
Multidimensional Outlier Detection in Temporal
Interaction Networks: An Application to Political

Communication on Twitter
Audrey Wilmet∗, Robin Lamarche-Perrin†
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Abstract—In social network Twitter, users can interact with
each other and spread information via retweets. These millions
of interactions may result in media events whose influence goes
beyond Twitter framework. In this paper, we thoroughly explore
interactions to provide a better understanding of the emergence
of certain trends. First, we consider an interaction on Twitter
to be a triplet (s,a, t) meaning that user s, called the spreader,
has retweeted a tweet of user a, called the author, at time t.
We model this set of interactions as a data cube with three
dimensions: spreaders, authors and time. Then, we provide a
method which builds different contexts, where a context is a set
of features characterizing the circumstances of an event. Finally,
these contexts allow us to find relevant unexpected behaviors,
according to several dimensions and various perspectives: a user
during a given hour which is abnormal compared to its usual
behavior, a relationship between two users which is abnormal
compared to all other relationships, etc. We apply our method to a
set of retweets related to the 2017 French presidential election and
show that one can build interesting insights regarding political
organization on Twitter.

I. INTRODUCTION

The use of social networks has exploded over the past
fifteen years. The micro-blogging service Twitter is currently
the most popular and fastest-growing one of them. Within this
social network, users can post information via tweets as well
as spread information by retweeting tweets of other users.
This leads to a dissemination of information from a variety
of perspectives, thus affecting users ideas and opinions.
As discussed in the works of Murthy et al. [19] and Weller
et al. [32], for some of the most active users, Twitter even
constitute the primary medium by which they get informed.
These users only represent a negligible fraction of the pop-
ulation. Nevertheless, hot topics emerging on Twitter’s data
stream are relayed by traditional media and therefore reach
a much broader audience. If such trends often naturally arise
from discussions or are consequences of the reaction of all
users to real-world events, they may also be originated by the
intensive activity of a small group and mislead other users on
the significance of certain topics.
The volume of user-generated data is considerable: over 500
millions of tweets are posted every day on Twitter. Moreover,
this data results from interactions of millions of users over
time and therefore includes numerous complex structures. In

this context, it is difficult for users to have a concrete vision
of trends taking place and, even more, to apprehend the way
in which all interactions are organised and can lead to media
events.
In this paper, we seek to make this task achievable. More
precisely, we aim at finding outliers in interaction data formed
from a set of retweets. For instance, an event in a data stream
is an outlier: it can be view as a statistical deviation of
the total number of retweets at a given point in time. More
generally, outliers, depending on which dimensions define
them, highlight instants, users, users during given periods, or
interactions for which the retweeting process behave unusually.
Therefore, they constitute important information which is
worth noticing from the perspective of the user. In order to
find these unexpected behaviors, we design a multidimensional
and multilevel analysis method.
First of all, we consider an interaction on Twitter to be a
triplet (s,a, t) meaning that user s, called the spreader, has
retweeted a tweet of user a, called the author, at time t.
We model the set of interactions as a data cube with three
dimensions: spreaders, authors and time. This representation
enables us to access local information, that is the number of
retweets between two users during a specific hour, as well as
more global and aggregated information, as for instance, the
total number of retweets during a given hour. Afterwards, we
combine and compare these different quantities of interactions
between them in order to find outliers according to different
contexts. Using the two previous quantities, we could, for
instance, find an unexpected relationship between a spreader
s and an author a during an hour h, if the number of retweet
from s to a during h is significantly large given the total
number of retweets observed during this hour. This analysis
gives us insight into the possible reasons why some events
emerge more than others and, in particular, whether they are
global phenomena or, on the contrary, whether they originate
from specific actors only.
Our method applies to all types of temporal interaction
networks. One can add attributes to interactions by adding
dimensions to the problem. In this paper, we add a semantic
dimension referring to tweet contents by considering the 4-
tuples (s,a,k, t) meaning that s retweeted a tweet written



by a and containing hashtag k at time t. This allows us to
explore interactions from other perspectives and gain crucial
information on events taking place.
The paper is organized as follows. We review the related
work on outlier detection within Twitter in Section II. We
introduce the modelling of interactions as a data cube in
Section III, then we describe our method to build relevant
contexts in Section IV. After describing our datasets in Section
V, we present a case study in Section VI. In particular,
we investigate the causes of emergence of events found in
the temporal dimension by exploring authors, spreaders, then
hashtags dimensions. In Section VII, we discuss two future
works that can be achieved using our method, in particular, a
characterization of the second screen usage and a user-topic
link prediction. Finally, we conclude the paper in Section VIII.

II. RELATED WORK

The problem of outlier detection on Twitter has attracted a
significant amount of interest among scientists and has been
approached in various ways depending on how outliers are
defined and on the techniques used.
Some researchers consider outliers as real-world events hap-
pening at a given place and at a given moment. For example,
Sakaki et al. [25] and Bruns et al. [2] trace specific keywords
attributed to a real-world event and find such outliers by
monitoring temporal changes in word usage within tweets.
There are also methods based on tweet clustering. In these
approaches, authors infer, from timestamps, geo-localizations
and tweet contents, a similarity between each pair of tweet
and find real-world events into clusters of similar tweets. These
techniques include the one of Dong et al. [10], which computes
similarities with a wavelet-based method between time series
of keywords; the one of Li et al. [18] which aims at finding
crime and disaster related events in a real time fashion; and
the one of Walther et al. [31] which focuses on small scale
events located in space.
Other researchers, instead, seek entities like bots, spammers,
hateful users or influential users. Thus, they consider outliers
as users with abnormal behaviors according to different cri-
teria. Varol et al. [30] detect bots by means of a supervised
machine learning technique. They extract features related to
user activities along time, user friendships as well as tweet
contents and use these features to identify bots by means of a
labelled dataset. Stieglitz et al. [28] identify influential users by
investigating the correlation between the vocabulary they use
in tweets and the number of time they are retweeted. Ribeiro
et al. [24] detect hateful users. They start by classifying users
with a lexicon-based method and then show that hateful users
differ from normal ones in terms of their activity patterns and
network structure.
Finally, other works aim at finding privileged relationships
between users. Among those, the work of Wong et al. [34]
apply it to political leaning by combining an analysis of
the number of retweets between two users with a sentiment
analysis on the retweeted tweets.
All these works, although providing meaningful results, use

different methods for different kind of outliers. Moreover, they
only consider one perspective in the way they define them.
With our approach, we want to treat these different types of
outliers – keywords, users, relationships – in a unified way
as well as to consider different contexts in which outliers are
considered abnormal. Hence, not only we consider different
entities as abnormal users; abnormal relationships; abnormal
behaviors of users during specific hours, etc., but also different
contexts in which outliers are defined. Thus, an abnormal user
may be abnormal during a given hour compared to the way it
usually behaves during other hours, but also compared to the
behavior of all other users during the same hour. In this way,
our framework aims to give a more complete and systematic
picture of how users act, interact, and are organized along time
in a way similar to what Grasland et al. [15] do in the case
of media coverage in newspapers.
In practice, instead of characterizing and detecting outliers
using tweets’content, as a lot of current approaches do, in-
cluded those set out above, we focus on the volume and
structure of interactions. Indeed, text-mining techniques face
challenges as the ambiguity of the language and the fact
that resultant models are language-dependent and topic-depen-
dent. Moreover, the structure of communication alone is al-
ready quite informative. Other authors point into this direction.
For instance Chavoshi et al. [5] use a similar technique to
the one of Varol et al. [30], but only exploit user activities
through their number of tweets and retweets. In the same idea,
Chierichetti et al. [6] look at the tweet/retweet volume and
detect points in time when important events happen. Instead
of volume-based features, another alternative to text-mining
techniques is to use graph-based features. Song et al. [27],
for instance, identify spammers in real time with a measure
of distance and connectivity between users in the directed
friendship graph (followers and followees). Bild et al. [1]
designed a similar method but based on the retweet graph
instead. Also based on the retweet graph, the method of Ten
et al. [29] detects trends by noticing changes in the size and
in the density of the largest connected component. Another
example is the approach of Coletto et al. [7] which combines
an analysis of the friendship graph and of the retweet graph
to identify controversies in threads of discussion.
In this paper, we design a method able to handle multiple types
of outliers by observing the retweets’ volume in numerous
different contexts. We believe that this multidimensional and
multilevel analysis is essential to detect subtle unexpected
behaviors as well as fully understand the way in which
millions of interactions may result in media events.

III. FORMALISM

We denote the set of interactions by a set E of triplets such
that (s,a, t) ∈ E indicates that user s, called the spreader, has
retweeted a tweet written by user a, called the author, at time
t. We represent this set of interactions by a data cube [16].
In this section, we formally define this tool as well as the
possible operations we can perform to manipulate data.



A. Data Cube Definition

A data cube is a general term used to refer to a multidimen-
sional array of values [16]. Given N dimensions characterized
by N sets X1, ...,XN , we can built ∑

N
i=0
( N

N−i

)
data cubes,

each representing a different degree of aggregation of data.
The quantity

( N
N−i

)
corresponds to the number of data cubes

of dimension N − i in which i dimensions are aggregated.
Within this set of data cubes, we call the base cuboid Cbase
the N-dimensional data cube which has the lowest degree
of aggregation. More generally, a n-dimensional data cube
is denoted Cn(X , f ) where X = X1× ...×Xn is the Cartesian
product of the n sets X1, ...,Xn, and f is a feature which maps
each n-tuple to a value in a value space W :

f : X −→W
(x1, ...,xn) 7−→ f (x1, ...,xn) .

In the following, n-tuples are also called cells of the cube
and denoted x such that x = (x1, ...,xn) ∈ X .

Dimensions are the sets of entities with respect to which
we want to study data. As a first step, we can consider
three dimensions: spreaders, denoted S, authors, denoted
A, and time, denoted T . In addition, we can organise
elements of a dimension into sub-dimensions. For instance,
the temporal dimension can be organised depending on
temporal granularity. In our case, we divide it into the two
sub-dimensions days, denoted D, and hours of the day,
denoted H, such that t = (d,h) denotes the hour h of day
d, with (d,h) ∈ D×H. While the set of days D depends
on the dataset, H is the set of hours of the day such that
H = {0, · · · ,23}.

The feature is a numerical measure which provides the
quantities according to which we want to analyse relation-
ships between dimensions. Here, we consider the quantity of
interaction, denoted v. It gives the number of retweets for
any combination of the four dimensions. In the base cuboid
Cbase = C4(S×A×D×H,v), v gives the number of times s
retweeted a during hour h of day d (see Figure 1):

v : S×A×D×H −→ N .

Data cubes of smaller dimensions are obtained by aggre-
gating the base cuboid along one or several dimensions. We
discuss this operation along with others in the next subsection.

B. Data Cube Operations

We can explore the data through three operations called
aggregation, expansion and filtering.

Aggregation is the operation which consists in seeing infor-
mation at a more global level. Given a data cube Cn(X , f ),
the aggregation operation along dimension Xi leads to a data
cube of dimension n− 1, Cn−1(X ′, f ) where X ′ = X1× ...×
Xi−1×Xi+1× ...×Xn. Formally, a dimension Xi is aggregated
by adding up values of the feature for all elements xi ∈ Xi. We
indicate by a · the dimension which is aggregated with respect
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Fig. 1: Base Cuboid C4(S×A×D×H,v) – The base cuboid is not
aggregated along any of its dimensions. It contains local information
with respect to the quantity of interaction v. For instance, the gray
cell indicates that s3 retweeted a4 40 times on day d1 at hour h1.

to f . Hence, Cn−1(X ′, f ) is constituted of n− 1-dimensional
cells denoted x′ = (x1, ...,xi−1, ·,xi+1, ...,xn) ∈ X ′ where

f (x′) = ∑
xi∈Xi

f (x) .

For instance, one can aggregate along the dimension of hours
of the day such that

v(s,a,d, ·) = ∑
h∈H

v(s,a,d,h)

gives the total number of time s retweeted a during day d.
Opposed to the base cuboid, the apex cuboid is the most
summarized cuboid. It is aggregated along all dimensions
and hence consists in only one cell containing the grand total
f (·, ..., ·) = ∑x1∈X1

...∑xn∈Xn f (x). In our case, the apex cuboid
contains the total number of retweets.

We can also aggregate interactions according to a set of
subsets of dimension Xi. Let Pi denote this partition such that
the intersection of any two distinct sets in Pi is empty and the
union of the sets in Pi is equal to Xi. Then, given a data cube
Cn(X , f ), the aggregation operation along Pi leads to a data
cube Cn(X ′, f ) with X ′ = X1× ...×Xi−1×Pi×Xi+1× ...×Xn.
This cube is constituted of n-dimensional cells denoted x =
(x1, ...,xi−1,Ck,xi+1, ...,xn) ∈ X ′, with Ck ∈ Pi, such that

f (x′) = ∑
xi∈Ck

f (x) .

For instance, one can aggregate according to a partition of
hours PH = {HN ,HD}, where HN is the set of nocturnal hours
and HD the set of daytime hours such that

v(s,a,d,HN) = ∑
h′∈HN

v(s,a,d,h′)

in C4(S× A× D× PH), gives the total number of time s
retweeted a during nocturnal hours on day d.

Expansion is the reverse operation which consists in
seeing information at a more local level by introducing
additional dimensions. Given a data cube Cn(X , f ), the



expansion operation on dimension Xn+1 leads to a data cube
of dimension n+1, Cn+1(X ′, f ) where X ′ = X×Xn+1.

Filtering is the operation which consists in focusing on
one specific subset of data. Given a data cube Cn(X , f ), the
filtering operation leads to a sub-cube Cn(X ′, f ) by selecting
subsets of elements within one or more dimensions such that
X ′ = X ′1× ...×X ′n with X ′1 ⊆ X1, ...,X ′n ⊆ Xn.

It is also possible to combine operations together. For
instance, we can filter the data cube aggregated on the
partition of hours, C4(S×A×D×PH ,v), in order to focus on
spreaders that abnormally retweet authors overnight on a given
day. Note that the resulting data cube C4(S×A×D×{HN},v)
is different from the data cube C4(S×A×D×HN ,v): in the
first case, a cell (s,a,d,HN) gives the total number of time
s retweeted a during nocturnal hours on day d; while in the
second case, a cell (s,a,d,h) give the number of times s
retweeted a during hour (d,h) where h ∈ HN is a nocturnal
hour.

Figure 2 shows a set of all data cubes that can be obtained
considering the three dimensions: spreaders, authors and time.
It also illustrates how to navigate from one to another thanks
to the previously described operations.

IV. METHOD

In this paper, our goal is to find abnormal data cube cells,
i.e., entities x ∈ X for which the observation f (x) is abnormal.
As an observation’ abnormality is relative to the elements to
which it is compared [17], a given cell may be abnormal or
not depending on the context. The context, denoted C , is the
set of elements which are taken into account in order to assess
the abnormality of an entity x ∈ X . In this section, we design
a set of steps in order to shape various contexts and show,
through several examples, that it leads to a deeper exploration
of interactions compared to an elementary outlier detection.

A. Construction of a Context

An abnormal entity x ∈ X is an entity which behavior
deviates from its expected one. Hence, one way to find
outliers in a set of entities x ∈ X is to consider the following
elements:
– a set of observed values O = { f (x), x ∈ X};
– a set of expected values E = { fexp(x), x ∈ X};
– a set of deviation values D = {d( f (x), fexp(x)), x ∈ X},
which quantify the differences between observed and expected
values.
Together, these elements constitute the context C . Then,
given C , an outlier x ∈ X is a point whose absolute deviation
value, |d( f (x), fexp(x))|, is significantly larger than most
others deviation values.

We build more or less elaborate contexts by playing with
the considered observed, expected and deviation values.

B. Observed values

According to the type of unexpected behaviors we are
looking for, the first step consists in choosing a cube among
the set of cubes obtained from the base cuboid using one or
several operations. This cube, denoted Cobs, constitutes the
set of entities and observed values.

For instance, we can look for abnormal authors at given
hours. To to so, we focus on the cube aggregated on spreaders
such that Cobs = C3(A×D×H,v). We may also want to
find abnormal authors during nocturnal hours only. In this
case, we consider the aggregated and filtered data cube
Cobs = C3(A×D×HN ,v).

In the first case, we consider all entities of the same type,
(a,d,h) ∈ A×D×H: we are in a global context. On the
contrary, when we only consider a subset of all entities, as
in the second example with (a,d,h) ∈ A×D×HN , we are in
a local context.

C. Expected values

Once the set of observed values is fixed, we build a model
of expected behavior based on a combination of other data
cubes Cm(X ′, f ), called comparison data cubes. For the
context to be relevant, these must derive from the aggregation
of Cobs = Cn(X , f ) on one or more dimensions. Hence,
n > m and X = X ′×Y where Y is the Cartesian product of
the aggregated dimensions. In the following, we build three
different types of expected contexts: the basic, aggregative
and multi-aggregative contexts.

1) Basic Contexts: When seeking abnormal cells within
a data cube Cn(X , f ), the most elementary context we can
consider is the one in which the expected value is a constant,
identical for each cell. We call it the basic context. The
model of expected behavior is that interactions are uniformly
distributed over cells. In this case, the comparison data cube is
the apex cuboid C0(·, f ) and the expected value is the average
number of interactions per cell:

fexp(x) =
f (·)
|X |

.

For instance, in data cube C3(A×D×H,v), an abnormal cell
c∗=(a∗,d∗,h∗) indicates that during hour h∗ of day d∗, author
a∗ has been retweeted an abnormal number of times compared
to the average number of times any author is retweeted during
any hour, vexp(a,d,h) =

v(·,·,·,·)
|A×D×H| .

2) Aggregative Contexts: To find more subtle and local
outliers, expected values must be more specific to each cell.
The process is the same as in the basic context except that the
considered comparison cube Cm(X ′, f ) is not aggregated over
all dimensions of X , i.e. X = X ′×Y with Y 6= X :

fexp(x) =
f (x′)
|Y |

,
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Fig. 2: Set of data cubes obtained by considering
the three dimensions: spreaders, authors and time.

Each data cube models interactions under a particular
perspective:
– we can move from one cuboid to another either by
aggregation or expansion.
– we can aggregate on a partition. In the example (top-
right cube), we aggregate the base cuboid over authors
communities.
– we can focus on a particular subset by filtering a given
data cube. In the example (top-left cube), we focus on two
spreaders within the base cuboid.
– we can combine operations and aggregate a filtered data
cube.

From top to bottom, we have access to more and more
aggregated information, for instance:
– the 4D cell x = (s1,a2,d1,h4) associated to the value
v(s1,a2,d1,h4) = 9 means that s1 has retweeted a2 9 times
on day d1 during hour h4;
– the 3D cell x = (a2,d1,h4) associated to the value
v(·,a2,d1,h4) = 1,288 means that a2 has been retweeted
1,288 times on day d1 during hour h4 (by all spreaders);
– the 1D cell x = a2 associated to the value
v(·,a2, ·, ·) = 29,362 means that a2 has been retweeted
29,362 times (in the whole dataset);
– the 0D cell x = (·, ·, ·, ·) associated to the value
v(·, ·, ·, ·) = 1,142,004 means that the total number of
retweets is equal to 1,142,004.

such that x = (x′,y) ∈ X ′×Y . Defined as such, the expected
value is the value that one should observe if all interactions
on X ′ were homogeneously distributed on dimensions Y . We
call these contexts, aggregative contexts.

For instance, in data cube C3(A×D×H,v), relatively to data
cube C2(D×H,v) and expected values

vexp(a,d,h) =
v(·, ·,d,h)
|A|

,

such that Y = A and X ′ = D×H, an abnormal cell c∗ =
(a∗,d∗,h∗) indicates a significant deviation between the num-
ber of retweets received by a∗ during hour (d∗,h∗) and the
one that should have been observed if all authors had received
the same number of retweets during hour (d∗,h∗).

3) Multi-aggregative Contexts: Aggregative contexts
assume that interactions are homogeneously distributed
among dimensions Y . It is possible to create contexts which
differentiate the repartition of interactions according to each
cell activity. We call them multi-aggregative contexts. Unlike
the other two, they require multiple comparison data cubes.
There are no generic formulas: the number and types of
comparison cubes as well as expected values depend on the
application.

For instance, if we take back the previous example, we can
consider, instead, the following expected values:

vexp(a,d,h) = v(·, ·,d,h)× v(·,a, ·, ·)
v(·, ·, ·, ·)

.

This way, it is expected that the number of retweets during
(d,h) is distributed among authors proportionally to their
mean activity. We can also add information on authors activity
during specific hours, and consider the cubes C2(D×H,v),
C2(A×H,v) and C1(H,v), such that

vexp(a,d,h) = v(·, ·,d,h)× v(·,a, ·,h)
v(·, ·, ·,h)

.

In this context, an abnormal cell c∗ = (a∗,d∗,h∗) indicates a
significant deviation between the number of retweets received
by a∗ during hour h∗ of day d∗ and the one that should have
been observed if a∗ had been retweeted the way it is used to
during hour h∗ on other days.

Each of these contexts can either be global or local depend-
ing on the chosen set of observed values within Cobs.

D. Deviation values

Finally, for each cell x within Cobs, we measure the
deviation between the observed value f (x) and its expected
value fexp(x). In this paper, we use two different deviation



functions: the ratio and the Poisson deviation.

The ratio between an observed value and an expected value
is defined such that

dr( f (x), fexp(x)) =
f (x)

fexp(x)
.

Note that this deviation function does not distinguish between
f (x) = 2 and fexp(x) = 1, on the one hand, and f (x) = 2,000
and fexp(x) = 1,000, on the other hand.

To take into account the significance to which a value
deviates, we define another deviation function: the Poisson
deviation. Indeed, in the cases in which the feature consists
in counting the number of interactions during a given period,
as v(x), it can be modelled by a Poisson counting process of
intensity fexp [15], such that

Pr(v(x) = k) =
fexp(x)ke− fexp(x)

k!
.

In this case, the Poisson deviation dp can be defined as follows.
If f (x) ≤ fexp(x), we calculate the probability of observing
a value f (x) or less, knowing that we should have observed
fexp(x) on average. This probability is the cumulative distribu-
tion function of a Poisson distribution with parameter fexp(x).
Accordingly, we denote it Ffexp( f (x)). Then, by symmetry, we
define dp such that:

dp( f (x), fexp(x)) =
{
− log(Ffexp( f (x)) if f (x)≤ fexp(x),
− log(F̄fexp( f (x)) if f (x)> fexp(x),

where the logarithm is calculated for convenience in order to
have a better range of values.

In both cases, most of observed values are expected to be
similar to their corresponding expected values. Consequently,
the distribution of D is expected to follow a normal
distribution in which most values fluctuates around a mean:
d̄r = 1 for the ratio and d̄p = 0 for the Poisson deviation.
Outlying cells, instead, correspond to deviation values
significantly distant from the mean1.

E. Examples

Figure 3 illustrates several situations in which we find
different abnormal authors during given hours by considering
different contexts and a ratio deviation function: – Triplet
(a1,d1,19h) is abnormal in the global basic context: it has
been retweeted 1,500 times (15% of a 10,000) which is
higher than all other triplets.
– Triplet (a2,d2,19h) is abnormal in the global aggregative
context: its proportion of retweet is 50% which is higher than
all other triplets.
– Triplet (a1,dn,19h) is abnormal in the global multi-aggre-
gative context: the deviation in the activity of a1 with respect

1We use the classical assumption that a value is anomalous if its distance
to the mean exceeds three times the standard deviation [4], [16].
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Fig. 3: Different contexts lead to different outliers – The numbers
of retweets per hour distributed among authors are represented as pie
charts.

to its usual activity at 19h is higher than all other triplets.
– Triplet (a3,d2,19h) is abnormal in the local aggregative
context: its proportion of retweet is higher than other triplets
(a,d,h) in which a is not an influential author.

As this example shows and as we will show in practice in
the next sections, our approach, combining data cubes to build
different contexts, leads to numerous kinds of outliers which
allows us to thoroughly analyse temporal interactions under
different perspectives.

V. DATASETS

In this paper, we choose to study the organization of
interactions on Twitter by analysing different sets of politics-
related retweets. Indeed, since Twitter is an integral part
of means of communication used by political leaders to
disseminate information to the public, finding abnormal
entities corresponding to different kinds of unexpected
behaviors in this situation is of great interest. To do so, we
use two different datasets.

Dataset D1 is a set of retweets related to political
communication during the 2017 French presidential elections.
We use a subset of the dataset collected by Gaumont et al.
[12] as part of the Politoscope project. It contains politics-
related retweets during the month of August 2016. Formally,
our dataset consists in the set of retweets E, such that
(s,a,d, h) ∈ E means that s retweeted a at hour h of day d,
where either the corresponding tweet contains politics-related
keywords, or a belongs to a set of 3,700 French political
actors listed by the Politoscope project. It contains 1,142,004
retweets and involves 211,155 different users. In this dataset,
the set of days is D = {1, · · · ,31}.

Dataset D2 is the same as dataset D1 except that it
contains an additional dimension. It consists in the set
of re-tweets E, such that (s,a,k,d,h) ∈ E means that s
retweeted a tweet written by a and containing the hashtag k
at hour h of day d. It contains |K|= 30,057 different hashtags.



In the following, usernames are only mentioned when
they correspond to official Twitter accounts of politicians, or
public organizations, such as city halls, newspapers, or shows.
Otherwise, they are designated by generic terms user-n, where
n is an integer to differentiate anonymous users.

VI. EXPERIMENTS

As a first illustration of our method, we present a case
study which, based on events found in the temporal dimension,
proposes possible causes of their emergence by exploring other
dimensions. First, we apply our method on dataset D1 and
focus on the three dimensions: spreaders, authors and time.
Then, we add the hashtag dimension with dataset D2 in order
to gain more insight on events.

A. Events
We define an event e = ((d∗1 ,h

∗
1), · · · ,(d∗n ,h∗n)) ∈ E to be

a set of consecutive abnormal hours. For convenience, we
denote it e = (d∗,h∗1 - h∗n) when all hours span over the same
day d∗.

Figure 4 shows the evolution of the number of retweets per
hour2. We can distinguish three distinct behaviors:
– nocturnal hours, characterized by a number of retweets
fluctuating around 350,
– daytime from the 1st of August to the 24th, characterized by
a higher number of retweets fluctuating around 1,700,
– daytime from the 24th of August to the 31st , characterized by
a global increase in the number of retweets which fluctuates
around 2,900.

1) Basic Context: First of all, we look for events in the
basic context. The sets of entities and observed values are
provided by data cube C2(D× H,v). Expected values are
defined such that

vb
exp(d,h) =

v(·, ·, ·, ·)
|D×H|

.

Figure 5 (Left) shows the distribution of deviation values by
considering a ratio-based deviation. We find seven abnormal
hours leading to three events such that

E = {(24,20h - 22h),(25,19h),(28,14h - 15h)} .

We see that these hours correspond to the three peaks of
activity on Figure 4. Hence, this context does not highlight
local anomalies but only global ones, deviating from all
observations. Therefore, it is biased by circadian and weekly
rhythms and does not have access to abnormal nocturnal hours
nor hours located during the first part of the month.

2) Aggregative Context: To take into account the overall
increase in the number of retweets during the month, we
need to use a aggregative context in which expected values
incorporate the overall activity of the day provided by data
cube C1(D,v):

va
exp(d,h) =

v(·, ·,d, ·)
|H|

.

2Note that due to a server failure from Tuesday the 9th to Thursday the
11th, no activity is observed during this period.

As such, deviation values are independent of daily variations
in the data. This is what we observe in Figure 5 (Center). We
find 10 abnormal hours. Among those, six hours are part of
the first period of the month: the 3rd at 11h, the 12th at 23h,
the 21st at 21h, and the 22th from 17h to 20h. Nevertheless,
extreme values are still biased by circadian rhythms which
prevent us from detecting abnormal nocturnal hours.

3) Multi-aggregative Context: To address this issue, we
use a multi-aggregative context in which we add aggregated
information relating to the typical activity per hour, provided
by data cubes C1(H,v) and C0(·,v):

vm−a
exp (d,h) = v(·, ·,d, ·)× v(·, ·, ·,h)

v(·, ·, ·, ·)
.

Moreover, we take the Poisson distance as a deviation
measure to account for the significance of deviations. We
find 40 abnormal hours (see Figure 5 (Right)). Among those,
several are adjacent, which leads to 17 distinct events (see
Table I).

Hour (11th,0h) is abnormal. It means that, on average, at
0h, we expect to observe v(·, ·, ·,0h)/v(·, ·, ·, ·) = 3.16% of the
total number of retweets of the day. Hence, on hour (11th,0h),
we expect to observe v(·, ·,11th, ·)× 3.16% = 909 retweets.
However, we observe 1,418 retweets in C2(D×H,v). This
deviation from the expected value is much more important
than those observed for most hours (d,h) ∈ D×H. As a
consequence, (11th,0h) is an abnormal hour in this particular
multi-aggregative context.

In Table I, we see several hours of generally low activity
as nocturnal hours. This last result shows that using more
sophisticated contexts leads to more subtle outliers.

B. Abnormal authors during events

Now, we focus on determining whether an abnormal
event is due to specific authors which have been retweeted
predominantly, or, on the contrary, results from a more global
phenomenon in which we observe an overall increase of the
activity.

To do so, we use a local and multi-aggregative context.
Observed values are provided by the filtered and aggregated
data cube C3(A×{e},v), where e ∈ E is an abnormal event.
A cell (a,e) within this cube gives the total number of times
author a has been retweeted during event e. This way, we
focus on how interactions are organized among authors within
each event.

We proceed in a similar way to obtain expected values.
Instead of considering the set of authors during event e,
we consider the set of authors during each of the hourly
periods corresponding to e on all days. We denoted this
set of hours He = {h∗ ∈ H |(d∗,h∗) ∈ e}. We focus on data
cube C3(A×D× PH ,v), aggregated on the partition of H,
PH = {He}. Operations performed to switch from the original
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Activity peaks Fig. 4: Number of
retweets per hour along
the month of August
2016 – The three peaks
of activity correspond to
media events:
– 24/08: interview of N.
Sarkozy on television news,
– 25/08: political meeting
of N. Sarkozy,
– 28/08: political meeting
of A. Juppé.

Events Significant
Abnormal Authors Media Events

(3th,10h - 13h) several Police intervention
in a church

(11th,0h) marseille Fire in the city of marseille
(11th,3h) FrancoisFillon Unknown

((12th,22h), · · · ,
(13th,1h))

fhollande Olympic victory of France

(13th,9h) none Unknown
(19th,22h) none Olympic victory of France
(21th,21h) none Olympic victory of France

(22th,16h - 22h) several Announcement of
N. Sarkozy’s campaign

(23th,7h - 8h) none Unknown

(24th,20h - 22h) several Interview of N. Sarkozy
on television news

(25th,19h) NicolasSarkozy Political Meeting
of N. Sarkozy

(26th,15h - 18h) several Council of state on
burkini wearing

(27th,15h) alainjuppe Political Meeting
of A. Juppé

(28th,0h) several Interview of N. Kosciusko-
Morizet on a talk-show

(28th,13h - 15h) JLMelenchon Political Meeting
of J-L. Mélenchon

(29th,7h - 9h) NicolasSarkozy Interview of N. Sarkozy
on a radio program

(30th,17h - 18h) none Resignation of E. Macron
from government

TABLE I: List of detected abnormal events and authors together with their associated media events.

cube C3(A×D×H,v) to data cube C3(A×D×{He},v) is
depicted in Figure 6.

Finally, expected values are defined using the comparison
data cubes C2(A × {He},v) and C1({He},v), obtained by
aggregation of C3(A×D×{He},v), and data cube C2({e},v),
obtained by aggregation and filtering of C3(A×D×{He},v):

vexp(a,e) = v(·, ·,e)× v(·,a, ·,He)

v(·, ·, ·,He)
,

where v(·, ·,e) = ∑(d∗,h∗)∈e v(·, ·,d∗,h∗), is the number
of retweets observed during e; v(·,a, ·,He) is the total
number of retweets author a received during hours of He; and

v(·, ·, ·,He) is the total number of retweets observed during He.

According to this context, a couple (a∗,e) ∈ A× {e} is
abnormal when there is a significant deviation between the
number of retweets received by a during e, and the number
of retweets a is expected to receive on average during the
corresponding period on other days. In the following, we
discuss the three different situations which arise through
specific examples.

1) One main author
Figure 7 (Left) displays the distribution of deviation val-
ues for event e = (29th,7h - 9h). Most observations d ∈ D
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follow a Gaussian distribution centred on d̄p = 0. We find
14 abnormal values. Among those, the one corresponding
to (NicolasSarkozy,29th,7h - 9h) significantly deviates from
others. Indeed, in the considered context, we expect Nicolas-
Sarkozy to account for

v(·,NicolasSarkozy, ·,{7h,8h,9h})
v(·, ·, ·,{7h,8h,9h})

= 2.2%

of all retweets observed from 7h to 9h. Thus, on the 29th

of August from 7h to 9h, we expect him to be retweeted
v(·, ·,(29th,7h - 9h))× 2.2% = 194 times. Yet, he was re-
tweeted 1,644 times, which explain its large deviation value.
Table I lists events with a similar distribution. In most cases,
we observe that the corresponding media event is centred on
the main author. For instance, they often indicate a political
meeting of this author.

2) Several main authors
Figure 7 (Center) displays the distribution of the set of
deviation values for event e = (22nd ,16h - 22h). Once more,
most observations d ∈ D follow a Gaussian distribution
centred on d̄p = 0. We detect 42 outliers. Several values
significantly deviates from the mean, indicating, this time,
several main authors.
These events are not due to a single popular author, but to
several authors, considerably retweeted. In contrast to the
previous example, this suggest that they originate from the
reaction of a few authors to some external fact in which they
have an interest. This is what we observe in Table I: media
events related to events with similar distributions are often
indicative of situations according to which the main authors
are not related, but on which they react. For example, the
event on August the 3th, on the intervention of the police in a
church, and the one on August the 26th, on burkini wearing,
are media events intensely taken up by political members of
right and extreme-right wings.

3) No main authors
Figure 7 (Right) displays the distribution of deviation values
for event e = (13th,9h). In opposition to previous examples,
we see that values are more homogeneously distributed and
spread over a smaller range.
The absence of significant outliers shows that these events are
more global phenomena than the previous ones: they emerge
because numerous authors are being retweeted instead of
a few, intensely. This suggest that they originate from the
reaction of a multitude of authors to a general current affair.
This is the case, for instance, of the two Olympic victories of
France on the 19th and 21th of August (see Table I).

Studying interactions by looking at authors enables us to
have a deeper understanding of events. In particular, it enables
us to identify authors which are unexpectedly and primarily
retweeted. This gives us hints on the event’s origin: it might
results of a focus on a single author, or multiple authors, or
none in particular.

C. Abnormal spreaders during events

Among the three previous cases, we are now interested in
events generated by a single author (case 1). In particular,
we seek to determine if their emergence is due to a large
number of spreaders, or on the contrary, if they emerge only
because of a small number of spreaders which retweet them
abnormally.

To do so, we proceed as in the previous section
and locally study interactions in the filtered data cube
C3(S×{a∗}×{e},v), where a∗ is the predominant abnormal
author corresponding to event e. A cell (s,a∗,e) within this
cube gives the total number of times s retweeted a∗ during e.
This way, we focus on how each of the spreaders retweeted
a∗ during the event.

Expected values are defined from data cube C4(S×{a∗}×
D×{He},v), using the comparison data cubes C3(S×{a∗}×
{He},v) and C2({a∗}×{He},v), obtained by aggregation, and
C3(S×{a∗}×{e},v) obtained by aggregation and filtering:

vexp(s,a∗,e) = v(·,a∗,e)× v(s,a∗, ·,He)

v(·,a∗, ·,He)
,

where v(·,a∗,e) is the total number of retweets a∗ received
during e; v(s,a∗, ·,He) is the total number of time spreader s
retweeted author a on hours of He; and v(·,a∗, ·,He) is the
total number of retweets author a received during He.

According to this context, a triplet (s,a∗,e) ∈ S×{(a∗,e)}
is abnormal because there is a deviation between the number
of time s retweeted a during e, and the number of time s is
expected to retweet a during this same period on other days.
Similarly, three situations arise.

1) Global phenomena
For events (fhollande,(12th,22h), · · · ,(13th,1h)) and (mar-
seille,11th,0h), we observe distributions in which the range
of deviation values is very small (see Figure 8). In the first
case, we observe 22 different deviation values. Moreover,
90% of all triplets (s,a∗,e) have their deviation equal to 1.7,
2.2, 2.8, or 3.1. For marseille, we observe the same patterns:
there are only 7 different deviation values, among which 90%
of all triplets are distributed between values 1.41, 1.23, and
1.16 (see Figure 8). Some of the behaviors corresponding to
these values are described in Table II.
These distributions show a limited number of spreaders
behaviors. None of them have significantly different activities
than others. Thus, the emergence of fholland and marseille
is due to a global phenomenon in which a large number of
spreaders retweeted them.

2) Group of online activists
Figure 9 shows the distributions of deviation values for
ev-ents (NicolasSarkozy,25th,19h), (alainjuppe,27th,15h),
(JLMelenchon,28th,13h - 15h) and (NicolasSarkozy,29th,
7h - 9h). Most observations dp ∈ D follow a Gaussian
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Fig. 8: Distribution of deviation values in the case where
all spreaders behave normally – Bars beyond (resp. below) 0
correspond to spreaders which retweet a∗ during e more (resp. less)
than usual. For instance, the most extreme positive value for fhollande
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value corresponds to a spreader which retweeted him once during
the event, even though he retweeted him 7 times in total during this
period.

Event ((12th,22h), · · · ,(13th,1h)) (11th,0h)
Abnormal author fhollande marseille
Deviation value 1.7 2.2 2.8 3.1 1.41 1.23 1.16
% of spreaders 9 4 70 7 66 14 10
Number of retweets
during e 1 2 1 2 1 2 3

Total Number of retweets
from hi to h j

2 3 0 0 0 0 0

TABLE II: Most probable behaviors in the case where all
spreaders behave normally – In both cases, the most probable
deviation value corresponds to spreaders which retweets a∗ only
once during the period. For marseille, we observe that the larger the
number of retweets during e, the smaller the deviation value. This is
due to Poisson deviation which takes into account the importance of
the deviation between the observed value and its expected one.

distribution centred on a mean d̄p. Contrary to distributions
in Sections VI-A and VI-B, d̄p varies from 1.6 to 2.3. This
shift indicates that globally, spreaders have an activity which
is higher than usual, which partly explains the emergence of
main author a∗.
We detect negative and positive outliers. Negative outliers
indicate spreaders who retweet a∗ less that they are supposed
to. As such, they do not influence the emergence of a∗. On
the contrary, positive outliers, who are spreaders more active
than usual, play a key role regarding the importance of a∗

during e. This is what we observe in Table III. For all events,
we notice a small group of spreaders which extensively
retweets a∗ and which accounts for a significant proportion
of the total number of retweets. Within this group, several
spreaders retweet a∗ more than 50 times during the event.
Even if they represent a very small portion of all spreaders,
they are a major cause of the emergence of a∗ during e.

3) One online activist
Event (FrancoisFillon,11th,3h) is an extreme case of the
previous situation. The group of abnormal spreaders solely
consists in one user which retweets FrancoisFillon 73 times
at 3h. Hence, the emergence of FrancoisFillon the 11th at 3h
is only due to this unique spreader which accounts for 100%
of all its retweets.

Here again, local analysis of spreaders leads us to notice
that some events are more global phenomena than others.
In particular, some authors emergence is partly due to a
small group of spreaders that substantially retweets them,
which could mislead other users on the significance of these
authors. Thereby, this analysis highlights crucial information
that should be taken into account to evaluate the relevance of
an event.

D. Abnormal hashtags

It is possible to gain supplementary information on previous
events by adding a content-based dimension using hashtags.
In this section, we apply our method on dataset D2 and
focus on the four dimensions: spreaders, authors, hashtags
and time. First, we search for hours in which some hashtags
are abnormally retweeted, then establish a correlation with
previously detected events.

We are interested in abnormal triplets (k∗,d∗,h∗) in data
cube C3(K×D×H,v). Given the ephemeral nature of hash-
tags, we use expected values slightly different than the previ-
ous ones. This time, we take into account the expected activity
during hour h and we adjust it with the number of hashtags k
retweeted on day d:

vexp(k,d,h) = v(·, ·,k,d, ·)× v(·, ·, ·, ·,h)
v(·, ·, ·, ·, ·)

.

This way, we do not assume that the number of hashtags
observed at fixed hours is constant. According to this context,
a triplet (k∗,d∗,h∗) is abnormal when there is a significant
deviation between the number of retweets containing hashtag
k∗ during (d∗,h∗), and the number of hashtags k∗ that would
be retweeted on day d if they were distributed among hours
proportionally to their activity.

We find 225 abnormal triplets (k∗,d∗,h∗), including 114
different hashtags (by ignoring differences in cases and
accents). Among the 225 abnormal triplets, 43% correspond
to a previously found abnormal event (in Subsections VI-A,
VI-B and VI-C). Tables IV, V, and VI display abnormal
hashtags according to their corresponding event, for events
with respectively one, several and no main author(s). We can
make several observations.

First, we notice that an event is often attached to a political
slogan together with a radio or television show. In this case,
there are three possible situations: either the show receives
a political guest, or the show speaks about a topicality
associated with one or more politician(s), or on the opposite,
the show and the political slogan are uncorrelated – for
instance, in the case in which several current events happen
within the same period.

We notice that events in Tables V and VI are always
associated with a general term, independent from a political
slogan or a show. As suggested by the analysis of anomalous
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Fig. 9: A group of spreaders behave abnormally - In each distribution, similar behaviors are observed. Most spreaders retweet a∗ once or
twice during e while they usually never retweet a∗ at this time of day. These unusual but not significantly deviating behaviors are represented
by the Gaussian curve with an average d̄p between 1.6 and 2.3. Those who are used to retweet a∗ at this time of day have deviation values
either close to 0, if they retweeted as they are used to, negative, if they retweeted less, or positive, if they retweeted more. In this last case,
the group of spreaders which behave abnormally is largely responsible for the emergence of a∗.

Event (25th,19h) (27th,15h) (28th,13h - 15h) (29th,7h - 9h)
Abnormal
Author NicolasSarkozy alainjuppe JLMelenchon NicolasSarkozy

% of
abnormal
spreaders

2.7 6.7 4.5 6

% of
retweets 14 40 37 25

TABLE III: Group of influential spreaders - We observe
that a small proportion of spreaders constitutes in fact a
significant part of all retweets received by the main author
during the event. For instance, for (alainjuppe,27th,15h),
we detect 19 abnormal spreaders (6.7% of all spreaders).
Together, they retweeted alainjuppe 513 times at 15h, which
consists in 40% of all its retweets during this hour.

Event
(
(12th,22h), ...,(13th,1h)

)
(25th,19h) (27th,15h) (28th,13h - 15h) (29th,7h - 9h)

Abnormal
hashtags

judo
rio2016
fra
espritbleu
(blue spirit)

Campaign Slogan:
toutpourlafrance
(all for France)

Location:
chateaurenard

Campaign Slogan:
3moispourgagner
(3 month to win)

Campaign Slogan:
benoithamon2017
lagauchepourgagner
(left for win)
insoumis28aout
(rebellious of august 28th)

TV/Radio program:
LeGrandJury

Campaign Slogan:
toutpourlafrance
(all for France)

TV/Radio program:
rtlmatin
télématin (morning show)
bourdindirect
invitépol (political guest)

TABLE IV: Abnormal hashtags of events with one main author.

Event (3rd ,10h - 13h) (22th,16h - 22h) (24th,20h - 22h) (26th,15h - 18h) (28th,0h)

Abnormal
hashtags

sainterita
(name of a church)

sarkozy

Campaign Slogan:
toutpourlafrance
(all for France)

TV/Radio program:
clubdelapresse, e1soir

sarko

Campaign Slogan:
toutpourlafrance
(all for France)

TV program:
ns20h

burkini
conseildetat
(council of state)

TV/Radio program:
BFMTV

salafisme (salafism)

TV program:
ONPC

TABLE V: Abnormal hashtags of events with several main authors.

authors, this shows that the corresponding event results
from the reaction to an external fact. For instance, hashtags
”Rio2016” are related to the global reaction of users
to Olympic victories of France. Hashtag ”SainteRita”,
on the other hand, is related to the reaction of users to
a police intervention in a church. Furthermore, events
(22nd ,16h - 22h) and (24th,20h - 22h), attached to hashtags
”Sarkozy” and ”Sarko”, suggest that there is a discussion
about Nicolas Sarkozy apart from official tweets and hashtags
released by his team. In particular, on the 22nd , people
react to the announcement of Nicolas Sarkozy’s candidacy
to presidency: this event corresponds with the first use of
hashtag ”ToutpourLaFrance” which is his campaign slogan.

We observe another interesting fact: on the 28th from 13h

to 15h, we detect the campaign slogan of JLMelenchon,
”insoumis28aout”, which is expected since JLMelenchon
is the predominant author of this event. However we also
detect campaign slogans of benoithamon, another politician –
”benoithamon2017” and ”LaGauchePourGagner” – which is
unexpected since it does not appear as a predominant author
in the previous study.

Finally, we notice that events (11th,0h), (11th,3h), (13th,
9h) and (23th,7h-8h) are not related to any detected hashtags.
This is due to the fact the analysis performed in this subsection
is global. With local analysis of abnormal hashtags, centred
on events, as done before with authors in Subsection VI-B,
we succeed in identifying the corresponding discussed topics.
For instance, during event (13th,9h), we identify abnormal



Event (13th,9h) (19th,22h) (21st ,21h) (23th,7h-8h) (30th,17h-18h)

Abnormal hashtags � rio2016 rio2016
boxe (boxing) � macron

TABLE VI: Abnormal hashtags of events
with no main authors.

hashtags etatdurgence (state of emergency), cazeneuve and
islamigration, referring to a measure taken that same day by
the minister of the Interior, Bernard Caze-neuve.

In this section, we applied our method to datasets D1 and
D2. We detected abnormal events, independent of the activity
of the day or time considered. Then, we performed local
analysis on each of these events, using numerous different
contexts, more or less filtered or aggregated. This allowed
us to understand their emergence. For instance, we learned
that on the 11th at 3h, one unique spreader intensely retweets
FrancoisFillon; that from the 12th at 22h to the 13th at
1h, numerous spreaders retweet fhollande once, regarding an
Olympic victory of France in judo; or, that on the 27th at
15h, a small group of spreaders is largely responsible for
the emergence of alainjuppe during its political meeting. Our
method provides the possibility of studying further aspects
of interactions by choosing new relevant contexts. In the
following section, we discuss two other possible applications.

VII. OTHER APPLICATIONS

Observations made in the previous section open up several
research perspectives. On the one hand, given the ubiquity
of news related hashtags within each events – as TV and
Radio programs –, it would be interesting to characterize more
precisely the reaction of users to television shows through
Twitter. On the other hand, we could focus on topic dynamic
over time and, in particular, on prediction of user-topic links.

A. Characterization of second screen usage

The characterization of second screen usage is a very
recent field of study. The term second screen refers to
a web-connected screen, like a smartphone or a laptop,
that people use to comment about TV programs on social
media while watching television. As part of this study, it is
interesting to analyse the differences between what is said in
the TV program and the ensuing discussions on Twitter. This
has been applied in many situations, in particular, to follow
sport events [9] and political debates [13], [11], [14]. In the
following, we provide elements to characterize the second
screen usage with our method. This is a novel approach since
previous studies often consist either in manual comparison
between tweets content and a record of the discussion that
took place in the TV show, or in a focus on the television
audience or the number of tweets over time. We focus on
Nicolas Sarkozy’s appearance on television news for the
launch of his campaign, on the 24th of August from 20h to 22h.

First, we focus on abnormal authors using the same
expected values as in Section VI-B, separately on each
hour. Figure 10 displays the distribution of the set of
deviation values for e1 = (24th,20h), e2 = (24th,21h) and
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Fig. 10: Evolution of abnormal authors distributions on the 24th

of August from 20h to 22h.

e3 = (24th,22h). At 20h, there are two predominant authors:
NicolasSarkozy and TTpourlaFrance, his team’s account.
At 21h, another situation occurs. The set of values is more
homogeneous: there are more outliers, but less significant.
Among these, we see many journalists as well as right-wing
politicians supporting Nicolas Sarkozy. We notice that some
people, neither related to a newspaper nor to a political
team, begin to appear among abnormal authors. Finally, at
22h, the range of values is even smaller, meaning that the
observed event is not the result of a focus on a limited
number of authors, but a global phenomenon where everyone
retweets everyone. Among outliers, we only see journalists
and anonymous users. Hence, the more time passes, the
more distributions are homogeneous, showing that the event
becomes a global phenomenon as information spread.

The previous analysis shows that the political interview
on television is taken up by users on social media. In the
same way as with abnormal authors, we now focus on
abnormal hashtags to analyse how the discussion evolves
over time. We observe similar distributions. At 20h, the two
hashtags ns20h and toutpourlafrance point out strongly. At
21h and 22h, distributions are more homogeneous. The two
previous hashtags released by Nicolas Sarkozy’s team are
still abnormal at 21h, but become normal again at 22h. Other
hashtags are abnormal only from 21h to 22h or from 22h to
23h. Among these, we find terms used by Nicolas Sarkozy
during his interview, such as chomage (unemployment).
Finally, we observe an evolution of hashtags referring to the
same topic: at 21h, hollande, then at 22h, hollandedemission
(hollande resignation); or schengen at 21h, then stopschengen
at 22h; or burkini from 20h to 22h, then bikini from 22h



onwards.

This preliminary analysis could be continued. For instance,
when studying abnormal hashtags, we could use local contexts,
restrained to journalists, or Nicolas Sarkozy’s political team,
or independent users, in order to analyse which hashtags each
of these communities propagate. Also, we could focus on the
evolution of hashtags belonging to a same topic and see if
they are retweeted by the same community of spreaders.

B. Predicting User-Topic Links

The latter question attract a lot of interest among
researchers: many are interested in topic dynamics and in
particular, predicting user-topic links. The first difficulty lies
in finding the set of terms forming a topic, i.e. a consistent
semantic content. Some researchers characterize it from a set
of hashtags whose temporal evolutions are similar [21], or
from clusters of hashtags which are highly associated within
tweets [3]. Others use text processing techniques to infer a
topic from the entire text within tweets, rather than only using
hashtags [35]. To predict user-topic links, most researchers
use machine learning techniques for sentiment analysis [22],
[26], [8], [23]. We also find methods based on lexicon [20].
In the following, we propose a new approach which consist
in finding topics among abnormally retweeted hashtags.

We only have the structure of retweets (s,a,k,d,h). In
order to identify topics from this data, we take advantage of
the fact that users are engaged in a cause, especially in the
case of political communication. That is, an author will often
post tweets related to this cause, and spreaders committed
to the cause will retweet them intensely. Thus, we define a
topic as being a set of hashtags retweeted intensely by the
same spreaders and for which a common group of authors is
intensely retweeted.

Formally, let KN ⊆ K be a set of N hashtags. We proceed
as follows. First, for each hashtag ki ∈ KN , we locally search
what are the abnormal spreaders associated to ki according to
the following expected values

vexp(s,ki,d,h) = v(·, ·,ki,d,h)×
v(s, ·, ·, ·,h)
v(·, ·, ·, ·,h)

.

We obtain an abnormal spreader group denoted S∗ki
such that

s ∈ S∗ki
is a spreader that retweets hashtag ki abnormally

during a specific hour, given its usual activity at this time
of the day. After performing this step on all hashtags, we
define the group of spreaders related to KN as the set of
abnormal spreaders common to all hashtags in the set:
S∗KN

=
⋂i=N

i=1 S∗ki
. We proceed symmetrically to find the set

of abnormal authors related to KN , denoted A∗KN
. Given

the set of abnormal spreaders and authors related to KN ,
we say that KN is a topic if both S∗KN

and A∗KN
are non-

empty (see Figure 11 for illustration). Note that we are
only interested in abnormal authors and spreaders since they

a∗1 a∗2

k1 k2 k3

s∗1 s∗2 s∗3

Fig. 11: Formation of topics from hashtags – For K3 = {k1,k2,k2},
S∗k1

= {s∗1}, S∗k2
= {s∗2}, and S∗k3

= {s∗2,s∗3}. Then, S∗K3
= /0 and K3 does

not constitute a topic. On the other hand, K2 = {k2,k2} is a topic since
A∗K2

= {a∗1,a∗2,a∗3} and S∗K2
= {s∗2}.

are the ones which unquestionably want to propagate the topic.

With N = 3 and by considering the set of triplets obtained
from the 114 abnormal hashtags identified in the previous
section, we find 876 topics. For instance, we identify topic
K3 = {chateaurenard, ns20h,toutpourlafrance}, which has
4 abnormal authors belonging to the same political party,
A∗K3

= {GilAverous, LArribage, NicolasSarkozy, TTpourlaFrance},
and 48 abnormal spreaders; topic K′3 = {3moispourgagner,
legrandrdv (radio program), uemedef2016 (summer school
of the employers’ federation of France)} associated to one
abnormal author, alainjuppe, and to a group of 18 abnormal
spreaders; and topic K′′3 = {boxe (boxing), judo, rio2016}
associated to 7 abnormal authors from different origins, and
only 3 abnormal spreaders3. Figure 12 shows the temporal
evolution of each hashtag in each topic. We see that hashtags
belonging to the same topic do not necessarily have the same
dynamics.

After this step and from this set of topics, we can infer user’s
communities according to which topic they are used to retweet
or being retweeted. Now, we address the problem of predicting
user-topic links. More precisely, we want to predict the number
of interactions between spreader s, in community cs, and topic
KN during hour (d,h). Link prediction is inextricably related to
abnormal link detection. Indeed, if the detection of abnormal
quadruplets (s,KN ,d,h) is based on measuring the deviation
between an observed value v(s,KN ,d,h) and its expected value
vexp(s,KN ,d,h), link prediction focuses on describing normal
behavior and therefore, is based on expected values only. For
instance, we could predict the number of interactions between
s and KN during (d,h) as

vexp(s,KN ,d,h) =

v(cs, ·,KN , ·, ·)
v(·, ·,KN , ·, ·)

× v(s, ·, ·, ·,h)
v(cs, ·, ·, ·,h)

× v(·, ·,KN ,d,h)
|D|

(1) (2) (3)

3Note that in this case, we only find 3 abnormal spreaders since events
related to sport are usually homogeneous events which do not exhibit groups
of active spreaders.
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Fig. 12: Evolution of the number of retweets containing hashtag ki for three different topics – Notice that, in order to have a better
accuracy, we plotted the number of retweets containing hashtag ki per quarter q. We see that hashtags dynamics within a same topic can be
uncorrelated as in K′3, or correlated as ns20h and chateaurenard with toutpoutlafrance in K3.

which takes into account (1) the activity of s’s community
towards topic KN , (2) the activity of s within its community
during the hour of the day h, and (3) the expected number of
retweets of KN during hour h of day d.

This prediction can be improved by taking into account
the behavior of authors that cs is used to retweet, towards
topic KN . Also, if KN is a new topic, we could imagine to
replace the activity of topic KN by the mean activity of a set
of related topics.

Thus, our method may be useful in many empirical studies
and applications. In turn, these applications provide feedback
and questions necessary to create more and more complex
and relevant contexts and thus, take advantage of the scope of
possibilities offered by our method.

VIII. CONCLUSION

In this paper, we provided a method to meticulously explore
millions of interactions and find unexpected behaviors under a
multitude of situations. We applied it in the context of politics,
where the stakes to unravel relevant information in the flow
of data are particularly high. We showed that our method
successfully highlights events and provide explanations
for their emergence. In particular, we found abnormally
retweeted authors, groups of very active spreaders, and hot
topics during the corresponding abnormal periods. Hence, our
method highlights crucial information that should be taken
into account to evaluate an event reliability on Twitter.
One interesting perspective that could be considered would
be to aggregate the base cuboid over authors, spreaders
or hashtag (or topics) partitions. This would allow us to
study each community separately – especially the ones
corresponding to political parties; the relationship they have
with each other; as well as the one they have with the
different hastags (resp. topics). This in turn would enable us
to gain insights about communication strategies deployed by
each political parties.
Moreover, our method applies to temporal networks modelling
entities interacting over time in general. Hence, as discussed
in Section VII, numerous applications can benefit from it, as
for instance, the characterization of second screen usage on

social media (e.g. Facebook or Twitter) and link prediction
(e.g. in IP traffic or e-mail exchanges).
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