
Pattern Matching in Link Streams:
Timed-Automata with Finite Memory

Clément BERTRAND1, Frédéric PESCHANSKI2,
Hanna KLAUDEL1, Matthieu LATAPY2

Abstract

Link streams model the dynamics of interactions in complex dis-
tributed systems as sequences of links (interactions) occurring at a
given time. Detecting patterns in such sequences is crucial for many
applications but it raises several challenges. In particular, there is
no generic approach for the specification and detection of link stream
patterns in a way similar to regular expressions and automata for text
patterns. To address this, we propose a novel automata framework
integrating both timed constraints and finite memory together with a
recognition algorithm. The algorithm uses structures similar to tokens
in high-level Petri nets and includes non-determinism and concurrency.
We illustrate the use of our framework in real-world cases and evaluate
its practical performances.

Keywords: Timed pattern recognition, difference bound matrices,
finite-memory automata, timed automata, complex networks, link
streams.

1 Introduction

Large-scale distributed systems involve a great number of remote entities
(computer nodes, applications, users, etc.) interacting in real-time following
complex network topologies and dynamics. One classical way to observe the
behavior of such complex system is to take snapshots of the system at given

1 IBISC, Univ Evry, Université Paris-Saclay, 91025, Evry, France, Email:
{clement.bertrand,hanna.klaudel}@univ-evry.fr

2LIP6 – Sorbonne Université, Paris, France, Email: {matthieu
latapy,frederic.peschanski}@lip6.fr

2 C. Bertrand, F. Peschanski, H. Klaudel, M. Latapy

times and represent the global state as a very large and complex graph. The
behavior of the system is then observed as a timed sequence of graphs. The
algorithmic detection of patterns of behaviors in such large and dynamic
graph sequences is a very complex, most often intractable, problem. The link
stream formalism [14, 19] has been proposed to model complex interactions
in a simpler way. A link stream is a sequence of timestamped links (t, u, v),
meaning that an interaction (e.g. message exchange) occurred between u
and v at time t. The challenge is to develop analysis techniques that can be
performed on the link streams directly, without having to build the underlying
global graph sequences. The patterns of interests in link stream involve both
structural and temporal aspects, which raises serious challenges regarding
the description of such patterns and the design of detection algorithms.
The problems has been mostly approached from two different angles. First,
recognition algorithms have been developed for specific patterns such as
triangles in [15]. The focus is on the performance concerns, involving non-
trivial algorithmic issues. At the other end of the spectrum, complex event
processing (CEP) has been proposed as a higher-level formalism to describe
more complex interaction patterns in generic event streams [1, 23]. These
generic works do not handle the specificity of the input streams. For example,
the real-time and graph related properties are of particular interest in link
streams. Our objective is to develop an intermediate approach, generic
enough to cover a range of interesting structural and temporal properties,
while taking into account the specificities of the abstraction under study,
namely the link streams.

Our starting point is the regular expressions and finite state automata
for the recognition of patterns in texts. The main idea is to interpret
link streams as (finite) words and develop a pattern language involving
both structural and temporal features. This leads to a new kind of hybrid
automata, the timed ν-automata, as recognizers for this pattern language.
They are built upon finite state automata (FSA) with both timed [2, 3] and
finite-memory [13, 8, 9] features. The patterns themselves can be specified
by enriched regular expressions, and ”compiled” to timed ν-automata. The
problem of timed pattern matching has been addressed only quite recently
in e.g. [17, 18, 21, 22]. While our model bears some resemblance with these
propositions, we adopt a generalized approach to temporal patterns based
on the difference bound matrix (DBM) abstraction [10]. Moreover, we study
pattern matching in the presence of real-time constraints together with finite
memory. To our knowledge this has not been addressed in the literature.

Pattern Matching in Link Streams:Timed-Automata with Finite Memory 3

0 2 4 6 8 10 12 14 16 18 20

d

c

b

a

a

b

c

d

Figure 1: A link stream (left) and its graph projection in time interval [8, 15]
(right).

One interesting aspect of the automata model we propose is that the
recognition principles are based on a non-trivial token game. Indeed, our
main inspiration comes from high-level Petri nets. Based on this formalism,
we developed a prototype tool that we applied to real-world link streams
analysis. Performance issues are raised but the results are encouraging. In
particular, our experiments confirm the following key fact: timing properties
often help in reducing the performance cost induced by storage of information
in memory.

The present paper is an extended version of [5] with a generalization of
the timed model using the DBM abstraction. The outline of the paper is
as follows. In Section 2 we introduce the principles of finding patterns in
link streams. The automata model and recognition principles are formalized
in Section 3. The Section 4 is entirely new and describes a timed pattern
matched based on difference bound matrices. The pattern languages, the
prototype tool we develop and a few experiments are then discussed in
Section 5.

2 Patterns in link streams

We consider link streams [14] defined as sequences of triples (ti, ui, vi),
meaning that we observe a link between nodes ui and vi at time ti. Figure 1
(left) shows an example of a link stream that models interactions between
nodes a, b, c and d. For example at time t = 6 a link from node d to node b
is observed, which corresponds to a triple (6, d, b) in the stream.

A pattern in such a link stream can be seen as a series of (directed)
subgraphs observed in a given time frame. For example, at time t = 15 we

4 C. Bertrand, F. Peschanski, H. Klaudel, M. Latapy

observe the subgraph described on the right of Figure 1. This graph has
been formed in the depicted time frame of 7s. One trivial way to detect
such patterns is to build all the intermediate graphs and solve the subgraph
isomorphism problem at each time step. This is however out of reach in most
situations most notably because: (1) real-world link streams involve very
large graphs, and (2) subgraph isomorphism is an NP-complete problem.
Hence, in practice dedicated algorithms are developed for specific kinds of
subgraphs. One emblematic example is the triangle for which specialized
algorithms have been developed. A triangle is simply the establishment of a
complete subgraph of three nodes, in a directed way. In network security
this is a known trigger for attacks: two nodes that may be identified as
”attackers” negotiate to ”attack” a third node identified as the ”target”.
Such a trigger can be observed in Figure 1 (right) with a and d attackers
targeting b. In real-world link streams, detecting such triangles is in fact not
trivial, as explained for example in [15].

In this paper, our motivation is to develop a more generic approach able
to handle not only such triangles but also other kinds of patterns: directed
polygons, paths, alternations (e.g. links that appear periodically), etc. We
also require the matching algorithms to be of practical use, hence with
efficiency in mind. Our starting point is the theory of finite-state automata
(FSA) and regular expressions. Indeed, if we ignore the timestamps, a link
stream is similar to a finite word, each symbol being a directed link (a pair
of nodes). For example in the time frame (8, 15) we observe the following
”word”:

(a, d)(d, b)(a, c)(a, b)(c, b).

Based on such a view, we can use FSA as pattern recognizers and
regular expressions as a high-level specification language. A regular pattern
for the triangle example is as follows:(

((a→ b) | (d→ a)) · ((a→ d)⊗ (d→ b))
)
⊗ (@→ @)∗

This expression uses classical regular constructs such as concatenation ·,
disjunction |, the Kleene star ∗ and shuffle ⊗. The symbol @ is used as a
placeholder for any possible node, hence (@→ @) means ”any possible link”.
Based on such specification, it is easy to build a finite-state automaton to
recognize the triangles in an untimed link stream very efficiently.

However, the ”regular language” approach fails to capture the timing
properties of link streams. What we need is a form of real-time pattern
matching. Quite surprisingly, there are very few research works addressing

Pattern Matching in Link Streams:Timed-Automata with Finite Memory 5

this problematic, despite the broad success of timed automata [2] in general.
An important starting point is the timed regular expressions formalism [3].
The basic principle is to interpret input words, hence link streams, as timed
event sequences: a succession of either symbols or delays corresponding to
a passage of time. Below is an example of a link stream as a timed event
sequence:

(a, b)2(d, b)2(a, c)1(a, d)1(c, b).

A timed regular expression for the triangle pattern can then be specified,
e.g.: (

((a→ d) | (d→ a)) · 〈(a→ b)⊗ (d→ b)〉[0,1]
)
⊗ (@→ @)∗

The delay construction 〈S〉[x,y] says that the subpattern S must be detected
in time interval [x, y]. For the triangle pattern it means that the nodes a
and d are only observed as ”attacking” target b if they simultaneously link
to b in the time interval of one second.

Another fundamental aspect that we intend to capture in link stream
patterns is that of incomplete knowledge. In classical and timed automata,
symbols range over a fixed and finite alphabet. In link streams, this means
that the nodes of the graphs must be known in advance, which is in general
too strong an assumption. In an attack scenario, for example, we must
consider an open system: it is very likely that only the target is known in
advance, and the two attackers remain undisclosed.

The kind of pattern we intend to support is e.g.:(
(]X →]Y) · 〈(X → b)⊗ (Y → b)〉[0,1]

)
⊗ (@→ @)∗.

In this pattern, the variables X and Y represent unknown nodes correspond-
ing to two ”attackers”. The construction]X means that the input symbol
(hence node) associated to X must be fresh, i.e., not previously encountered.
In case of a match this node is associated to X and kept in memory. With the
operator X! (the dual of]X), after matching a value associated to variable
X, all the values associated to it are discarded (i.e., the associated set is
cleared).

The sub-pattern (]X →]Y) describes a link between two fresh nodes.
Note that since Y is matched after X, the freshness constraints impose that
its associated node is distinct from the one of X. To match the sub-expression
(X → b), the input must be a link from the node already associated with X
in memory to node b. This is a potential attack on the target b.

6 C. Bertrand, F. Peschanski, H. Klaudel, M. Latapy

q0 q1
q2

c ≤ 1
q3

q4

a νX,X

c := 0 X, νX

b

c ∈ [0, 1]

b

νX,X

c ∈ [0, 1]

q5

q6

q7

@ @

@@

@ @

Figure 2: Automaton for (@ → @)∗ ⊗
(

(a → b) ∨ a →]X · 〈(X! →

]X)∗ · (X!→ b)
)
〉[0,1]

To handle such dynamic matching, one must consider a (countably)
infinite alphabet of unknown symbols. This has been studied in the context
of quasi-regular languages and finite memory automata (FMA) [13]. In
this paper, we build upon the model of ν-automata that we developed in a
previous work [8, 9]. It is a variant of FMA, which is tailor-made for the
problem at hand. If compared to the classical FMA model, the ν-automata
can be seen as a generalization to handle freshness conditions [16].

The resulting mixed model of timed ν-automata is quite capable in
terms of expressiveness. The automaton formalism is a combination of both
the timed constraint and clocks reset from timed automaton and the memory
management of the ν-automaton. As an illustration, Figure 2 depicts an
automaton that detects in a link stream all the paths from a node a to a
node b such that each link is established in at most one second. We suppose
that the automaton is defined for the alphabet Σ = {a, b}, i.e., only the
nodes a and b are initially known. The labels νX,X and X, νX are the
automata variants of the operators]X and X! discussed previously. An
example of an accepting input is:

(a, y) 0.1 (y, z) 0.3 (y, b).

Initially, in state q0 the known symbol a is consumed while transiting to state

Pattern Matching in Link Streams:Timed-Automata with Finite Memory 7

q1. The unknown symbol y is saved in the memory associated to variable X
while transiting to state q2. This only works because the symbol y is fresh,
i.e., not previously encountered. The delay of 0.1 second is consumed in
state q2 while increasing the value of the clock c to 0.1. The state constraint
c ≤ 1 is still satisfied. The next input y may either lead to q3 (because it
was previously associated to X) or q7 (because the symbol @ accepts any
input). The recognition principle is non-deterministic so both possibilities
will be tried:

• if the transition q2
X,νX−−−→ q3 is taken, X is no longer associated to any

symbol in q3. The next input is the unknown symbol z. From q3, only

the transition q3
νX,X−−−−→
c∈[0,1]

q2 is enabled. In q2 the variable X would be

associated to z. However, this path is doomed because the next (and
last) link does not start from z. Then at the end of the input sequence
the path leads to state q2 which is not a terminal state.

• if the transition q2
@−→ q7 is taken then the value associated to X is not

discarded and the input z leads back to the state q2 through transition

q7
@−→ q2. The input 0.3 increases the clock value to c = 0.4. The next

input y may again lead either to q7 or q3 as in the previous case. In

state q3 the input b enables only the transition q3
b−−−−→

c∈[0,1]
q4, which

leads to the final state q4 (since b ∈ Σ).

We reach an accepting state because the clock value c = 0.4 is still
under 1 second. On the other hand, if the second delay is not 0.3 but e.g.,
1.0 then the link stream is not recognized because of a timeout in state q2.

3 Automata model and recognition principles

The automata model we propose can be seen as a layered architecture with:
(1) a classical (non-deterministic) finite-state automata layer, (2) a timed
layer (based on [3]) and (3) a memory layer (based on [9]). These layers are
obviously dependent but there is a rather clean interface between them.

8 C. Bertrand, F. Peschanski, H. Klaudel, M. Latapy

3.1 The timed ν-automata

Definition 1 A timed ν-automaton is a tuple:

A = (Σ, Q, q0, F,∆︸ ︷︷ ︸
finite-state

, C,Γ︸︷︷︸
timed

, U , V︸︷︷︸
memory

)

The basic structure is that of a finite-state automaton. We first assume
a finite alphabet of known symbols denoted by Σ. The finite set Q is that of
locations3. The initial location is q0 and F is the set of final locations. The
component ∆ is the set of transitions (explained in details below).

This basic structure is extended for the timed constraints with a set
C of clocks (ranging over c0, c1, . . .) and a map Γ that associates to each
location a timed constraint. A transition can also be annotated with time
constraints to restrict its firing. The grammar of timed constraints, identical
to [2], is as follows:

Definition 2 (time constraints grammar)

γ ::= γ ∧ γ | c1 ∼ n | c1 − c2 ∼ n

where c1 and c2 are clocks, n is a constant in Q and ∼∈ {=, <,>,≤,≥}.

The memory component is a finite set V of variables (ranging over
X,Y, . . .) for the memory constraints. Each variable will be associated to a
(possibly empty) set of unknown symbols ranging over a countably infinite
alphabet denoted by U . These symbols are all the symbols that may appear
in an input sequence, which are not in Σ. Unlike FMA, which are limited
by the number of their registers, the ν-automata use variables of dynamic
size, which allows to recognize words composed of an arbitrary number of
distinct unknown symbols.

Definition 3 A transition t ∈ ∆ of a timed ν-automaton is of the form:

q
ν, e, ν−−−−→
γ, ρ

q′

3The notion of a location here corresponds to a state in classical automata theory. We
rather use the term state in the sense of actual state or configuration (as in FMAs [13]),
i.e., an element of the state-space: a location together with a memory content and clock
values.

Pattern Matching in Link Streams:Timed-Automata with Finite Memory 9

with q (res. q′) the starting (resp. ending) location, ν ⊂ V a set of variable
allocations, ν ⊂ V a set of variable releases. The event e is either a symbol
in the finite alphabet Σ, a use of a variable in V or an ε. The transition
timed constraint is γ. Finally, ρ is the set of clocks to be reset to 0 while
crossing the transition. To simplify the notation of transitions, the empty
sets are omitted.

3.2 The state notion: tokens

States in timed ν-automata are formed by a distribution of tokens4, i.e.,
combinations of memory and timed valuations, over given locations. Because
the recognition principles we develop exploit the intrinsic non-determinism of
ν-automata, each location can be associated to multiple tokens, each token
corresponding to a particular reachable state5.

Definition 4 (Token) A token is a pair k = 〈D,M〉 with D a time zone
representing a set of possible clock values, and M a memory valuation being
a mapping from variables to sets of allocations.

The timed valuation of a token is represented by a timezone D that
encodes a set of clocks c1, . . . , cn (together with a special clock c0 represent-
ing the time 0) associated to the constraints about their possible values.
Following [10] we technically represent timezones as difference bound matri-
ces (DBMs). Because it is a rather complex aspect, in this section we only
discuss the high-level point of view of timezones, the DBM representation is
detailed in Section 4.

The memory valuation M of a token is represented as a set M of
variable allocations.

Definition 5 (Variable allocation) For a variable X ∈ V , an allocation
is a finite subset of unknown symbols AX ⊂ U , together with a flag. The flag
may be A•X (read mode, default) or A◦X (write mode). In read mode, the only
available operation is to check if an input symbol is already present in AX .
In write mode, the only available operation is to add to AX a fresh symbol
α /∈

⋃
Y ∈V AY .

4The notion of token we use is very similar to, an in fact inspired by the corresponding
notion of high-level Petri nets.

5In fact each state is itself a (potentially infinite) set of possible clock values corre-
sponding to the token’s timezone.

10 C. Bertrand, F. Peschanski, H. Klaudel, M. Latapy

Property 1 (memory injectivity) For any pair of distinct variables X,Y
we have AX ∩ AY = ∅.

Although most memory models do not work like this, this injectivity
property is an important feature of finite-memory automata models because
it allows a compact representation of memory constraints (cf. [13]). This
property, from ν-automata, strengthens the memory constraint without re-
ducing the expressibility of the model. It allows a less ambiguous description
of patterns.

A configuration of a hybrid ν-automaton is a kind of a global state
that encompasses a set of proper reachable states, thus expressing some
non-determinism. Technically, the definition is as follows.

Definition 6 (Configuration) A configuration of an automaton is a map-
ping S from the locations in Q to sets of tokens. We denote by S(q) the set
of tokens associated to location q.

The initial configuration of a timed ν-automaton contains a single token
in the initial location. The content of this token is 〈D0, {X → ∅•|∀X ∈ V }〉
where D0 is the initial timezone with all the clocks initialized at time 0. The
memory is empty, i.e., each variable is associated to an empty set with the
read mode flag.

Each time an input is read a new configuration is computed from the
previous one. The whole input sequence is accepted if after being consumed
entirely there is at least one token in some final location of the automaton.
This token game is explained in the next section.

3.3 Token game

Given a global configuration S and an input α – either a time delay or an
event (a known or an unknown symbol) – the objective is to build a next
configuration S′ corresponding to all the reachable states of the automaton
after consuming the input. The formal definition is as follows.

Definition 7 (global update)

σ(S, α) =

{
σclosure(S, α) if α ∈ Q+ (time delay)
σclosure(σstep(S, α), 0) otherwise (symbol)

Pattern Matching in Link Streams:Timed-Automata with Finite Memory11

In the case of a time delay the tokens should be propagated through
the ε-transitions, which is handled by the enabled σclosure function presented
below. In the case of an event, the next tokens will be produced by the
transitions that are enabled for the input symbol. This is formalized by
the function σstep defined below. We also use the σclosure function to handle
the ε-transitions. The “trick” is to consider that the event is recognized
together with a time delay of 0. By the non-deterministic nature of the
automata model, if a token enables multiple transitions then a new token
will be generated in each location reachable by all those transitions.

3.3.1 Event handling

We first consider the case of events. The time delays, a little bit more
involved, will follow.

Definition 8 (event handling)

σstep(S, α) = {q′ 7→ {δstep(t, k, α) | t = q
ν,e,ν−−−→
γ,ρ

q′ ∧ k ∈ S(q)} | q′ ∈ Q}

with δstep(t, 〈D,M〉, α) = 〈δtime(t,D), δmem(t,M, α)〉 when defined.

The σstep function simply consists in applying the local update function
δstep at all locations for all non ε-transitions. This function is partial, only
defined if the subfunction δtime returns a non-empty timezone, and δmem

yields a value distinct from ⊥.
The function δtime computes the new timezone after crossing the con-

sidered transition. It is defined as follows.

Definition 9 (Time constraint)

δtime(q
ν,e,ν−−−→
γ,ρ

q′,D) = (tz(γ) ∩D)[ρ← 0]

The notation tz(γ) denotes the conversion of the time constraint γ to a
corresponding timezone. We then compute the intersection of the later with
the timezone D. In the final timezone, the clock identified by ρ are reset.
These operations are formalized precisely in Section 4.

The memory part of the next token is computed by the memory update
function δmem from the previous memory component depending on an input
symbol α. The computation respects the following ordering: (1) the alloca-
tion of the variables in set ν is performed, then (2) the consistency between
the input and transition label is checked, and finally (3) the variables in the
set ν are released.

12 C. Bertrand, F. Peschanski, H. Klaudel, M. Latapy

Definition 10 (memory update) Let V be a set of variables, and U an
infinite set of unknown symbols.

δmem(t,M, α) =

⊥ if e /∈ V ∧ α 6= e (c.1.1)
∨e ∈ V ∧ α /∈ U (c.1.2)
∨e ∈ V \ ν ∧M(e) = A•e ∧ α /∈ Ae (c.1.3)
∨(e ∈ ν ∨M(e) = A◦e) ∧ ∃Y, α ∈M(Y) (c.1.4)

otherwise {X 7→ k′X | X ∈ V }

with k′X =

∅•, if X ∈ ν (c.2.1)
(AX ∪ {α})•, if X = e (c.2.2)
A◦X , if X ∈ ν (c.2.3)
M(X), otherwise (c.2.4)

where e ∈ V ∪ Σ ∪ {ε} denotes the input enabling transition t and the sets ν
and ν denote respectively the sets of allocated and freed variables.

In the first four cases no token can be produced. If the transition label
e is a known symbol in Σ, then the input α must exactly match otherwise
it is a failure (c.1.1). If otherwise e corresponds to a variable, then α must
be an unknown symbol in U (c.1.2). A more subtle failure is (c.1.3) for a
variable e ∈ V in read mode. In this situation the input symbol must be
already recorded in the memory associated to e. Moreover, if the variable
e is in write mode (or is put in write mode along the transition), then the
input symbol must be fresh (c.1.4).

If the next token is produced then for each variable X the associated
memory content AX is updated as follows. If X is to be released (in set
ν) then the memory is cleared and put in read mode (c.2.1). If it is not
released and the variable is to be read (i.e., X = e) then α is added to the
memory content (c.2.2). In (c.2.3) the variable is not read (X 6= e) but it is
allocated (in set ν). In this situation the memory content is put in write
mode. Otherwise (c.2.4) the memory is left unchanged for variable X.

q1 q2
νX,X input: w

q1 q2
νX,X

X → {v}• X → {v, w}•

Figure 3: Passing a transition of the automaton from Figure 2 with input w

Example 1 Figure 3 illustrates the generation of a new token taking as an

example the transition d = q1
{X},X,{}−−−−−−→ q2 in the automaton from Figure 2.

Pattern Matching in Link Streams:Timed-Automata with Finite Memory13

We are focusing here only on its memory component to illustrate δmem. Based
on the initial memory valuation {X → {v}•} in location q1, the input w
enables the transition d producing a new token in q2, computed as follows:

The transition d is only enabled when the input is an unknown symbol,
because transition d is labeled with a variable. Since the alphabet Σ of
known symbols is {a, b}, the symbol w is considered as unknown, i.e., w ∈ U .
Because the allocations are applied before checking the input, the variable X
is allocated and then used to enable the transition. So the symbol w should
be added to AX in the newly generated token. However, it is only possible if
the input is fresh. Since AX = {v} and X is the only variable, this freshness
constraint is satisfied. Hence, the new token associates the memory {v, w}•
to X. �

q2 q3
X, νX input: v

q2 q3
X, νX

X → {v, w}• X → {}•

Figure 4: Passing a transition of the automaton from Figure 2 with input v

Example 2 Figure 4 presents another example of memory transition with
another transition in the same automaton from Figure 2. Here again we
ignore the temporal component of the automaton to focus on its memory
component. This example illustrates a case of memory evolution with δmem.
Here the variable X is used as the trigger and then freed. The variable’s
freeing occurs simultaneously to reset of the clocks, after checking of guards.
As X is not allocated during the transition and was neither allocated before,
the transition is enabled only if the input is an unknown symbol and belongs to
AX . The input is actually the unknown symbol v /∈ Σ = {a, b}. Furthermore,
v ∈ {v, w} = AX , so the transition may be passed and the variable X is
cleared in the newly generated token. �

The important property of memory injectivity must be preserved
through δmem to fulfill the freshness constraints.

Proposition 1 (preservation of injectivity) Let k be a token satisfying the
Property 1, and suppose k′ = δ(t, k, α) 6= ⊥ for some transition t and input
α. Then the token k′ will satisfy Property 1.

14 C. Bertrand, F. Peschanski, H. Klaudel, M. Latapy

Proof: In the token k = 〈D,M〉 only the memory component M is
impacted by the injectivity property. The main hypothesis is that k satisfy
Property 1, it means that ∀X,Y (X 6= Y), M(X) ∩M(Y) = ∅.

Suppose that the transition t = q
ν,e,ν−−−→
γ,ρ

q′ produces token k′ =

δ(t, k, α) = (D′,M′). We have to show that k′ satisfy the Property 1. In
the definition of δmem (Definition 10) we are concerned with cases (c.2.1) to
(c.2.4) because we expect a token as output. The memory update depends
on the value of the transition trigger e and is as follows:

• If e is not a variable: e ∈ ε ∪ Σ, then the case c.2.2 of δmem cannot
occur. So, in the token k′ the variable domains are either empty (case
c.2.1), or the same as in k (case c.2.3 or c.2.4). Given the hypothesis
that k satisfies Property 1 and the fact that ∅ is the zero element of
intersection, trivially k′ satisfies Property 1 as expected.

• If e is a variable: e ∈ V then the case c.2.2 occurs for exactly one
variable of the generated token. As presented above, the variable
domains generated with the cases c.2.1, c.2.3 and c.2.4 have empty
intersections with each other. Only the domains generated by case
c.2.2 must be handled with care. We have to consider two situations:

– if α ∈M(e) then the set Ae is not modified, so the Property 1 is
trivially satisfied;

– or α 6∈ M(e) then case c.1.4 ensures that α is absent in all the
domains of the other variables. Thus, Property 1 is satisfied as
well.

2

3.3.2 Time delay and ε-closure

We now explain the propagation of tokens for ε-transitions and a given time
delay x (a positive real value, potentially 0 in the case of an event), which
is handled by the σclosure function defined below. Note that it is a closure
function, in that whole paths of successive ε-transitions must be considered.
The rather non-trivial definition is as follows.

Definition 11 (ε-closure)

σclosure(S, x) = {q 7→ K | q ∈ Q}

Pattern Matching in Link Streams:Timed-Automata with Finite Memory15

Such that

K =

(D′,M′)

∣∣∣∣∣∣∣∣∣∣
∃q0

ν1,ε,ν1−−−−→
γ1,ρ1︸ ︷︷ ︸
t1

q1
ν2,ε,ν2−−−−→
γ2,ρ2︸ ︷︷ ︸
t2

· · · qn−1
νn,ε,νn−−−−→
γn,ρn︸ ︷︷ ︸
tn

q ∈ ∆,

∃k ∈ S(q0), walk(k, [t1, t2, . . . , tn], x) = 〈D′,M′〉
∧¬empty(D′) ∧M′ 6= ⊥

For each ε-path from a location q0 to a location q, and for each token

present in q0 in the previous configuration S, we try to generate a new token
using the walk function. This new token consists of a timezone D′ and an
updated memory valuation M′. An important requirement is that the delay
x has been fully consumed at the end of the path. The function is partial,
in particular it fails if x is consumed “too early” along the path. Because
it involves rather complex DBM computations, the formal definition of the
function walk is given in Section 4.

Example 3 Figure 5 illustrates the dynamics of tokens in an ε-closure
expressed by the function σclosure with the delay α = 4.

The tokens in this automaton are composed of a variable X and a
clock c. The initial configuration, in step 0, contains only one token k0 in
q0. This token is initialized with X in read mode and a set containing the
unknown symbols u and v. There is only one clock c initialized to 0. In step
1, the token k0 is propagated through the transition t01 = q0

ε−−−−→
c∈[0,1]

q1, which

generates the token k1 in location q1. Since t01 has no side-effect (clock or
memory update), k1 is a copy of k0. In step 2, the token k1 is propagated
through the transition t11 = q1

ε−−−−→
c∈[2,4]

q1 generating the token k′1 in location

q1. The transition has no side-effect so the memory of k′1 is the same as the
memory of k1. However, to fulfill the time constraint c ∈ [2, 4], the value
of c has to be at least 2. To cross the transition, the clocks values should
consume some amount of the input delay α. In step 3, both k1 and k′1 can be

propagated through t12 = q1
ε,νX−−−→ q2. This transition has as a side-effect to

clear the variable X. So both the tokens k2 and k′2 generated respectively from
k1 and k′1 have for variable X the value {}• (an empty set of symbols in read
mode). Step 4 consists in the propagation of tokens k2 and k′2 through the

transition t20 = q2
νX,ε−−−→ q0. This transition has as a side effect to allocate

X. However, as t20 is an ε-transition, the set associated to X will not be
modified and X will be in write mode on the generated tokens. In step 5

16 C. Bertrand, F. Peschanski, H. Klaudel, M. Latapy

q0 q1 q2
ε

c ∈ [0, 1]

ε, νX

νX, ε

ε

c ∈ [2, 4]

tokens in q0 tokens in q1 tokens in q2

0 k0:〈X → {u, v}•, c → 0〉
1 k0:〈X → {u, v}•, c → 0〉 k1:〈X → {u, v}•, c → 0〉

2 k0:〈X → {u, v}•, c → 0〉 k1:〈X → {u, v}•, c → 0〉
k′1:〈X → {u, v}•, c → 2〉

3 k0:〈X → {u, v}•, c → 0〉 k1:〈X → {u, v}•, c → 0〉
k′1:〈X → {u, v}•, c → 2〉

k2:〈X → {}•, c → 0〉
k′2:〈X → {}•, c → 2〉

4

k0:〈X → {u, v}•, c → 0〉
k′0:〈X → {}◦, c → 0〉
k′′0 :〈X → {}◦, c → 2〉

k1:〈X → {u, v}•, c → 0〉
k′1:〈X → {u, v}•, c → 2〉

k2:〈X → {}•, c → 0〉
k′2:〈X → {}•, c → 2〉

5

k0:〈X → {u, v}•, c → 0〉
k′0:〈X → {}◦, c → 0〉
k′′0 :〈X → {}◦, c → 2〉

k1:〈X → {u, v}•, c → 0〉
k′1:〈X → {u, v}•, c → 2〉
k′′1 :〈X → {}◦, c → 0〉
k′′′1 :〈X → {}◦, c → 2〉

k2:〈X → {}•, c → 0〉
k′2:〈X → {}•, c → 2〉

6
k0:〈X → {u, v}•, c → 4〉
k′0:〈X → {}◦, c → 4〉

k1:〈X → {u, v}•, c → 4〉
k′′1 :〈X → {}◦, c → 4〉 k2:〈X → {}•, c → 4〉

Figure 5: Example of ε-closure with an input delay 4

two tokens are generated in location q1, but both come from the token k′0.
As k′′0 has c→ 2, it cannot enable t01 because the clock constraint c ∈ [0, 1]
is not respected. The token with c → 0 crosses t01 and the transition t11
(as in step 2) generating two tokens, k′′1 and k′′′1 , in q1 with different clock
values. After step 5 it is not possible to generate any new token in a location
with a different value than the tokens already present in it. In step 6 the
propagation is over and all the clocks are increased to 4 to consume all the
input delay.

However, only one token is kept at a location if several are generated
with identical clock and memory valuations. The step 6 corresponds to the
configuration returned by σclosure. �

Since there may be an infinite number of ε-paths from a given starting
location q, the following is an important Property wrt. decidability.

Pattern Matching in Link Streams:Timed-Automata with Finite Memory17

Proposition 2 For a given configuration S and time delay x, the function
σclosure can only produce a finite amount of tokens.

Proof: To prove the proposition, we show that both the possible memory
and clocks states are finite over the propagation through the ε-closure.

First, we prove that the number of memory states is finite. An ε-
transition does not read any symbol. So, the only memory operations
present in an ε-closure are the allocation ν and the freeing ν. Let X be a
variable of initial valuation AaX , where AX is the set associated to X and a
the initial mode of X. Its reachable values in the ε-closure are :

• AaX in all ε-paths with no operations on X,

• A◦X in all ε-paths where X is only allocated,

• ∅• in all ε-paths where the last memory operation used on X is a
freeing ν,

• ∅◦ in all ε-paths where X was freed at least once and the last memory
operation on X is an allocation ν.

As a consequence, if the tokens are composed of n variables, after the
propagation in an ε-closure at most 4n variations of each initial memory
valuation can be generated.

It is well known that the number of timed zones computable from an
ε-closure is finite when the clocks have an upper bound [4]. In the case
of pattern matching this bound is the sum of all delay inputted. As the
number of memory states and clocks states are both finite, the number of
combinations between them is finite too. 2

4 Timed pattern matching with DBM

In this section we detail the core of the timed aspect of the pattern matcher.
As explained in the previous section, it is based on non-trivial computation
of timezones. Our approach is based on the classical model described in [10],
which represents timezones as difference bound matrices (DBM). Unlike [10]
our objective is not to develop a model-checking procedure but a recognition
algorithm, hence there are many differences in the details.

18 C. Bertrand, F. Peschanski, H. Klaudel, M. Latapy

4.1 The clocks representation

As explained in the previous section, a timezone corresponds to the set
of all clock valuations satisfying both the possible intervals and the time
constraints in a given state of the automaton. We represent a timezone as
a difference bound matrix (DBM), owing to the fact that the timezones
together with the time constraints expressed in the grammar of Definition 2
can be represented precisely by bounds on individual clocks and on the
differences between pairs of clocks.

A DBM to represent the timezone of the set of clocks {c1, c2, ..., cn} is
a matrix D = {dij}0≤i,j≤n where each dij is a time bound, i.e., an element
of the set (Q× {<,≤}) ∪ {(∞, <), (−∞, <)}. Each time bound dij = (x,∼)
expresses the constraint ci − cj ∼ x. A DBM also requires a special clock c0
with constant value 0 used to represent the minimal and maximal values of the
other clocks. The bounds are ordered such that d1 < d2 with d1 = (x1,∼1)
and d2 = (x2,∼2) iff x1 < x2 ∨ (x1 = x2∧ ∼1=< ∧ ∼2=≤). We will also
often use the minimum of two bounds, denoted by min(d1, d2). The ordering
relation on bounds naturally extends to an inclusion ordering on DBMs.

We denote by v ∈ D the fact that a valuation v = (v1, v2, ..., vn) ∈ Qn

(where each vi is a value for clock ci) is within the timezone represented by
the matrix D. Let D = {(xij ,∼ij)}0≤i,j≤n, then v ∈ D iff vi − vj ∼ij xij ,
∀i, j ∈ [0, n] (assuming v0 = 0).

Three operations on DBMs defined in [10] are required by the pattern
matcher. We denote by empty(D) the emptiness predicate, i.e., the Boolean
function returning True if and only if no valuation exists in the timezone
represented by D. The intersection of DBMs D1 and D2, i.e., the DBM
representing the intersection of the corresponding timezones, is denoted by
D1∩D2. The canonical form JDK of a DBM D is the strongest set of bounds
defining the same timezone as D.

The precise definitions of the operators and notations discussed above
can be found in [10]. For our approach, we also need a few specific operators.
First, we define the extension of the maximal bounds of a DBM D1 =
{d1ij}0≤i,j≤n to those of another DBM D2 = {d2ij}0≤i,j≤n. Formally we have:

ext(D1,D2) =

dij =

 d2i0 if j = 0
d10j if i = 0

otherwise min(d1ij , d
2
ij)

0≤i,j≤n

One way of interpreting the definition is that ext(D1,D2) constructs a

Pattern Matching in Link Streams:Timed-Automata with Finite Memory19

path of valuations from D1 towards D2.
A second operator is the reset, which sets a clock value to zero and

updates the DBM so that the constraints are consistent w.r.t. the new value.
Formally, we write, for a DBM D = {dij}0≤i,j≤n and ck a clock:

D[ck ← 0] =

d′ij =

(0,≤) if (i = k ∧ j = 0) ∨ (i = 0 ∧ j = k)
d0j if i = k ∧ j 6= 0
di0 if j = k ∧ i 6= 0
otherwise dij

0≤i,j≤n

To reset a set of clocks {c1, c2...} we can write D1[c1, c2, . . . ← 0] which is
equivalent to D1[c1 ← 0][c2 ← 0] . . .

The shift operator translates a timezone according to a time delay x.

shift(D, x) =

d′ij =

 di0 + x if i > 0, j = 0
d0j − x if i = 0, j > 0
otherwise dij

Finally, the release operator is used to remove the constraints concerning

a clock. For a DBM D = {dij}0≤i,j≤n and a clock ck:

D \ ck =

d′ij =

(∞, <) if i = k
(0,≤) if j = k ∧ i = 0
di0 if j = k ∧ i 6= 0
otherwise dij

0≤i,j≤n

As for the reset operator, we let D\{c1, c2, . . .} be equivalent to D\c1 \c2 . . .

4.2 Handling of epsilon-paths

The function σclosure of Definition 11 in Section 3 computes a next token
while traversing a path of ε-transitions given a time delay x as input (with
x ≥ 0). We now explain, in terms of DBMs, the details of this computation.

Definition 12 (walking an ε-path)

walk(〈D,M0〉, [t1, t2, . . . , tn], x) = 〈(Fn ∩ dbm(Γqn)),Mn〉
where qn is the arrival location of tn, and Fn,Mn are obtained
thanks to the following iterative procedure:[

(P0,W0,F0) = (D,D, shift(D, x))
(Pi,Wi,Fi,Mi) = δclosure(ti,P

i−1,Wi−1,Fi−1,Mi−1), i ∈ [1, n]

20 C. Bertrand, F. Peschanski, H. Klaudel, M. Latapy

The function walk is based on an iteration procedure, which consists in
updating a set of three distinct DBMs: P (past),W (now) and F (future).
When a time delay x is inputted, P represents the initial clocks valuation, and
F represents the expected clocks valuation after the delay x, independently
of the location of the token. The third timezone W is used to represent the
successive clock valuations between possibly several ε-transitions.

The core of the walk function is the function δclosure that takes as
parameters a transition, the three DBMs and a memory valuation. It
produces the updated DBMs and memory valuation.

Definition 13 (update) Consider the transition t = q
ν,e,ν−−−→
γ,ρ

q′, the three

DBMs P,W and F, and M a memory valuation, then:

δclosure(t, (P,W,F,M)) = (δdelay(P,W,F), δmem(M′))

The memory update δmem is defined in Section 3 (cf. Definition 10). In
the following, we focus on the DBM computations performed by δdelay.

4.3 The time delay dataflow

Definition 14 (time update) Let t = q
ν,e,ν−−−→
γ,ρ

q′ be a transition, and the

DBMs P,W,F, then the function δdelay(t,P,W,F) is computed according to
the dataflow of Figure 6. This function is defined only if the whole dataflow
procedure is executed.

The partial function δdelay computes, from the three inputted DBMs, the
clock valuation enabling the transition and the outgoing time valuation after

input

transP

P

F

prepG

t
prepF

F
P

prepWW

resetP

P

resetF

P

output

P
G

G
transW

G

transF
F

F

F'
F

F F'
F

W

W
W

resetW
W W'

W

Figure 6: The dataflow for computing δdelay.

Pattern Matching in Link Streams:Timed-Automata with Finite Memory21

the possible resets. It is structured according to the dataflow of Figure 6.
From the source input on the left to the output on the right, the three DBMs
P,W,F flow through a certain number of nodes. There is also a fourth
DBM G that interprets the time constraints of the transition. This DBM is
only used internally by the dataflow. Each node in the dataflow corresponds
to a function that may sometimes fail to compute a value, which means
that δdelay is in fact not defined for the given input. Put in other terms,
the considered transition is not enabled. There are three main phases in
the computation. First, the preparation step (nodes with prefix prep) takes
into account the coarsest constraints to reduce the input DBMs. Then, the
transition step (suffix trans) takes into account the time constraints of the
transition. Finally, the reset step (suffix reset) computes the output values
by applying the clock resets of the transition. As shown by the diagram
arrows, there are quite intricate flow dependencies between the nodes. In
the remaining of the section, we will present each node function in details.
But first we introduce our running example for illustrating the definitions.

c1 := [2, 17]

c2 := [1, 2]
q0

5 ≤ c2 ≤ 8

ε q1
4 ≤ c2 ≤ 7]

12 ≤ c1 ≤ 14

ε, c1 := 0
q2

Figure 7: A simple timed automaton with two clocks and two ε-transitions.

Example 4 We follow the crossing of the first transition on the automaton
of Figure 7, without going into the details of the dataflow computation. The
automaton has two clocks c1 and c2, and the initial timezone is represented
by the following DBM:

D =

 (0,≤) (−2,≤) (−1,≤)
(17,≤) (0,≤) (16,≤)
(2,≤) (0,≤) (0,≤)

We assume that the inputted time delay is 9 seconds, hence the iterations of
walk begin with the following DBMs:

P(0) = D; W(0) = D; F(0) = shift(D, 9)

Now, we let (P(1),W(1),F(1),M(1)) = δdelay(t1, (P
(0),W(0),F(0))) for

the first transition t1 = q0
ε−−−−−→

5≤c2≤8
q1. The updated timezones are the

22 C. Bertrand, F. Peschanski, H. Klaudel, M. Latapy

following : P(1) = P(0) and F(1) = F(0) and

W(1) =

 (0,≤) (−4,≤) (−4,≤)
(22,≤) (0,≤) (16,≤)
(6,≤) (0,≤) (0,≤)

The further examples will detail the crossing of the second transition from
this first application of δdelay.

Preparation phase The node prepG of the dataflow computes the DBM
G corresponding to the global time constraint. It is defined as follows:

prepG(q
ν,e,ν−−−→
γ,ρ

q′) =
q
tz(γ) ∩ tz(Γq) ∩ (tz(Γq′) \ ρ)

y

The DBM G is the time zone corresponding to all the constraints the clocks
have to satisfy in order to enable the transition from q to q′. The constraints
from the timed constraint of q′ concerning the reset clocks are released
because the value enabling the transition are not the ones entering q′ for
this clocks.

In the preparation phase, we also need to filter out the valuations that
would contradict the global constraint. We remove from P and W the
valuations with at least one clock value above the maximal value of the same
clock in G. Symmetrically, the invalid valuations of F are those with at
least one clock below the minimal value in G. More formally, we have:

prepW (W,G) =

t{
w′ij =

[
min(wi0, gi0) if j = 0
otherwise wij

}
0≤i,j≤n

|

prepF (F,G,P) =

u

w
v

f ′ij =

 min(fij , gij) if j 6= 0
fi0 − pi0 + gi0 if j = 0, gi0 < pi0
otherwise fij

0≤i,j≤n

}

�
~

Note that the timezone P and F are linked as they represent respectively
the initial and final valuation of the clocks. If one is changed then the other
must also be updated. However, we do not need to add a preparation node
for P because it is not needed for the next phase, moreover the computation
would be redundant. However in the example below we will show how P
and F are synchronized for illustration purpose.

All the DBMs computed in this phase and most of those computed in
the following phases are canonicalized (using operator J·K). This ensures that

Pattern Matching in Link Streams:Timed-Automata with Finite Memory23

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16 18 20 22 24 26
c1

c2

P(1)

F′F(1)

W(1)
W′

G

Figure 8: Illustrating the preparation phase of δdelay applied on t2 from the
automaton of Figure 7.

no precision loss may be propagated during the computation. Only P is not
canonicalized as it is synchronized on F, which is already in canonical form.
Furthermore, the only values used in P are the individual clocks’ intervals
(pi0 and p0j for all i, j).

Example 5 Figure 8 illustrates the preparation phase of
δdelay(t2,P

(1),W(1),F(1)). Since the automaton only uses two clocks,
the DBMs can be represented as polyhedra in a 2-dimensional space. The
global constraint G = prepG(t2) is depicted as a rectangle in the middle
of the figure. The initial DBMs P(1),W(1),F(1) are depicted as polyhedra
outlines. The filled zones correspond to results of the preparation functions.

First, we define W′ = prepW (W(1),G), which removes the right part
of W(1) (shown as a barred area). Indeed, each valuation of W(1) where
c1 > 14 must be filtered out as 14 is the upper bound of c1 in G. In the case
of the “future” DBM we define F′ = prepF (F(1),G,P(1)). The valuation of
F(1) where c1 < 11 must be removed because the lowest value of c1 in G is
11. This corresponds to the barred area on the left of F′ on the figure. If we
actually computed the current update for P (the filled zone at the bottom of
the picture), then we would have to remove the corresponding barred area.
Symmetrically, the barred area on the right of the updated P is also removed
on F′ side6.

6As we already explained we do not have to actually compute the update timezone of

24 C. Bertrand, F. Peschanski, H. Klaudel, M. Latapy

The canonical form of both W′ and F′ is computed to get the most precise
values for the two-clocks constraints, i.e., the constraints corresponding to
pairs of clocks (the diagonals in Figure 8). For F′ we get −1 ≤ c1 − c2 ≤ 13.
And for W′ we get 0 ≤ c1 − c2 ≤ 10. At the end of the first step we have:

W′ =

 (0,≤) (−4,≤) (−4,≤)
(14,≤) (0,≤) (10,≤)
(6,≤) (0,≤) (0,≤)

 and

F′ =

 (0,≤) (−12,≤) (−10,≤)
(23,≤) (0,≤) (13,≤)
(11,≤) (−1,≤) (0,≤)

Transition phase In the next step, we actually “enter” the transition
by first updating the timezones so that it is enabled. Moreover, the values
unreachable after the transition are filtered out. We first consider the update
of W, as follows:

transW (W,F,G) = J(ext(W,F) ∩G)K

This function computes the reachable clock valuations consisting in ex-
tending the elements of W toward their final position in F. In the extension
only the elements satisfying the global time constraints G are preserved.
If the result of transW is an empty DBM, this means a time constraint is
not satisfied, thus the transition is not enabled (and the whole dataflow
execution fails).

transF (F,W′) =

t

f ′ij =

{
min(w′ij , fij) if i, j 6= 0

otherwise fij

}
0≤i,j≤n

|

transP (P,F,F′) =

p′ij =

 pij − fij + f ′ij
if (i = 0 ∨ j = 0) ∧ pi0 6= (0,≤)

otherwise pij

0≤i,j≤n

The two-clocks time constraints of the DBM returned by transW are
applied on F to remove its unreachable values. The result is put in canonical
form because the actual maximal and minimal values of each clock must be
known before the next phase. The function transP is used to synchronize

P.

Pattern Matching in Link Streams:Timed-Automata with Finite Memory25

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16 18 20 22 24 26
c1

c2

P′ P(1)

F′F′′

W′
W′′ G

Figure 9: Illustrating the transition phase of δdelay.

P with the DBM returned by transF . As depicted on the dataflow (cf. 6),
the parameter F is the initial DBM whereas F′ is the output of transF . The
function removes from P the area of F absent in F′, which we illustrate in
the next step of the example.

Example 6 Figure 9 represents the transition phase of δdelay. At the begin-
ning, the DBMs W′ and F′ resulting from the preparation phase, together with
P(1) are represented by their outline. The DBM W′′ = transW (W′,F′,G) is
represented as a filled area, which corresponds to the extension of W′ towards
F′ (the dotted area on the figure), intersected with the global constraint G.

ext(W′,F′) ∩ G = W′′ (0,≤), (−4,≤), (−4,≤)
(23,≤), (0,≤), (10,≤)
(11,≤), (−1,≤), (0,≤)

 ∩ G =

 (0,≤), (−12,≤), (−5,≤)
(14,≤), (0,≤), (9,≤)
(8,≤), (−4,≤), (0,≤)

Once W′′ is computed, we can define F′′ = transF (F′,W′′), which

consists in removing the valuations of F′ that are not reachable from W′′.
Finally, the computation of P′ = transP (P(1),F(1),F′′) consists in compar-
ing the definition interval of each clock in F and F′′, and subtracting the
difference to the bounds on P(1).

F′′ =

 (0,≤), (14,≤), (−10,≤)
(20,≤), (0,≤), (9,≤)

(11,≤), (−4,≤), (0,≤)

 ; P′ =

 (0,≤), (−5,≤), (−1,≤)
(11,≤), (0,≤), (16,≤)
(2,≤), (0,≤), (0,≤)

26 C. Bertrand, F. Peschanski, H. Klaudel, M. Latapy

Reset phase The final step consists in resetting the clocks present in ρ.
The three nodes of this part of the dataflow produce the outputs of δdelay.
For the timezone W the computation is straightforward:

resetW (W, ρ, q′) = JW[ρ← 0] ∩ tz(Γq′)K

The resulting timezone corresponds to the clock valuations entering the
arrival location q′. These are the valuations of W where the clocks of ρ are
reset, and such that the invariant Γq′ is satisfied.

The computation performed by the node resetF is a little bit more
involved. The definition is as follows:

resetF (F, ρ,W,W′,P) =u

wwwwwww
v

f ′ij =

min({fk0 + w′0k|1 ≤ k ≤ n} ∪ {fk0 − pk0|1 ≤ k ≤ n})
if ci ∈ ρ, cj = c0

min({(0,≤)} ∪ {f0k + w′k0|1 ≤ k ≤ n})
if ci = c0, cj ∈ ρ

w′ij if i, j 6= 0

otherwise fij

0≤i,j≤n

}

�������
~

The function needs both the DBM W outputted by transW and W′ as re-
turned by resetW . It returns the timezone representing all the valuations
reachable in the destination location q′ independently of the timed constraint
of q′. To compute it from F (result of transF) we have to find the intervals
of definition for all the reset clocks, and then restrict the timezone with
the time constraint of W′. All the reset clocks have the same maximal
and minimal valuations: ∀i, j ∈ ρ, f ′i0 = f ′j0 ∧ f ′0i = f ′0j . This value is the
maximum (resp. minimum) distance between the values in W and their
corresponding final position in F. We have to make sure that this distance
is not greater than the maximal distance between a point of P (from transP)
and the corresponding point in F. The non-reset clocks keep their previous
maximal and minimal values. In case the resulting DBM is empty, the
dataflow execution is considered failed.

Finally, resetP will generate the timezone corresponding to P after the
resets.
resetP (P, ρ,F,F′) =p′ij =

 (0,≤) if (i = 0, j ∈ ρ) ∨ (i ∈ ρ, j = 0)
pij − fij + f ′ij if i = 0 ∨ j = 0, pi0 6= (0,≤)

otherwise pij

0≤i,j≤n

The DBM F is the result of transF and the DBM F′ is the result of resetF .

Pattern Matching in Link Streams:Timed-Automata with Finite Memory27

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16 18 20 22 24 26
c1

c2

P′

F′′

W′′

P(2)

W(2)

F(2)

rR

r

R

Figure 10: Illustrating the reset phase of δdelay.

All the clocks of ρ have their maximal and minimal values set to zero. A
clock of P of value zero is only used by resetF to get the upper bound on the
maximal value of the reset clocks. For the non-reset clocks, their maximal
and minimal values are restricted in order to keep the corresponding bound
with the ones returned by resetF , as required by the preparation phase of
the (potential) next transition. This is done by comparing them with the
bound of F (from transF).

Example 7 Figure 10 depicts the final reset phase, the computation of the
zone outputted by δdelay. The zones resulting from the transition phase are
depicted by their respective outline. The timezones W(2) = resetW (W′′, ρ, q′)
and P(2) = resetP (P, ρ,F,F′) are flattened on the c2 axis because the clock c1
is reset. The timezone F(2) = resetF (F′′, ρ,W′′,W(2),P′) is depicted by the
filled area on the picture. We first compute the maximal and minimal allowed
values for each clock. The non-reset clocks keep the same bounds as the
ones from F′′. For the reset clocks, we have to compute the remaining time
interval represented on the picture with the arrows [r,R]. This correspond to
the minimal, resp. maximal, distance separating a valuation of W′′ to its
corresponding ”future” in F′′. However, the maximal value cannot be greater
than the distance separating an element of P′ of its corresponding element
in F′′ to avoid a situation in which the remaining time is greater than the
initial delay. The two-clock relations are the ones from W(2). Finally, its
canonical form is computed to have the exact bound of values for each clock.

28 C. Bertrand, F. Peschanski, H. Klaudel, M. Latapy

P(2) =

 (0,≤), (0,≤), (−1,≤)
(0,≤), (0,≤), (16,≤)
(2,≤), (0,≤), (0,≤)

 ; W(2) =

 (0,≤), (0,≤), (−5,≤)
(0,≤), (0,≤), (−5,≤)
(8,≤), (8,≤), (0,≤)

F(2) =

 (0,≤), (−2,≤), (−10,≤)
(6,≤), (0,≤), (−5,≤)
(11,≤), (8,≤), (0,≤)

5 Pattern language and experiments

5.1 Pattern language

The description of non-trivial patterns in link streams can become tedious
if specified directly as automata. Indeed, even simple patterns can yield
very large automata. We are looking for a more concise way to describe the
patterns, in the spirit of regular expressions. We propose the language of
timed ν-expressions to specify patterns for link streams.

Node n, n1, n2 . . . ::= k (known node)
X (variable, unknown node)
@ (arbitrary node)

Expression e, e1, e2, . . . ::= n (node)
n1 → n2 (link)

(regular) e1 · e2 (concatenation)
e1 | e2 (disjunction)
e1 ⊗ e2 (shuffle)
e∗ (iteration)

(time) 〈e〉[x,y] (delay7)

(memory)]{X1, . . . , Xn}e (allocation)
e{X1, . . . , Xn}! (release)

Table 1: The (core) pattern language

The syntax of the core constructs is given in Table 1. The basic con-
structs are those of traditional regular expressions. The symbols are referring
to known, unknown or arbitrary nodes. The link construct n1 → n2 describes

7Following [3] the expression inside a delay should not be empty.

Pattern Matching in Link Streams:Timed-Automata with Finite Memory29

a non-breaking connection between two nodes. The delay construct for time
constraints is the same as in [3]. The constructs for memory management
are based on variable occurrences (for unknown nodes), allocations and
releases. The notation]{X1, . . . , Xn}e (resp. e{X1, . . . , Xn}!) means that
the variables X1, . . . , Xn are allocated (resp. released) before (resp. after)
recognizing the subexpression e. The shuffle operator ⊗ is present in the
language to ease the description of patterns with independent parts.

The semantics of the pattern language is given in terms of a generated
timed ν-automaton. A special case is the link expression n1 → n2 that
corresponds to a basic automaton with three locations and two transitions
in a row, one for n1 and the second for n2. One important property is
that this construction is non-breaking (e.g. it is atomic for the shuffle).
Note that the translation is relatively straightforward. The translation rules
for the regular expression constructs are the classical ones. The function
aut : expression → automaton translates a timed ν-expression to the
corresponding timed ν-automaton.

Figure 11 illustrates the translation for some notable operators of the
language from [3]: delay and concatenation, which are impacted by the time
component.

To translate the delay operator 〈e〉I , we first need to generate the
automaton of the constrained sub-expression e. Then we create a new
clock c dedicated to measure the time for the new constraint. Finally, all
transitions to a final location of the automaton have their timed constraints
strengthened with the constraint c ∈ I.

The timed aspect of the concatenation operator e1·e2 consists in resetting
all the clocks in order to initialize the checking of the timed constraints.
Its translation is mostly the same as for regular expressions: each of the
sub-expressions, e1 and e2, is translated to an automaton (resp. A1 and
A2) and new automaton A is created containing all the locations of A1 and
A2, all their transitions and clocks. The initial location of A is the initial
location of A1, and its final locations are those of A2. Moreover, for each
transition of A1 going to one of its final locations, the equivalent transition
but with the initial location of A2 as destination and resetting all the clocks
of C2 is added to A.

Figure 12 illustrates how the allocation and release operators are trans-
lated. The translation of]{X1, . . . , Xn}e gives rise to a new initial location
q′0 and a ε-transition between q′0 and the initial location of the automaton
generated from e, which allocates the variables X1, . . . , Xn. The new initial

30 C. Bertrand, F. Peschanski, H. Klaudel, M. Latapy

aut(e)

q qf
ν1, e, ν1

γ1, ρ1

ν1, e, ν1

γ1 ∧ c ∈ I, ρ1

aut(〈e〉I)

aut(e1)

q1 qf1
ν1, e, ν1

γ1, ρ1

aut(e2)

qs2

ν1, e, ν1

γ1, C2

aut(e1 · e2)

Figure 11: Automata for the delay and concatenation operations.

location of the automaton is q′0. The translation of e{X1, . . . , Xn}! leads to
the creation of a new final location qf and a new transition from each final
location of the automaton generated for e to qf , each of them releasing the
variables X1, . . . , Xn. The new unique final location is qf .

In the experiments we often used the following derived constructs:

• allocation and use:]X
def
=]{X}X

• use and release: X!
def
= X{X}!

• allocation, use and release]X!
def
=]{X}X{X}!

5.2 Experiments

Our main objective is to develop a practical pattern matching tool for link
stream analysis. An early implementation of the tool is available online8. In
this section we present early experiments with this prototype to real-world
link streams.

8The MaTiNa tool repository is at: https://github.com/clementber/MaTiNA

https://github.com/clementber/MaTiNA

Pattern Matching in Link Streams:Timed-Automata with Finite Memory31

aut(e)
q′0 q0

ν{X1,...,Xn},ε

aut(]{X1, . . . , Xn}e)

aut(e)
qfi qf

ε,ν{X1,...,Xn}

aut(e{X1, . . . , Xn}!)

Figure 12: Automata for memory operators

For starters, the worst-case complexity of our pattern matching algo-
rithm is exponential on the size of the link stream (the number of links).
This complexity is reached for instance in the case depicted in Figure 13,
which is a ”memory-only” scenario. If the input is a sequence of distinct
symbols then the number of tokens associated to the unique location of the
automaton will double each time a symbol is consumed. For instance, in the
Figure, the 8 tokens are associated to distinct versions of the variable U (the
Ui’s) after consuming the input a b c: one for each subset of the alphabet.

νU.U

U

νN.N.νN

U0

a
b
c

U1

a
b

U2

a
c

U3

b
c

U4

a
U5

b
U6

c
U7

ε

Figure 13: A subset automaton after input a b c.

However, timed constraints most often improve the situation by remov-
ing expired tokens. Thus, in practice there are ways to avoid the worst-case
scenarios. This is similar to the practical ”regex” tools, which in general go
well beyond regular expressions, also leading to exponential blowups in the
worst case [6, 7].

This makes experimental evaluation of our method particularly appeal-
ing to estimate its practical performances and applicability. In order to do
so, we consider two link streams built from two different real-world datasets:
(1) a recording of traffic routed by a large internet trans-Pacific router [11],
and (2) a one month capture of tweets on Twitter France.

In the case of internet traffic, our motivation is to detect potential
coordinated attacks. To do so, we define a variant of the triangle pattern
discussed in section 2, namely 2x2 bicliques, i.e. squares, which [20] identified
as meaningful to this regard. Since there is approximately one link every

32 C. Bertrand, F. Peschanski, H. Klaudel, M. Latapy

Figure 14: DDoS pattern recognition with time frames δ = 0.01 (top) and
δ = 0.02 (bottom).

Pattern Matching in Link Streams:Timed-Automata with Finite Memory33

Figure 15: Triangle detection in Twitter exchanges with running time and
number of detected instances (top) and local running time (bottom).

34 C. Bertrand, F. Peschanski, H. Klaudel, M. Latapy

2µs in the stream and the stream lasts for a whole day, it must be clear that
we may not detect all untimed patterns in the stream. In this context, the
time frame of an attack is in general quite sudden and precise, and so time
is a crucial feature.

We present results for two different time frames in Figure 14. It displays
the total running time as a function of the number of processed links, together
with the number of found instances of the pattern. As expected, the number
of instances of the pattern increases with the time frame. Also, the tool
processes less links in a given amount of time (85 hours in this experiment).
Although our implementation is not optimized at all, the linear time cost of
the computations w.r.t. the number of processed links clearly appears.

Our second experiment targets communities of Twitter users. We
consider tweets over a period of a month, leading to a stream of 1.3 million
links 9. The pattern we seek is an undirected complete graph between k users
for a given k, i.e. cliques of size k occurring in a time frame of ten minutes.
Figure 15 presents the results for k = 3, i.e. triangle detection. The running
time experiences sharp increases at specific times, that correspond to peak
periods in Twitter exchanges. This is confirmed by plotting the execution
time at each step of the computation (right part of the Figure). During such
peaks of tweets, the tool has to store more data than usual, leading to a
more costly processing of links. One way to improve this issue would be to
consider a variable time rate by e.g. decomposing the link stream in distinct
sub-streams processed with different time frame.

6 Conclusion

The language of timed ν-expressions we propose to specify patterns in link
streams is heavily inspired by regular expressions, but enriched with timed
and memory features. The language is rather low-level but with well-chosen
derived constructs we think it is usable (and has been used) by domain
experts. The language has a straightforward translation to the core outcome
of our research: the timed ν-automata formalism and the corresponding
recognition principles. Compared to the conference paper, this extended
version presents a generalized version of the time component of timed ν-
automata. The clocks are now represented using timezones, modeled as
Difference Bound Matrices. Using them, we have formalized the timed

9The data come from the Politoscope project by the CNRS Institut des Systèmes
Complexes Paris Ile-de-France (https://politoscope.org)

Pattern Matching in Link Streams:Timed-Automata with Finite Memory35

pattern matching dynamics. This extension allows in particular unrestricted
resets on ε-transitions and enhances the language expressiveness. However,
in order to fully exploit in practice this semantical extension it would be
necessary to add some dedicated operators in the syntax of the language.

Beyond the formalities, we developed a functional, and freely available,
prototype that we experimented in a realistic setting. Non-trivial patterns
have been detected on real-world link streams, with decent performances
for such an early prototype. These early experiments give us confidence
regarding the relevance of our approach.

For future work, we plan both theoretical investigations and more
practical work at the algorithmic and implementation level. We also expect
to broaden the application domains. In particular, since our detection is
performed online, one potential area of application is that of monitoring open
systems at runtime for e.g. security or safety properties. At the theoretical
level, we plan to study the pattern language and its more precise relation to
the automata framework. Since the semantics are based on a token game,
the formalism is in a way closer to the Petri nets than it is from classical
automata. Hence, interesting extensions of the formalism could be developed
based on a high-level Petri net formalism, e.g. in the spirit of [12]. Our
prototype tool uses a relatively naive interpreter for pattern matching. We
plan to improve its performances by first introducing a compilation step.
Moreover, there is an important potential for parallelization of the underlying
token game.

References

[1] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman. Efficient pattern
matching over event streams. In Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, pages 147–160.

[2] R. Alur and D. Dill. A theory of timed automata. Theoretical computer
science, 126(2):183–235, 1994.

[3] E. Asarin, P. Caspi, and O. Maler. Timed regular expressions. Journal
of the ACM, 49(2):172–206, 2002.

[4] J. Bengtsson and W. Yi. Timed Automata: Semantics, Algorithms and
Tools, pages 87–124. Springer Berlin Heidelberg, Berlin, Heidelberg.

36 C. Bertrand, F. Peschanski, H. Klaudel, M. Latapy

[5] C. Bertrand, H. Klaudel, F. Peschanski, and M. Latapy. Pattern
matching in link streams: a token-based approach. In Petri Nets 2018,
2018. To appear.

[6] C. Câmpeanu, K. Salomaa, and S. Yu. A formal study of practical
regular expressions. Int. J. Found. Comput. Sci., 14(6):1007–1018, 2003.

[7] B. Carle and P. Narendran. On extended regular expressions. In LATA
2009, volume 5457 of LNCS, pages 279–289. Springer, 2009.

[8] A. Deharbe and F. Peschanski. The omniscient garbage collector: A
resource analysis framework. In ACSD 2014. IEEE Computer Society,
2014.

[9] A. Deharbe and F. Peschanski. The Omniscient Garbage Collector: a
Resource Analysis Framework. Research report, LIP6 UPMC Sorbonne
Universités, France, 2014.

[10] D. L. Dill. Timing assumptions and verification of finite-state concurrent
systems. In J. Sifakis, editor, Automatic Verification Methods for Finite
State Systems, pages 197–212. Springer Berlin Heidelberg, 1990.

[11] R. Fontugne, P. Borgnat, P. Abry, and K. Fukuda. MAWILab: Com-
bining Diverse Anomaly Detectors for Automated Anomaly Labeling
and Performance Benchmarking. In ACM CoNEXT ’10, 2010.

[12] V. K. Garg and M. T. Ragunath. Concurrent regular expressions and
their relationship to petri nets. Theor. Comput. Sci., 96(2):285–304,
1992.

[13] M. Kaminski and N. Francez. Finite-memory automata. Theoritical
Computer Science, 134:329–363, 1994.

[14] M. Latapy, T. Viard, and C. Magnien. Stream graphs and link streams
for the modeling of interactions over time. CoRR, abs/1710.04073, 2017.

[15] A. Paranjape, A. R. Benson, and J. Leskovec. Motifs in temporal
networks. In Proceedings of the Tenth ACM International Conference
on Web Search and Data Mining, WSDM ’17, pages 601–610. ACM,
2017.

Pattern Matching in Link Streams:Timed-Automata with Finite Memory37

[16] N. Tzevelekos. Fresh-register automata. In Proceedings of the 38th
Annual ACM SIGPLAN-SIGACT, POPL ’11, pages 295–306. ACM,
2011.

[17] D. Ulus, T. Ferrère, E. Asarin, and O. Maler. Timed Pattern Matching.
Formal Modeling and Analysis of Timed Systems, 8711, 2014.

[18] D. Ulus, O. Maler, E. Asarin, and T. Ferrère. Online Timed Pattern
Matching Using Derivatives. LNCS, 9636:7–8, 2016.

[19] T. Viard, R. Fournier, C. Magnien, and M. Latapy. Discovering Patterns
of Interest in IP Traffic Using Cliques in Bipartite Link Streams. In
(CompleNet’18) International Conference on Complex Networks, pages
233–241, Mar. 2018.

[20] T. Viard, R. Fournier-S’niehotta, C. Magnien, and M. Latapy. Discov-
ering patterns of interest in IP traffic using cliques in bipartite link
streams. CoRR, abs/1710.07107, 2017.

[21] M. Waga, T. Akazaki, and I. Hasuo. A boyer-moore type algorithm for
timed pattern matching. In Formal Modeling and Analysis of Timed
Systems, 2016.

[22] M. Waga, I. Hasuo, and K. Suenaga. Efficient online timed pattern
matching by automata-based skipping. In Formal Modeling and Analysis
of Timed Systems, 2017.

[23] H. Zhang, Y. Diao, and N. Immerman. On complexity and optimization
of expensive queries in complex event processing. 2014.

	Introduction
	Patterns in link streams
	Automata model and recognition principles
	The timed -automata
	The state notion: tokens
	Token game
	Event handling
	Time delay and -closure

	Timed pattern matching with DBM
	The clocks representation
	Handling of epsilon-paths
	The time delay dataflow

	Pattern language and experiments
	Pattern language
	Experiments

	Conclusion

