two kinds of side information. For instance, in
Epinions, the performances increase from 6.48 to 7.66% in F1-score, from 7.69
to 7.96% in Hit ratio and 3.23 to 3.32% in MAP. Nevertheless, Table 4 shows
that recommender graphs with three kinds of side information are by far the
most frequent among the best ones. For this reason, we recommend the use of
content-based, time and trust information simultaneously in order to increase
the chances to achieve good results.

6.3. Best values of parameters

In this section, we focus only on recommender graphs with CIU-EDF-IT
and CIU-LDF-IT combination that are most common in the best performance
in Table 4. We have made the following observations:

• In Epinions dataset, for the combination CIU-EDF-IT, ∆ = 7, β = 0.5,
τ0 = 90 for BIP and STG and 180 for LSG, γ ∈ {0.15, 0.3} for BIP and
STG and 0.9 for LSG, and α = 0.9. For the combination CIU-LDF-IT,
∆ = 365, β = 0.7, τ0 ∈ {30, 90} for BIP and STG and 7 for LSG, K = 0.5
for BIP, 100 for STG and 5 for LSG, γ ∈ {0.1, 0.15} for BIP and STG and
0.9 for LSG, and α ∈ {0.7, 0.9};

• In Ciao dataset, for the combination CIU-EDF-IT, ∆ = 180, β = 0.3,
τ0 = 180, γ = 0.9 and α = 0.9. For the combination CIU-LDF-IT,
∆ = 540, β = 0.1, τ0 = 365 for BIP and STG and 180 for LSG, K = 10
for BIP and STG and 100 for LSG, γ ∈ {0.7, 0.9}, and α = 0.9;

The values of these parameters indicate that in Epinions, the weights of the
data used (edge weights) decrease faster than in Ciao; τ0 is small in Epinions
{7, 30, 90} and is larger in Ciao {180, 365}. Regarding trust, γ is still high in
Ciao {0.7, 0.9} and is smaller in Epinions {0.1, 0.15, 0.3} which shows that the
influence of implicit trust is more important in Ciao. However, this influence
must always be great for the graph LSG {0.9} in all datasets.

6.4. Comparison with state-of-the-art systems without side information

We now compare the performances of GraFC2T2 with those of some state-
of-the-art Top-N recommender systems that don’t take into account side infor-
mation. The considered models are: Most-Popular-Item (MPI) that computes
the ranking score of an item by its popularity; the ranking oriented collabora-
tive filtering, user-based (UBCF) and item-based (IBCF) collaborative filtering
[30, 48]; some recommender systems for positive implicit feedback scenarios,
Bayesian Personalized Ranking (BPR) [60], Sparse linear methods for top-N
recommender systems (SLIM) [50], collaborative less-is-more filtering (CLiMF)
[62] and Matrix factorization with Alternating Least Squares (ALS) [25].

We use Randomized Search Cross-Validation to have good performances of
the considered recommender systems. For UBCF and IBCF models, 10 settings
are generated such that the neighborhood size k ∈ {10, 20, 30, 40, 50, 80, 100, 150, 200, 500}.
For BPR, SLIM, CLIMF and ALS models, 50 settings are generated such that
the number of latent factors l ∈ {10, 20, 30, 50, 100, 200, 500}, learning rate and
all regularization bias are taken in {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05}.
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Table 5 presents the best results obtained for these recommender systems
that don’t take into account side information and those obtained with our frame-
work. This shows that GraFC2T2 outperforms these systems and illustrates the
relevance of a general framework in which various kinds of side information can
be added to improve recommendations.

Table 5: Experiment results on Epinions and Ciao datasets for Top-10. Perfor-
mances are given in percentage and best ones are highlighted in bold.

MPI UBCF IBCF BPR SLIM CLIMF ALS GraFC2T2

F@10 1.79 0.30 0.70 0.15 0.82 1.97 2.27 7.66
Epinions H@10 4.91 1.46 2.79 0.80 2.92 5.17 4.91 7.96

M@10 2.07 0.61 1.29 0.45 1.16 2.15 2.26 3.32

F@10 2.26 0.31 0.94 0.22 1.49 3.38 2.10 7.74
Ciao H@10 7.62 1.63 4.17 1.27 5.08 8.71 6.90 11.3

M@10 2.62 0.59 1.65 0.56 2.09 3.06 2.46 3.51

A future step in our research is to compare the results obtained by GraFC2T2
to those produce by state-of-the-art systems that include side information. We
have already observed that the results produced by GraFC2T2 are comparable
to those presented in [70] where both item and social visibilities are modeled.
Moreover, we have also made a comparison with Trust aware Denoising Auto
Encoder (TDAE) technique based on deep learning [55]. The results for Epinions
(M@10 = 1.32%) and Ciao (M@10 = 3.07%) confirm the relevance of GraFC2T2.

Notice that the most basic, non-personalized approach MPI is able to achieve
better results compared to BPR, SLIM, UBCF and IBCF. This indicates that
users tend to consume popular items. This is not the first work in which MPI is
better than BPR or other matrix factorization models, [72] and [22] have made
the same observation.

7. Related work

As we already said, many contributions improve collaborative filtering (CF)
recommender systems with the inclusion of side information, and we used several
ideas proposed in these previous works. In the rest of this section, we shortly
review key related references.

7.1. Trust-based recommender systems

CF usually suffers from data sparsity and cold start problems, which may
be solved in part with user trust. For instance, [56] used trust inference by
transitive associations between users in a social network. [46] use explicit trust
and distrust to improve clustering-based CF recommendation, while [21] merge
ratings of trusted neighbors to infer probable preferences of other users, and
identify similar users for item recommendations.

In some cases, trust can be explicitly provided by users as in [47], but in other
ones, this information is not given and it can be inferred from user behaviors.
For example, in [56], Pearson correlation is used to compute implicit trust using
ratings dataset and in cases where there is only implicit data, measure like
Jaccard and Cosine can be used. In other works, trust enhancement is done
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by trust propagation on trust network where the weight of an link (u, u′) is the
trust of u to u′ [13].

Note that work on influencers can also be considered here, as there is a trust
relationship between influencers and their followers [44, 19]. Our framework
is able to integrate the impact of influencers in the same way as trust between
users. The main difference is who influences who and how much. Once you have
the answers to these questions, the customization of PageRank is done according
to these answers. The impact of influencers or influencer-based recommendation
is not studied in this work, but it is a good issue for future work.

The concept of influence is a good example of other side information that may
be included in our system [44] and [19]. Similarly to trust (although these two
concepts are different) influence may be used to customize PageRank, once it is
correctly quantified. For instance, influence may be seen as a trust relationship
between influencers and their followers.

7.2. Time aware recommender systems

Most recommender systems that take temporal aspects into account are
based on concept drift: older information is less important than recent infor-
mation for predicting future user purchases. For this reason, [15] proposed the
use of the time-weight decay functions we used in this paper, in order to assign
greater weight to the most recent ratings in similarity computations. In addi-
tion, [17] propose a incremental matrix completion method, that automatically
allows the factors related to both users and items to adapt ”on-line” to concept
drift hypothesis. Going further, [43] propose an online incremental CF in which
a decay function is used for similarity computations and another one is used
for rating prediction. Time-weight functions are also used in other studies as in
[35, 29, 52].

Other approaches to concept drift assume that the importance of information
used for recommendations is ephemeral, as in [40] where time is divided into
slices and data is used only within a single slice. Such recommender systems
therefore focus on user short-term preferences. It however seems that some
preferences are stable and persist over time, and so that old information should
also be included. For this reason, some works [69, 41] capture both short-term
preferences and long-term preferences and combine them in the recommendation
process. For example, [69] propose STG to incorporate temporal aspects by
separately modeling long-term preferences and short-term preferences within a
graph model.

7.3. Content-based recommender systems

These systems aim at recommending items similar to the ones the user liked
in the past. A way to achieve this, developed in [45], is to match features
associated to user preferences with those of items. Then, recommendation is
performed in three steps: extracting relevant features from items, build user
preference profiles based on item features, and finally select new items that fit
user preferences. This approach is used in several domains such as recommen-
dation of books [49] and recommendation of web pages [57].

Using content-based features may improve CF techniques by allowing more
details on user favorite item features and increase the possibility to reach items
that have not been selected in the past by other users. Some works [3, 5, 8]
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indeed show that these hybrid recommender systems solve weaknesses of both
approaches.

Recent work on content-based approaches are dedicated to the Social Book
Search (SBS). The SBS Lab investigates book search in scenarios where users
search with more than just a query, and look for more than objective meta-
data. It has two tracks. The first one is a Suggestion Track aiming at de-
veloping test collections for evaluating ranking effectiveness of book retrieval
and recommender systems. The second one is an Interactive Track aimed at
developing user interfaces that support users through each stage during com-
plex search tasks and to investigate how users exploit professional metadata and
user-generated content [33].

7.4. Graph-based recommender systems

The simplest graph-based recommender system rely on the classical bipartite
graph (BIP) in which only user-item links are used. Most used algorithms are
based on random walk [4], like Injected Preference Fusion [69] and PageRank
which is used in this paper; they compute a probability to reach items from the
user under concern, and recommend the ones with highest probability.

Graph-based systems may be seen as CF systems, and so one may use the
same idea as in hybrid recommender systems to improve them [8]. [58] achieve
this by adding a third node type: content nodes. The resulting graph ignores
temporal aspects, though. To improve this, [71] propose the Topic-STG which
incorporate content-based features and the temporal dynamic of STG. However
these graphs handle each link regardless of its age, which contradicts the concept
drift assumption. This is why we ([52]) propose the Time-weight and content-
based STG, where old links have a lower weight than recent ones. Up to our
konwledge, none of these graph-based works takes advantage of content-based,
time and trust information simultaneously.

We note that, despite the fact that recommender graphs are not much stud-
ied compared to model-based techniques such as matrix factorization or neural
networks, they remain relevant. For example Pixie recommender system pro-
posed by [16] is the recent scalable graph-based real-time system developed and
deployed at Pinterest. Given a set of user-specific pins as a query, Pixie selects
in real-time from billions of possible pins that are most related to the query. To
generate recommendations, Eksombatchai et al. develop Pixie Random Walk
algorithm that uses the Pinterest object graph of 3 billion nodes and 17 billion
edges. This has been made possible thanks to the technological evolution of
Random Access Memories.

Conclusion

Our main goal with this paper was to show that including several side infor-
mation improves the quality of recommender graphs built for top-N recommen-
dation task. For this purpose, we designed and implemented GraFC2T2, a rec-
ommender graph framework which makes it easy to explore various approaches
for modeling and combining many features of interests for recommendation. In
particular, GraFC2T2 extends classical bipartite graphs, session-based tempo-
ral graphs and link stream graphs by integrating content-based features, time-
weight functions, and user trust into a personalized PageRank system.
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The experiments we conducted on Epinions and Ciao datasets with F1-score,
Hit ratio and MAP evaluation metrics show that best performances are always
reached by graphs that integrate at least two side information and that graphs
with time-weight always outperform the others. The resulting improvements are
of at least 41%. Moreover, comparison with state-of-the-art matrix factorization
and classical user-based and item-based collaborative filtering methods confirms
the relevance of GraFC2T2 framework for top-N recommendation. Good im-
provements obtained in recommender graphs by integration of side information
do not guarantee such improvement for other types of recommender systems
such as matrix factorization and neural network. We therefore consider inclu-
sion of content-based, time and trust information simultaneously in such system
as a key perspective.
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We thank Raphaël Fournier, Tiphaine Viard and JIMIS reviewers for their helpful com-
ments on previous versions. This work is funded in part by the African Center of Excellence in
Information and Communication Technologies (CETIC), the Sorbonne University-IRD PDI
program, and by the ANR (French National Agency of Research) under grant ANR-15-CE38-
0001 (AlgoDiv).

Appendix

In this section, we present the results obtained for top-20, -50 and -100. The section is
divided in two parts: the first one presents performances obtained for all combinations of side
information and basic graphs of the framework; the second highlights the 3 best combinations,
according to basic graph and evaluation metric.

These two parts confirm observations made on top-10 results in the Section 6. For example,
recommender graphs that integrate simultaneously content-based, users’ preferences temporal
dynamic and trust relationship between users, are usually the best. Thus, we recommend the
simultaneous integration of these three side information in order to increase the chances to
achieve good performances.
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Table .6: Epinions Dataset - Performances with optimal settings for Top-20.

-
ET
IT
EDF
LDF
CI
CIU
EDF-ET
EDF-IT
LDF-ET
LDF-IT
CI-ET
CI-IT
CIU-ET
CIU-IT
CI-EDF
CI-LDF
CIU-EDF
CIU-LDF
CI-EDF-ET
CI-EDF-IT
CI-LDF-ET
CI-LDF-IT
CIU-EDF-ET
CIU-EDF-IT
CIU-LDF-ET
CIU-LDF-IT

EPINIONS BIP STG LSG
1.56 1.59 1.11
1.31 1.49 1.05
1.73 1.77 1.39
2.7 2.15 2.55
1.88 1.68 1.53
1.95 2.15 0.76
2.16 2.36 0.63
1.8 1.68 2.46
2.47 2.5 2.43
1.39 1.57 1.21
1.92 1.95 2.18
1.67 2.12 0.79
2.05 2.19 1.49
2.07 2.12 0.64
2.19 2.35 1.53
3.25 2.88 0.81
2.57 2.38 0.85
3.45 2.93 0.67
3.02 2.39 0.74
2.6 2.58 0.81
3.25 3.26 1.52
1.98 2.17 0.86
2.63 2.3 2.09
2.92 2.85 0.67
3.44 3.33 1.48
2.43 2.34 0.67
2.81 2.51 1.93

F1@20
BIP STG LSG

8.22 8.22 7.16
7.43 7.96 6.9
8.75 9.02 8.89
10.6 9.55 10.6
8.89 8.49 8.49
9.28 9.68 5.44
9.95 10.1 4.64
8.75 8.62 10.3
9.95 10.1 10.3
7.69 8.22 7.56
9.55 9.81 10.5
8.49 9.55 5.57
9.95 10.1 8.75
9.68 9.95 4.64
10.1 10.1 9.15
11.7 11.1 5.7
10.6 9.68 5.97
11.8 11.3 5.04
11.0 10.6 5.31
10.5 10.7 5.7
11.3 11.4 8.89
9.15 9.68 5.97
10.5 10.2 9.81
11.0 10.9 5.04
11.7 11.5 9.02
10.1 10.5 5.04
10.7 10.5 9.42

HR@20
BIP STG LSG

2.38 2.4 1.84
2.18 2.24 1.8
2.51 2.49 2.41
2.62 2.56 2.61
2.38 2.23 2.67
2.64 2.98 1.89
2.9 3.13 1.73
2.36 2.15 2.41
2.84 2.67 2.64
2.17 2.24 2.32
3.12 3.12 3.06
2.4 2.83 1.9
2.63 2.8 2.35
2.67 3.13 1.73
2.9 3.13 2.43
3.33 2.97 1.9
2.76 2.83 1.9
3.45 3.26 1.79
3.01 3.09 1.82
2.7 2.71 1.9
3.03 2.99 2.4
2.42 2.83 1.9
3.15 3.14 2.77
2.87 3.11 1.79
3.55 3.41 2.46
2.73 3.01 1.74
3.29 3.24 3.26

MAP@20

Table .7: Epinions Dataset - Performances with optimal settings for Top-50.

-
ET
IT
EDF
LDF
CI
CIU
EDF-ET
EDF-IT
LDF-ET
LDF-IT
CI-ET
CI-IT
CIU-ET
CIU-IT
CI-EDF
CI-LDF
CIU-EDF
CIU-LDF
CI-EDF-ET
CI-EDF-IT
CI-LDF-ET
CI-LDF-IT
CIU-EDF-ET
CIU-EDF-IT
CIU-LDF-ET
CIU-LDF-IT

EPINIONS BIP STG LSG
1.06 1.08 0.91
0.95 1.05 0.87
1.16 1.16 0.97
1.25 1.28 1.04
1.14 1.15 0.99
1.55 1.48 0.56
1.59 1.53 0.48
1.09 1.11 0.89
1.36 1.34 0.97
0.97 1.08 0.87
1.18 1.16 0.98
1.43 1.47 0.56
1.49 1.47 0.89
1.49 1.49 0.48
1.51 1.55 0.91
1.74 1.66 0.58
1.67 1.51 0.6
1.63 1.77 0.55
1.59 1.55 0.54
1.72 1.63 0.59
1.52 1.66 0.88
1.56 1.52 0.56
1.49 1.49 0.93
1.52 1.75 0.55
1.62 1.73 0.91
1.47 1.55 0.51
1.52 1.53 0.97

F1@50
BIP STG LSG

15.3 15.4 13.9
14.2 15.1 13.5
16.0 16.4 14.7
17.1 16.4 15.4
16.0 16.0 14.7
19.0 18.4 9.68
19.0 18.6 8.62
15.5 15.5 14.2
17.5 16.8 15.0
14.6 15.4 13.5
16.6 16.4 14.9
18.2 18.3 9.68
18.4 18.4 14.2
18.3 18.6 8.49
18.6 18.6 14.6
19.9 19.9 9.95
19.6 18.7 10.1
19.4 19.9 9.81
19.0 19.0 9.95
19.8 19.8 9.95
18.8 19.9 14.2
19.0 18.8 9.68
18.6 18.6 14.5
18.7 19.9 9.81
19.6 19.8 14.6
18.2 19.0 9.42
18.7 18.8 15.1

HR@50
BIP STG LSG
2.5 2.55 2.03
2.3 2.4 1.99
2.52 2.63 2.55
2.64 2.71 2.7
2.5 2.4 2.72
2.87 3.15 1.93
3.01 3.26 1.83
2.43 2.33 2.52
2.83 2.74 2.73
2.28 2.4 2.38
3.09 3.09 3.07
2.63 3.05 1.93
2.77 3.03 2.41
2.76 3.27 1.83
3.07 3.29 2.5
3.29 3.06 1.94
2.89 3.05 1.95
3.5 3.36 1.84
3.2 3.33 1.92
2.71 2.93 1.94
3.1 2.99 2.46
2.65 3.06 1.93
3.14 3.14 2.82
3.02 3.29 1.83
3.65 3.48 2.54
2.83 3.18 1.84
3.36 3.45 3.27

MAP@50
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Table .8: Epinions Dataset - Performances with optimal settings for Top-100.

-
ET
IT
EDF
LDF
CI
CIU
EDF-ET
EDF-IT
LDF-ET
LDF-IT
CI-ET
CI-IT
CIU-ET
CIU-IT
CI-EDF
CI-LDF
CIU-EDF
CIU-LDF
CI-EDF-ET
CI-EDF-IT
CI-LDF-ET
CI-LDF-IT
CIU-EDF-ET
CIU-EDF-IT
CIU-LDF-ET
CIU-LDF-IT

EPINIONS BIP STG LSG
0.7 0.72 0.67
0.69 0.68 0.66
0.74 0.77 0.66
0.77 0.77 0.67
0.71 0.72 0.67
0.89 0.91 0.39
0.87 0.92 0.39
0.71 0.7 0.65
0.76 0.79 0.67
0.71 0.69 0.66
0.75 0.79 0.66
0.87 0.88 0.39
0.88 0.88 0.58
0.86 0.92 0.39
0.89 0.92 0.59
0.92 0.98 0.42
0.89 0.88 0.42
0.91 1.03 0.4
0.89 0.94 0.41
0.91 0.95 0.42
0.92 0.95 0.58
0.88 0.89 0.41
0.88 0.88 0.57
0.91 1.02 0.39
0.91 1.02 0.59
0.88 0.94 0.39
0.89 0.92 0.59

F1@100
BIP STG LSG

22.5 22.4 21.9
22.3 22.0 21.5
23.3 23.6 21.9
22.9 23.3 21.9
22.5 22.3 21.9
26.3 26.3 14.3
26.0 27.5 14.3
22.1 22.0 21.2
23.5 23.9 22.3
22.4 21.9 21.5
23.6 23.9 21.9
25.9 25.7 14.3
26.1 26.5 20.0
25.9 27.5 14.3
26.5 27.3 20.2
26.8 27.6 15.1
26.3 26.0 15.1
26.3 28.5 14.5
26.3 27.6 15.0
26.5 27.2 15.0
26.7 27.2 20.0
25.7 25.7 14.6
26.1 26.5 20.0
26.1 28.5 14.3
27.2 28.5 20.2
26.0 27.6 14.3
26.5 27.3 20.3

HR@100
BIP STG LSG

2.54 2.59 2.13
2.35 2.43 2.09
2.6 2.68 2.61
2.66 2.66 2.72
2.54 2.42 2.65
2.84 3.13 1.83
3.03 3.35 1.82
2.44 2.33 2.54
2.9 2.77 2.77
2.33 2.42 2.36
3.1 3.1 3.02
2.6 2.96 1.83
2.78 2.93 2.48
2.85 3.36 1.82
3.15 3.35 2.52
3.29 3.15 1.85
2.88 2.95 1.89
3.58 3.34 1.83
3.12 3.33 1.9
2.71 2.89 1.84
3.2 3.06 2.49
2.61 2.95 1.83
3.16 3.16 2.82
2.94 3.21 1.82
3.73 3.44 2.55
2.79 3.17 1.82
3.37 3.43 3.26

MAP@100

Table .9: Ciao Dataset - Performances with optimal settings for Top-20.

-
ET
IT
EDF
LDF
CI
CIU
EDF-ET
EDF-IT
LDF-ET
LDF-IT
CI-ET
CI-IT
CIU-ET
CIU-IT
CI-EDF
CI-LDF
CIU-EDF
CIU-LDF
CI-EDF-ET
CI-EDF-IT
CI-LDF-ET
CI-LDF-IT
CIU-EDF-ET
CIU-EDF-IT
CIU-LDF-ET
CIU-LDF-IT

CIAO BIP STG LSG
1.61 1.93 1.71
1.36 1.69 1.61
3.08 2.72 2.2
2.24 2.35 2.51
2.05 1.99 2.7
3.13 3.58 1.03
2.93 4.39 0.87
2.01 2.01 1.69
3.15 2.69 2.34
1.44 1.69 1.61
2.82 2.82 2.6
2.59 3.25 1.09
3.35 3.47 2.76
3.78 4.39 1.03
3.64 4.71 3.27
4.81 3.95 1.48
4.27 3.92 1.54
4.37 4.19 1.32
3.43 4.55 1.39
2.19 3.78 1.47
4.18 3.86 2.95
2.7 3.33 1.24
4.87 4.92 3.38
3.7 4.38 1.32
3.84 4.56 3.39
4.2 4.5 1.21
5.06 4.36 3.28

F1@20
BIP STG LSG

9.26 9.98 10.2
8.71 9.26 9.98
13.1 12.9 11.8
11.1 11.4 12.3
10.2 10.2 13.2
12.2 12.3 7.44
13.2 14.5 6.72
10.7 10.3 11.4
14.2 13.8 12.0
8.71 9.26 9.98
12.3 12.5 12.3
11.6 12.2 7.8
13.4 14.0 12.7
14.0 14.5 7.26
14.5 14.7 13.4
15.1 13.8 9.26
14.9 14.2 10.3
15.8 14.7 8.17
15.2 15.4 9.62
13.8 13.6 9.07
15.4 14.9 13.1
11.6 13.1 8.71
15.1 14.5 13.8
15.8 14.5 8.17
16.0 15.8 13.6
14.5 15.4 8.35
16.0 15.8 14.5

HR@20
BIP STG LSG

2.13 2.25 2.44
1.96 2.13 2.35
2.76 2.75 2.51
2.28 2.56 2.65
2.74 3.0 3.78
2.37 2.45 1.75
2.8 3.43 1.55
2.0 2.36 2.41
3.27 3.11 2.56
2.02 2.22 2.36
3.06 3.25 2.81
2.3 2.39 1.88
2.87 2.83 2.68
2.73 3.51 1.63
3.13 3.39 2.66
2.77 3.01 1.84
3.29 3.21 2.92
3.66 3.6 1.84
3.62 3.68 2.82
2.76 2.78 1.93
3.41 3.42 2.76
2.31 2.44 2.01
3.44 3.48 3.45
3.24 3.42 1.84
3.63 3.64 2.69
2.79 3.69 1.69
3.59 3.69 3.49

MAP@20
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Table .10: Ciao Dataset - Performances with optimal settings for Top-50.

-
ET
IT
EDF
LDF
CI
CIU
EDF-ET
EDF-IT
LDF-ET
LDF-IT
CI-ET
CI-IT
CIU-ET
CIU-IT
CI-EDF
CI-LDF
CIU-EDF
CIU-LDF
CI-EDF-ET
CI-EDF-IT
CI-LDF-ET
CI-LDF-IT
CIU-EDF-ET
CIU-EDF-IT
CIU-LDF-ET
CIU-LDF-IT

CIAO BIP STG LSG
1.46 1.55 1.51
1.58 1.52 1.47
1.69 1.72 1.62
1.74 1.74 1.81
1.47 1.62 1.77
2.27 2.18 0.97
2.37 2.65 0.88
1.63 1.59 1.59
1.98 1.79 1.7
1.59 1.58 1.47
1.9 1.69 1.65
2.34 2.07 0.98
2.53 2.29 1.57
2.27 2.66 0.88
2.52 2.86 1.58
2.45 2.36 1.26
2.56 2.23 1.17
2.57 2.71 1.03
2.62 2.78 1.13
2.63 2.34 1.29
2.6 2.44 1.59
2.31 2.21 0.99
2.51 2.42 1.64
2.69 2.69 1.07
2.82 2.69 1.61
2.55 2.72 1.08
2.99 2.88 1.61

F1@50
BIP STG LSG

19.4 19.6 19.8
19.6 19.2 20.0
20.9 21.1 20.5
21.4 20.7 20.9
19.4 20.3 20.9
22.1 22.5 15.2
24.0 24.9 14.3
20.3 20.9 20.7
22.1 21.8 21.2
19.6 19.6 20.0
21.8 20.5 20.5
23.0 23.0 15.4
23.6 22.7 20.5
24.0 24.7 14.2
24.7 25.8 21.2
23.0 24.0 18.9
23.4 22.9 17.6
24.0 25.4 16.5
24.0 24.7 16.9
24.1 23.8 18.9
24.5 24.1 20.7
23.4 23.8 15.4
23.8 23.8 21.1
24.3 25.8 16.9
25.4 25.4 21.4
23.8 25.2 16.7
24.9 24.9 20.9

HR@50
BIP STG LSG

2.34 2.5 2.74
2.2 2.43 2.67
2.92 2.84 2.73
2.56 2.78 2.86
2.91 3.0 3.97
2.55 2.71 1.92
3.03 3.67 1.72
2.24 2.65 2.73
3.39 3.23 2.81
2.25 2.54 2.68
3.18 3.29 2.99
2.51 2.68 1.92
2.98 2.91 2.76
2.98 3.75 1.74
3.26 3.62 2.88
2.98 3.18 2.02
3.45 3.29 3.12
3.87 3.87 2.07
3.74 3.82 3.01
3.01 3.04 2.05
3.53 3.56 2.94
2.63 2.75 2.05
3.61 3.56 3.61
3.42 3.7 2.07
3.69 3.73 2.91
3.0 3.86 1.93
3.69 3.76 3.51

MAP@50

Table .11: Ciao Dataset - Performances with optimal settings for Top-100.

-
ET
IT
EDF
LDF
CI
CIU
EDF-ET
EDF-IT
LDF-ET
LDF-IT
CI-ET
CI-IT
CIU-ET
CIU-IT
CI-EDF
CI-LDF
CIU-EDF
CIU-LDF
CI-EDF-ET
CI-EDF-IT
CI-LDF-ET
CI-LDF-IT
CIU-EDF-ET
CIU-EDF-IT
CIU-LDF-ET
CIU-LDF-IT

CIAO BIP STG LSG
1.11 1.15 1.06
1.08 1.15 1.03
1.16 1.15 1.07
1.25 1.27 1.18
1.23 1.14 1.17
1.54 1.51 0.96
1.58 1.57 0.89
1.21 1.27 1.11
1.22 1.26 1.09
1.11 1.15 1.03
1.14 1.18 1.07
1.57 1.52 0.98
1.52 1.53 1.09
1.57 1.56 0.9
1.48 1.5 1.09
1.66 1.56 1.01
1.6 1.49 1.0
1.73 1.74 0.9
1.56 1.5 0.89
1.71 1.54 1.01
1.57 1.54 1.16
1.55 1.55 0.98
1.49 1.5 1.15
1.84 1.76 0.91
1.74 1.73 1.1
1.59 1.57 0.9
1.52 1.51 1.13

F1@100
BIP STG LSG

27.9 28.3 27.8
27.9 28.1 27.4
28.7 28.7 27.9
30.5 31.0 29.9
29.6 28.5 29.2
33.8 33.4 26.7
34.3 34.5 25.8
29.2 30.3 28.3
28.9 30.1 27.9
28.7 28.7 27.6
27.9 29.2 27.9
33.9 33.4 26.5
33.2 33.4 29.9
34.8 35.2 25.8
33.4 34.1 29.2
34.5 33.6 28.5
34.5 33.6 27.2
35.0 35.9 26.5
34.5 34.3 26.0
34.5 33.6 29.2
33.0 33.4 29.8
33.9 33.4 26.5
32.7 33.8 30.5
35.8 35.9 26.9
34.7 35.8 29.6
34.7 34.7 25.8
33.2 34.5 30.5

HR@100
BIP STG LSG

2.39 2.49 2.64
2.25 2.36 2.56
2.88 2.85 2.73
2.46 2.64 2.86
2.96 3.05 3.94
2.62 2.74 2.02
3.08 3.51 1.72
2.18 2.57 2.62
3.37 3.22 2.78
2.32 2.47 2.57
3.22 3.31 3.02
2.58 2.65 2.04
2.97 2.91 2.83
3.03 3.6 1.8
3.23 3.47 2.85
2.92 3.13 2.14
3.37 3.32 3.18
3.83 3.76 2.17
3.7 3.81 2.98
2.91 2.98 2.12
3.41 3.55 2.85
2.63 2.71 2.16
3.58 3.59 3.5
3.33 3.66 2.17
3.64 3.68 2.89
3.04 3.72 1.98
3.75 3.79 3.46

MAP@100
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Table .12: Epinions Dataset - Best recommender graphs for Top-20, -50 and
-100. Comparison of the three best recommender graph combinations with the
associated basic graph.

1
2
3

F@20

No
Epinions Dataset

1.56 3.45 121% CIU-EDF
1.56 3.44 120% CIU-EDF-IT
1.56 3.25 109% CI-EDF-IT

Basic Best Imp. BIP-Best
BIP

1.59 3.33 109% CIU-EDF-IT
1.59 3.26 105% CI-EDF-IT
1.59 2.93 84% CIU-EDF

Basic Best Imp. STG-Best
STG

1.11 2.55 129% EDF
1.11 2.46 121% EDF-ET
1.11 2.43 118% EDF-IT

Basic Best Imp. LSG-Best
LSG

1
2
3

H@20
8.22 11.8 43% CIU-EDF
8.22 11.7 41% CI-EDF
8.22 11.7 41% CIU-EDF-IT

8.22 11.5 40% CIU-EDF-IT
8.22 11.4 38% CI-EDF-IT
8.22 11.3 37% CIU-EDF

7.16 10.6 48% EDF
7.16 10.5 46% LDF-IT
7.16 10.3 44% EDF-ET

1
2
3

M@20
2.38 3.55 49% CIU-EDF-IT
2.38 3.45 45% CIU-EDF
2.38 3.33 40% CI-EDF

2.4 3.41 41% CIU-EDF-IT
2.4 3.26 35% CIU-EDF
2.4 3.24 34% CIU-LDF-IT

1.84 3.26 77% CIU-LDF-IT
1.84 3.06 66% LDF-IT
1.84 2.77 50% CI-LDF-IT

1
2
3

F@50

No
Epinions Dataset

1.06 1.74 64% CI-EDF
1.06 1.72 61% CI-EDF-ET
1.06 1.67 57% CI-LDF

Basic Best Imp. BIP-Best
BIP

1.08 1.77 62% CIU-EDF
1.08 1.75 61% CIU-EDF-ET
1.08 1.73 59% CIU-EDF-IT

Basic Best Imp. STG-Best
STG

0.91 1.04 14% EDF
0.91 0.99 9% LDF
0.91 0.98 7% LDF-IT

Basic Best Imp. LSG-Best
LSG

1
2
3

H@50
15.3 19.9 30% CI-EDF
15.3 19.8 29% CI-EDF-ET
15.3 19.6 28% CI-LDF

15.4 19.9 29% CI-EDF
15.4 19.9 29% CIU-EDF
15.4 19.9 29% CI-EDF-IT

13.9 15.4 10% EDF
13.9 15.1 8% CIU-LDF-IT
13.9 15.0 7% EDF-IT

1
2
3

M@50
2.5 3.65 45% CIU-EDF-IT
2.5 3.5 40% CIU-EDF
2.5 3.36 34% CIU-LDF-IT

2.55 3.48 36% CIU-EDF-IT
2.55 3.45 35% CIU-LDF-IT
2.55 3.36 31% CIU-EDF

2.03 3.27 61% CIU-LDF-IT
2.03 3.07 51% LDF-IT
2.03 2.82 38% CI-LDF-IT

1
2
3

F@100

No
Epinions Dataset

0.7 0.92 30% CI-EDF-IT
0.7 0.92 30% CI-EDF
0.7 0.91 29% CIU-EDF-IT

Basic Best Imp. BIP-Best
BIP

0.72 1.03 44% CIU-EDF
0.72 1.02 42% CIU-EDF-ET
0.72 1.02 42% CIU-EDF-IT

Basic Best Imp. STG-Best
STG

0.67 0.67 0% -
0.67 0.67 0% LDF
0.67 0.67 0% EDF-IT

Basic Best Imp. LSG-Best
LSG

1
2
3

H@100
22.5 27.2 20% CIU-EDF-IT
22.5 26.8 18% CI-EDF
22.5 26.7 18% CI-EDF-IT

22.4 28.5 27% CIU-EDF
22.4 28.5 27% CIU-EDF-ET
22.4 28.5 27% CIU-EDF-IT

21.9 22.3 1% EDF-IT
21.9 21.9 0% -
21.9 21.9 0% IT

1
2
3

M@100
2.54 3.73 46% CIU-EDF-IT
2.54 3.58 41% CIU-EDF
2.54 3.37 33% CIU-LDF-IT

2.59 3.44 32% CIU-EDF-IT
2.59 3.43 32% CIU-LDF-IT
2.59 3.36 29% CIU-ET

2.13 3.26 53% CIU-LDF-IT
2.13 3.02 41% LDF-IT
2.13 2.82 32% CI-LDF-IT
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Table .13: Ciao Dataset - Best recommender graphs for Top-20, -50 and -100.
Comparison of the three best recommender graph combinations with the asso-
ciated basic graph.

1
2
3

F@20

No
Ciao Dataset

1.61 5.06 215% CIU-LDF-IT
1.61 4.87 202% CI-LDF-IT
1.61 4.81 199% CI-EDF

Basic Best Imp. BIP-Best
BIP

1.93 4.92 155% CI-LDF-IT
1.93 4.71 144% CIU-IT
1.93 4.56 136% CIU-EDF-IT

Basic Best Imp. STG-Best
STG

1.71 3.39 98% CIU-EDF-IT
1.71 3.38 97% CI-LDF-IT
1.71 3.28 91% CIU-LDF-IT

Basic Best Imp. LSG-Best
LSG

1
2
3

H@20
9.26 16.0 72% CIU-EDF-IT
9.26 16.0 72% CIU-LDF-IT
9.26 15.8 70% CIU-EDF

9.98 15.8 58% CIU-EDF-IT
9.98 15.8 58% CIU-LDF-IT
9.98 15.4 54% CIU-LDF

10.2 14.5 42% CIU-LDF-IT
10.2 13.8 35% CI-LDF-IT
10.2 13.6 33% CIU-EDF-IT

1
2
3

M@20
2.13 3.66 72% CIU-EDF
2.13 3.63 70% CIU-EDF-IT
2.13 3.62 70% CIU-LDF

2.25 3.69 64% CIU-LDF-ET
2.25 3.69 64% CIU-LDF-IT
2.25 3.68 63% CIU-LDF

2.44 3.78 54% LDF
2.44 3.49 42% CIU-LDF-IT
2.44 3.45 41% CI-LDF-IT

1
2
3

F@50

No
Ciao Dataset

1.46 2.99 104% CIU-LDF-IT
1.46 2.82 93% CIU-EDF-IT
1.46 2.69 83% CIU-EDF-ET

Basic Best Imp. BIP-Best
BIP

1.55 2.88 85% CIU-LDF-IT
1.55 2.86 84% CIU-IT
1.55 2.78 79% CIU-LDF

Basic Best Imp. STG-Best
STG

1.51 1.81 20% EDF
1.51 1.77 17% LDF
1.51 1.7 12% EDF-IT

Basic Best Imp. LSG-Best
LSG

1
2
3

H@50
19.4 25.4 30% CIU-EDF-IT
19.4 24.9 28% CIU-LDF-IT
19.4 24.7 27% CIU-IT

19.6 25.8 31% CIU-IT
19.6 25.8 31% CIU-EDF-ET
19.6 25.4 29% CIU-EDF

19.8 21.4 8% CIU-EDF-IT
19.8 21.2 7% EDF-IT
19.8 21.2 7% CIU-IT

1
2
3

M@50
2.34 3.87 65% CIU-EDF
2.34 3.74 60% CIU-LDF
2.34 3.69 57% CIU-LDF-IT

2.5 3.87 54% CIU-EDF
2.5 3.86 54% CIU-LDF-ET
2.5 3.82 52% CIU-LDF

2.74 3.97 44% LDF
2.74 3.61 31% CI-LDF-IT
2.74 3.51 28% CIU-LDF-IT

1
2
3

F@100

No
Ciao Dataset

1.11 1.84 66% CIU-EDF-ET
1.11 1.74 57% CIU-EDF-IT
1.11 1.73 56% CIU-EDF

Basic Best Imp. BIP-Best
BIP

1.15 1.76 52% CIU-EDF-ET
1.15 1.74 51% CIU-EDF
1.15 1.73 50% CIU-EDF-IT

Basic Best Imp. STG-Best
STG

1.06 1.18 11% EDF
1.06 1.17 10% LDF
1.06 1.16 9% CI-EDF-IT

Basic Best Imp. LSG-Best
LSG

1
2
3

H@100
27.9 35.8 27% CIU-EDF-ET
27.9 35.0 25% CIU-EDF
27.9 34.8 24% CIU-ET

28.3 35.9 26% CIU-EDF
28.3 35.9 26% CIU-EDF-ET
28.3 35.8 26% CIU-EDF-IT

27.8 30.5 9% CI-LDF-IT
27.8 30.5 9% CIU-LDF-IT
27.8 29.9 7% EDF

1
2
3

M@100
2.39 3.83 60% CIU-EDF
2.39 3.75 57% CIU-LDF-IT
2.39 3.7 55% CIU-LDF

2.49 3.81 52% CIU-LDF
2.49 3.79 52% CIU-LDF-IT
2.49 3.76 51% CIU-EDF

2.64 3.94 49% LDF
2.64 3.5 32% CI-LDF-IT
2.64 3.46 31% CIU-LDF-IT
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