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Introduction

Interactions are a huge part of our daily life: phone calls,
crossing paths, sending emails, gossiping, IP traffic, trad-
ing, and many other examples. As they belong to different
types, they can have different properties: they can be in-
stantaneous or last for a period of time, directed or undi-
rected, involve a measurable amount of information that is
exchanged or not.

Now consider several interactions between a group of
entities. This group can be a group of friends, colleagues,
computers, students, etc. Several interactions can then be
a vector for a spread of rumor through a group of friends
or colleagues. They can represent a disease epidemic in
a school; a malicious software spreading in a computer
network. Undeniably, all these examples and many others
show that interactions are important.

Lets us consider a group of friends: Charlie, Lucy, Mar-
cie, Patty, Franklin, and Sally. Charlie gossips with Marcie
and Lucy, afterward Marcie repeats it to Patty and at the
same moment Lucy repeats it to Sally and Franklin (see
Figure 1 for illustration). It is easy to see that Charlie’s
gossip reaches everyone. Moreover, Lucy can spread a dis-
ease easier than the others as she is in direct contact with
Charlie, Sally, and Franklin.

Charlie

Marcie

Lucy

Sally

Franklin

Patty

Figure 1: A schema representing the
discussion between a group of friends.
A line between 2 persons represents
them talking to each other, with dashed
lines occurring after the full ones.

Now consider a larger group of friends, or simply a large
group of any type of entities. One can imagine many ques-
tions. Who can spread rumors faster? Can we detect the
sub-groups of individuals? Does IP traffic travel via a spe-
cific machine? Can someone alter the news spreading?
Can someone influence people easily? One would like to
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answer these questions, which would give us a better un-
derstanding of how interactions affect our life.

To answer these questions and countless others, we can
use graph theory. In the simplest form, a graph consists of
a set of nodes that are connected to one another by links.
The graph can be undirected, meaning a link has no orien-
tation, or directed, in which case a link from a node u to a
node v is not equal to a link from v to u. This can easily
describe interactions, the entities being represented by the
nodes and the interactions by links. Many techniques exist
to study the structure of these graphs to help us answer
the questions above.

Consider again the group of friends. In the graph, each
person is represented by a node, and the interactions are
represented by the links between the nodes. Recall that
Charlie gossips with Marcie, who in turn gossips with
Patty. In a graph, these interactions can be represented as
a sequence of links connecting two nodes, which is known
as a path. Back to our example, we can see that the path
Charlie → Marcie → Patty, represents the diffusion of the
gossip.

Now if we want to detect that Charlie can diffuse infor-
mation better than the others, or that Lucy can transmit a
disease to the others better than them, several metrics exist
that are based on the notion of links and paths, that we
call centrality metrics. Numerous centrality metrics can be
mentioned. One centrality method bases the importance
on the number of interactions a node has; this can help us
detect that Lucy can transmit a disease. Another centrality
evaluates the importance of a node by how close it is to the
others: it would help us detect that Charlie can diffuse a
rumor better than the others.

Nevertheless, in practice graph theory does not answer
these questions always in a correct manner. If Charlie
speaks to Marcie before she talks to Patty, one can imag-
ine that gossip or information that Charlie says will reach
Patty. However, if Marcie and Patty meet before Charlie
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speaks to Marcie, we can easily see the news can’t reach
Patty. Formally, the two interactions need to occur in a
specific order for the gossip introduced by Charlie to reach
Patty. The chronological order needs to be respected. In
other words, there is a temporal aspect that exists and must
be taken into account. In a real-world situation, interac-
tions occur over time and the order of interactions is im-
portant. A graph in its simplest form, as described above,
does not take into account this temporal aspect. Therefore,
adaptations are required to take them into consideration.

How to achieve this has become a question of interest
for many researchers. This introduces a lot of challenges
such as: considering the temporal aspect correctly, consid-
ering it efficiently, etc. Many different manners to take into
account the temporal aspect while addressing these chal-
lenges have been introduced.

In this thesis, we focus on centrality metrics. We study
in Chapter 1 the different solutions that were proposed to
adapt the centrality metrics to the dynamical context. In
Chapter 2, we present the datasets used in this work. After-
ward, in Chapter 3, to study and understand the different
solutions, we developed a framework that compares and
evaluates the different metrics. This is work is currently
under minor revisions [Ghanem et al., 2018a].

We will observe that these metrics tend to be compu-
tationally expensive, and so naturally, we are not able to
study certain networks that are too large. This brings us
to the second part of this thesis. We concentrate on the
computability of the centrality metrics. Our goal is to re-
duce the high computational demand and have the abil-
ity to analyze large datasets. To do so, we explore in
Chapter 4 several possibilities such as computing the cen-
trality for fewer instant or exploiting structural proper-
ties. We validate these propositions on several real-world
networks. The first part of this chapter has been pub-
lished [Ghanem et al., 2018b].

With a similar goal, however with a different approach,
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we consider in Chapter 5 a real-world application: the dif-
fusion of information in Delay Tolerant Networks. Con-
sidering a specific application allows us to introduce a
centrality metric, tailored especially for this case, hence
more efficient. The work of this chapter has been pub-
lished [Ghanem et al., 2017].

Finally, we summarize our contributions and we discuss
some of the possible perspectives that this work opens.
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1
State of the Art

Finding the important nodes has been a question of inter-
est for some time. This lead to the introduction of a large
number of metrics, called centrality metrics. Each of these
centrality metrics captures the importance in a different
manner. In social network analysis, these metrics can be
used to find the important individuals in each network.
This can be useful in the case of message diffusion. In in-
frastructure networks, centrality metrics can find the crit-
ical points of the infrastructure, so they can be protected.
Another case is movement networks: in an epidemic situ-
ation, when we lack the ability to vaccinate everyone, it is
more interesting to find the individuals that are prone to
transmitting the disease more than the others.

In this chapter, we present the principal centrality met-
rics that were introduced for static graphs. As these cen-
trality metrics are not always adequate for dynamic net-
works, we study the existing adaptations for the tempo-
ral case. In a second part, we observe that computing
these centralities, in both the temporal and static case, is
not always computationally feasible. Thus, we investigate
the existing approximation and estimation methods for ex-
isting centrality measures in both the temporal and static
case.
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1.1 Static Centralities

A network is represented in the form of a graph G =

(V, E), which consists of a set V of nodes and a set E of
links in the form of (u, v) where u, v ∈ V. These links can
be directed or undirected, representing the transfer of in-
formation in one or both directions respectively. Figure 1.1
represents a simple graph consisting of six nodes and eight
undirected links.

The first centrality to be introduced is the degree cen-
trality. It defines the importance of a node by the number
of links it has. From this centrality, the chances of an in-
dividual (represented by a node) to become infected by a
virus or influence the nodes around it can be estimated.
For example, the node a in Figure 1.1 has a degree cen-
trality equal to 4, as it is connected to nodes b, c, d and
e. a

b

c

d e

f

Figure 1.1: A toy example of a graph.
1.1.1 Shortest path based centralities

Afterward, more subtle notions were explored, and using
these notions the community introduced more sophisti-
cated centrality metrics. One of these notions is the path. A
path is a sequence of links which connects nodes, with the
number of links representing the path’s length. A short-
est path between two nodes has the shortest length. The
length of such a path is also known as the distance. For
example, in the toy example in Figure 1.1, the distance be-
tween c and f is 2 as the shortest path contains two edges
c→ e and e→ f .

As one would expect information to travel via the short-
est path, a class of centrality metrics was introduced to
evaluate the importance of nodes in relation to this notion.
One of the centrality based on the shortest path was intro-
duced by [Bavelas, 1950] and is named the Closeness cen-
trality. Informally, this centrality attributes more impor-
tance to the nodes that are closest to the others. Formally,
this is calculated for a node u as the sum of the inverse of
distances between u and all the other nodes. The definition
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of this centrality for a node u is:

Closeness(u) = ∑
v 6=u

1
d(u, v)

, (1.1)

where d(u, v) represents the distance between u and v.
One should note that when there is no path between u and
v, the distance between them is equal to infinity (d(u, v) =
∞), which translates to 0 in the centrality computation1. In 1. With the convention that 1/∞ = 0.

the toy example in figure 1.1. The node a (in red) can reach
four nodes via one edge and one node via two edges. This
is not the case for any other nodes, thus the node a has the
highest closeness centrality, that is equal to 4.5.

Another centrality based on the shortest path was intro-
duced by Freeman and is called the Betweenness Central-
ity [Freeman, 1977]. This centrality measures a different
notion of importance than that of Closeness centrality. It
measures the extent to which a node tends to be on the
shortest paths between other nodes. The betweenness cen-
trality of a node u is defined as the sum over all pairs of
nodes s and t of the fractions of shortest paths from s to t
that go through u. Formally the centrality for a node u is
defined as:

Betweenness(u) = ∑
s 6=u 6=t

σst(u)
σst

, (1.2)

where σst represents the number of shortest paths be-
tween the nodes s and t, and σst(u) represents the num-
ber of those paths that go through u. One could expect
the node with the highest closeness centrality to have the
highest betweenness centrality, however this is not the case.
In Figure 1.1, the node e (blue) has a higher betweenness
than a. The node a is globally closer to all the nodes than
e, however, for information to diffuse from f to reach any
of the nodes, it has to travel via e. This increases the im-
portance of e, while in the case of a, we can observe that
d can act as a replacement in certain cases, thus lowering
a’s importance as fewer shortest paths pass via this node.
This simple example shows that both centralities are based
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on the notion of shortest paths, yet they capture different
notions of importance.

1.1.2 Spectral Centralities

A second class of centrality metrics, called spectral central-
ities, was introduced in parallel. In this class, we consider
that information is more likely to go via a random path of
any length, rather than through the shortest paths. Thus,
in this centrality class paths of all lengths are taken into
account. These centralities are based on the representation
of the graph in the form of a matrix. This matrix is called
adjacency matrix. The element Auv in the matrix is equal to
1 if there is a link between the nodes u and v, and to 0 oth-
erwise. Naturally, in the case of a undirected graph, this
matrix is symmetric. Figure 1.2 represents the adjacency
matrix for the toy graph previously observed.



a b c d e f

a 0 1 1 1 1 0
b 1 0 0 1 0 0
c 1 0 0 1 1 0
d 1 1 1 0 0 0
e 1 0 1 0 0 1
f 0 0 0 0 1 0


Figure 1.2: Adjacency matrix of the top
graph.

Eigenvector centrality is one of the most known spectral
centrality. It was introduced by [Bonacich, 1987]. This cen-
trality is a natural extension of the degree centrality. In this
centrality, connections to important nodes are more valu-
able than those with insignificant nodes. Thus, a node with
numerous links to irrelevant nodes has a lower centrality
than that of a node with few links to important nodes. For
a node ui, the eigenvector score is defined as:

λceigenvector(ui) =
n

∑
j=1

aijceigenvector(uj) ∀i, (1.3)

where n is the number of nodes in the graph and λ is a
constant. This formula can be rewritten into the form of

Ac = λc, (1.4)

where c is an eigenvector of A and λ is the associated
eigenvalue. From the Perron-Frobenius theorem, we know
that there is a unique and positive solution, if λ is the
largest eigenvalue associated with the eigenvector of the
adjacency matrix A [Newman, 2010]. In this eigenvector c,
the vth element of the vector gives the centrality score of
the vth node. To solve 1.4, a common method is the Power
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iteration which can be used to find the dominant eigen-
vector, from which we have the centrality scores for all the
nodes. If we apply this method to toy example, we get the
following eigenvector: [0.54, 0.33, 0.46, 0.45, 0.38, 0.12]. Like
in the case of closeness, the node a has the highest cen-
trality, however, we can observe that both nodes c and d
have a higher centrality value than e, that had the highest
betweenness centrality and second highest closeness cen-
trality.

One of the problems of the previous centrality is that
paths of all lengths are scored equally. To solve this, [Katz, 1953]
proposed the Katz centrality with the purpose of giving
less importance to long paths. This is done using a param-
eter α, that acts as attenuation factor, where α < 1. Paths
of length p are weighted by pα. Employing the fact that
Ap

ij gives the number of paths of length p from i to j, the
following equations combined all the paths of all lengths:

(I − αA)−1 = I + αA + α2A + · · · , (1.5)

where I is the identity matrix. This equation combines
all the paths, while penalizing each path of length p by a
factor of pα. Finally, using this result, the sum of each row
of the matrix gives the centrality score of each node. One
should note that, as the Katz centrality gives a lower score
to long paths, this centrality can simulate the loss of in-
formation as it travels further. [Estrada and Hatano, 2008]
introduced communicability centrality which is quite sim-
ilar to Katz centrality. It also quantify the importance of a
node in relation to all the paths in the network, while pe-
nalizing long paths. Several other spectral centralities exist
such as PageRank [Page et al., 1999], which was specially
designed for webgraphs. See [Newman, 2010] for more
centrality metrics.

1.2 Temporal Centralities

Over time, it became obvious that the temporal aspect of
networks should be taken into consideration [Lerman et al., 2010].
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In dynamic networks, nodes interact at various times, thus
the links between the nodes as well as the nodes them-
selves can appear and disappear over time. Consequently,
there is a chronological order between the links that should
be taken into consideration. Therefore, the simple solution
consisting in: aggregating the graph and omitting the tem-
poral information, to be able to use the classic centralities,
is not adequate. For example, if we consider an aggregated
graph and a shortest path based centrality the chronolog-
ical ordering will not be respected and paths that do not
respect time will be considered. In other words, a path
could simulate information going from the future to the
past. Figure 1.3 represents a toy dynamic graph with three
nodes and two links. In the graph, the first link occurs be-
tween a and b at instant 1, and later on at instant 2, the
second link occurs between b and c. Naturally, informa-
tion can pass only from a to c via b, but not from c to a. A
classic static centrality will consider the path from c to a,
which should normally not be considered. Several studies
[Holme and Saramäki, 2012, Mantzaris and Higham, 2013,
Liao et al., 2017] found that this can lead to the overestima-
tion of the diffusion of information in the network. Indeed
a static centrality will consider paths that are temporally
meaningless and thus more transfer of information that is
in reality possible.

a b c

1 2

Figure 1.3: A toy example of a dynamic
graph, with labels on each link repre-
senting the instant in which the links
occurs.

Another obstacle exists: as the graph changes the nodes’
centrality values evolve. As classic centralities attribute
each node a single value representing its centrality, thus
this dynamic change of a node’s importance is completely
omitted by studying the aggregated graph. Again if we
consider the toy graph in Figure 1.3, at instant 1: the path
(a, b) exists while, at instant 2, the path (a, b) disappears
and (b, c) appears. Therefore, it is expected that the cen-
trality of each node to be different in each of these two
instants.
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1.2.1 Online Algorithms

Certain papers considered efficiently computing the static
centrality whenever the network changes or evolves. For
instance, Kas et al. [Kas et al., 2013] propose an algorithm
that, given the distance between all pairs of nodes and a
network change2, computes the new value of the closeness 2. Links appearing or disappearing.

centrality by updating the distance values rather than com-
puting them from scratch. Another approach consists of
finding the subgraph that was affected by the network’s
change [Lee et al., 2016]. From there, the betweenness cen-
trality is recalculated only for the subgraph. Several other
propositions [Singh et al., 2015, Nasre et al., 2014, Green et al., 2012]
were introduced to update the betweenness centrality ef-
ficiently after each modifications in the graph. Santos et
al. [Santos et al., 2016] introduced an efficient parallel and
distributed algorithm to update the closeness centrality.
However, this algorithm handles only the case of link dele-
tion.

Finally, these methods are relevant only when the net-
work evolves at a slower rate than that of the dissemi-
nation. For example, in a cellular network, phone calls
are instant while the addition or removal of an antenna is
quite slow, and the network can remain stable for years.
Hence, considering a static centrality and taking into ac-
count paths that do not respect time is not an issue. In
other words, simulating the spreading of information at
any instant using classic methods remains relevant. On
the other hand, in epidemic networks, individuals interact
quite faster than the spreading of the diseases. The paths
of between individual change during the propagation and
thus, these changes should be taken into account.

1.2.2 Shortest path based centrality adaptations

One of the first works to adapt shortest path based central-
ity to take into account the evolution of temporal networks
was introduced by Uddin et al. [Uddin et al., 2013]. This
simple solution consists in considering the temporal graph
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as several static graphs each representing an equal period
of time. See figures 1.4 and 1.5 for illustration.

c

b

a

d

e

T = [0]

c

b

a

d

e

c

b

a

d

e

c

b

a

d

e

T = [1] T = [2] T = [3]

Figure 1.4: A representation of a dy-
namic graph in the form of 4 snapshots
representing each 1 instant.

c

b

a

d

e

T = [0, 1]

c

b

a

d

e

T = [2, 3]

Figure 1.5: A representation of a dy-
namic graph in Figure 1.4 in the form
of 2 snapshots representing each 2
instants.

Using this representation, the authors proposed a frame-
work that allows the direct use of existing centrality met-
rics without the need of any modifications. For any given
centrality metric, it is computed on each snapshot, attribut-
ing to each node a centrality value representing the impor-
tance of the node during this period. Thus, this gives sev-
eral centrality values for each node (as many as snapshots).
While this method proved to be more accurate than static
analysis, it has several disadvantages. Firstly, as observed
in the static case, paths that do not follow the chronologi-
cal order of links are still considered inside each snapshot.
For example, in Figure 1.5, in the snapshot [0, 1], we can ob-
serve a path from c to b, via the path c→ a→ b. However,
this path is temporally wrong: if we look at Figure 1.4, we
can see that the link (c, a) occurs after (a, b). Secondly, each
centrality value represents a certain period rather than a
specific instant. This means that the changes are centrality
value is not completely represented. Thus, the dynamicity
of the nodes’ importance is not well described. Another is-
sue is that to use this method, the size of the periods needs
to be determined. The choice of this value has been inves-
tigated in [Krings et al., 2012, Léo et al., 2015]. If the time
scale is too large, the temporal information is lost, thus
the benefit of the approach is lost. When the time scale
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is too small, each snapshot becomes too disconnected and
contains paths and thus, the snapshot becomes meaning-
less. We can observe in Figures 1.4 and 1.5, that when the
snapshot size is increased, a lot of temporal information is
lost.

Finally, as each snapshot is analyzed separately, paths
between the snapshots are not taken into account. We
investigate the snapshot method more deeply in Chap-
ter 3. Furthermore, [Uddin et al., 2016] propose two met-
rics which quantify the change in importance of a node
in a dynamic network. This approach is subtly but really
different from a study of the time evolution of a node’s
importance, as the authors quantify the total amount of
dynamicity in the network. The snapshot method was also
used by [Kim et al., 2012] to predict degree, closeness and
betweenness centrality.

[Braha and Bar-Yam, 2008] also considered the snapshot
method. They used the degree centrality to find local hubs
in each snapshot. Additionally, they showed that between
each snapshot there is a huge fluctuation in the results.
The fact that they are capable to detect this fluctuation us-
ing a method that partly omits the network’s dynamicity
further confirms that this dynamicity should be taken com-
pletely into account. Finally, they compared the snapshot
results with the aggregated results and showed that results
were quite different. Additionally, they use the snapshot
method to find cycles.

To take into account the transfer of information between
snapshots, [Tang et al., 2010] redefined the notion of a tem-
poral path. This definition considers paths between snap-
shots. Additionally, they limited the number of links that
can be traversed each snapshot. Formally a path between
nodes i and j is defined as:

ph
ij = (nt1

1 , · · · , ntk
k )

where n1 is i, nk is j, tk−1 ≤ tk and h is the maximal num-
ber of consecutive nodes in the same snapshot. Thus, such
a path allows transfers between snapshots, while limiting
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the number of exchanges during the snapshot. The authors
redefine both betweenness and closeness centralities with
the introduced path definition. Therefore, this method
is capable of considering long paths that go through the
whole dataset. However, inside each snapshot, the chrono-
logical order of links is not respected. Thus, the paths that
they consider could be misleading. Additionally, both cen-
trality adaptations attribute each node a single centrality
value that represents the global importance of a node in
the whole dataset, rather than represent a specific instant.

Other approaches consist of defining a new notion of
path. This rethinking would allows a complete representa-
tion of the dissemination of information. In [Pan and Saramäki, 2011],
the notion of temporal path is introduced, however not de-
fined formally. A temporal path consists of a sequence of
links that are time-respecting. In figure 1.6 (left), there is a
temporal path from node B to node E via the links (B,A),
(A, C) and (C, E). From this, the authors define the no-
tion of temporal distance between two nodes u and v as the
shortest time to reach v from u. Their study concentrated
mostly on the paths, yet they introduced an adaptation of
the closeness centrality. However, this adaptation repre-
sents the importance by a single figure, representing the
global importance of nodes.

[Nicosia et al., 2013] introduce the notions of temporal
betweenness centrality and closeness centrality by using
the notion of temporal paths. However, their definitions
consider only paths that start at the beginning of the dataset’s
time span. This can be misleading: for example, if two
paths are equivalent, but one starts at the beginning and
the other does not, only the one that starts at beginning is
only considered. For this is reason, the paths in the dataset
that occur after all nodes can be reached from each other
are not taken into account. This underestimates the dis-
semination in the network. [Qiao et al., 2017] introduced
a temporal closeness definition with the same notion of
paths. However, their definition considered paths only in
a certain time interval, and thus, the centrality value rep-
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resents the importance of nodes for a certain time interval.
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Figure 1.6: Left: A labeled graph,
a link’s label gives the instant at
which the link has occurred. Right:
The representation of the graph in
the aggregated form proposed by
[Scholtes et al., 2014].

[Scholtes et al., 2014, Scholtes et al., 2016] introduced an-
other method to take into account the temporal aspect.
They defined the higher order aggregate network, which ag-
gregates the temporal network into a static network, in
which each node represents a path. This model has dif-
ferent levels of aggregation. In the kth level, each node
represents a path of length k− 1, and a link between these
two nodes represents a path of length 2k− 2. Each link is
labeled by the number of times it appears. Thus this rep-
resentation keeps information about the number of times
each path appears, but not when. To observe this, in Fig-
ure 1.6 presents a temporal graph and the representation
in the form of higher order aggregate network with k = 2. We
can observe how each node represents a path of length 1,
and the links represent longer paths. Additionally, we ob-
serve how a temporal graph of 5 nodes and 5 links has to
be represented using 10 nodes and 6 links, thus the mem-
ory need increases quite fast. They redefine both closeness
and betweenness centrality for this model. Additionally,
they introduced a novel centrality called temporal reach cen-
trality. For a node, it measures the number of nodes that
can be reached from this node via paths with a given max-
imum length. However, these centralities are too costly to
be computed except for small graphs. Additionally, they
represent the centrality of each node by one figure.

In a similar fashion using a static representation, [Kim and Anderson, 2012]



24 m. ghanem

A

B

C

D

E

T = [0, 1]

A

B

C

D

E

T = [2, 3]

A

B

C

D

E

T = [4, 5] Time

Figure 1.7: The toy example of Fig-
ure 1.6 (left) in the form of a time-
ordered graph model.

proposed a method to transform temporal graphs into static
graphs without loss of temporal information. They intro-
duced the time-ordered graph model that represents a tem-
poral graph in the form of a directed static graph. It de-
composes the temporal graph into several static graphs
each representing one instant. Each node is duplicated in
each static graph and each node is linked to its duplicate
in the following snapshot. However, as this is computa-
tional expensive, they use static graphs that represent peri-
ods larger than one instant. Figure 1.7 presents a temporal
graph and the representation of this graph in the form of
a time-ordered graph, with each static graph representing a
period of 2 instants. In dotted blue we can observe one
possible temporal path that would be considered by this
method. From this model, they redefined the classic def-
inition of betweenness and closeness. Nevertheless, these
methods still evaluate the importance using a single value.

A
B
C
D
E

t0 t1 t2 t3 t4 t5 Time

Figure 1.8: The toy example 1.6 (left) in
the form of a direct acyclic graph.

Another approach that represents also a dynamic net-
work in the form of a static network was introduced in
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[Takaguchi et al., 2016]. In this work, the authors create a
copy of each node for each instant where it is active and
link each node to its following duplicate using a directed
link. Additionally, the links representing the interactions
between nodes are kept. Figure 1.8 represents the toy ex-
ample of Figure 1.7 (left) in the form of a direct acyclic graph.
The number of links and nodes required to represent the
dynamic graph is much larger than the original network.
Thus, this representation requires a lot of memory, in par-
ticular for highly active datasets. This representations is
quite similar to the time-ordered graph representation. The
authors introduced two centralities: temporal coverage cen-
trality and temporal boundary coverage. We discuss these cen-
tralities more deeply in Chapter 3.

[Kostakos, 2009] considered the same representation, but
the study concentrated on structural metrics such as aver-
age geodesic proximity, which is the average number of
edges that separate two nodes. From this, for a node u,
the author quantifies the average geodesic distance from u
towards all the other nodes as well the average geodesic
towards u from all the nodes. In a similar manner, for two
nodes u and v, the author quantifies on average the time
required to reach v from u.

[Latapy et al., 2017] introduced lately a novel model called
link streams. In this model, rather than representing a dataset
as a graph, the dataset is represented as a flow of links,
thus keeping all the temporal information. In addition to
introducing all the basic notions found in graph theory,
they introduced both closeness and betweenness centrality
for the link streams.

Several other propositions acknowledge that the distance
between nodes vary over time [Shamma et al., 2009, Alsayed and Higham, 2015,
Williams and Musolesi, 2016]. In each of these proposi-
tions, the temporal paths were taken into account. How-
ever, the proposed methods still represented the impor-
tance of each node by a single figure that represents the
global importance.
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1.2.3 Spectral centrality adaptations

Several papers introduced adaptations and variants for the
spectral centralities. [Laflin et al., 2013] considered a snap-
shot approach, and they are able to take into account the
chronological order of the interactions. The authors do
this by reconsidering the notion of path. In this case a path
consists of a sequence of edges, and each link in the se-
quence occurs before or at the same instant as the follow-
ing link. They then use the classic Katz centrality, hence
they still represent the importance of a node by a single
figure. [Mantzaris and Higham, 2013] applied this method
to an email dataset, in which they simulated an epidemic
spreading from a node. Their goal in this paper was to ob-
serve the infection rate in this dataset. They showed that
the centrality method was a good estimation of the simu-
lation results; in other words nodes with a high centrality
diffused the disease better.

In the same manner, [Huang and Yu, 2017] proposed a
spectral based centrality named Dynamic-Sensitive central-
ity. They use this centrality to detect the chances of each in-
dividual of becoming infected in three real-world datasets.
They showed that this centrality performs better than static
centralities. However, they also do not study the changes
in the nodes’ importance and represents the importance by
a single value.

[Estrada, 2013, Grindrod et al., 2011] extended the com-
municability centrality, and introduced Temporal communi-
cability centrality. This temporal adaptation can be com-
puted in theory at any instant, however, in practice the
authors use a snapshot method and compute the value for
each snapshot. As this centrality regroups temporal and
topological effects in graphs, [Colman and Charlton, 2016]
proposed the splitting of temporal communicability cen-
trality in two centrality metrics. They proposed two cen-
tralities: Broadcast centrality and Receive centrality. They
showed using simple examples that a node does not have
to be the most active to be the most important. Addi-
tionally, they performed several statistical studies on real-
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world datasets.
[Wang et al., 2017] also use the snapshot method to re-

define the degree centrality to the temporal case. After-
wards, they compute the deviation of degree centrality be-
tween each snapshot, i.e. that is how the degree centrality
of each node differs between each snapshot. This central-
ity proved to be a good indicator to find the important
nodes in epidemic models. Silvia et al. [Silva et al., 2017]
used the same model for eigenvector centrality; addition-
ally they detected communities.

Finally to get a better understanding of the snapshot
method, Flores et al. [Flores and Romance, 2018] studied
the difference between eigenvector-like centralities in dis-
crete (snapshot) and continuous time scales. They show
that real-world datasets were represented better by the con-
tinuous than discrete time centralities.

Another model known as Temporal quantities was intro-
duced in [Praprotnik and Batagelj, 2015, Batagelj and Praprotnik, 2016].
They redefine the algebraic operations for the matrix com-
putations, to take into account the temporal aspect. From
this, they introduce a temporal version of both Katz and
eigenvector centrality. However, this method is computa-
tionally demanding. In a similar manner, [Ghosh et al., 2014]
redefine the algebraic operations to take into account the
temporal aspect. From this, they propose a framework that
computes a generalized spectral centrality. However, they
represent the importance of each node by a single figure.

[Fenu and Higham, 2017] proposed an additional rep-
resentation. The authors represent a dynamic network,
in the form of a matrix where each column/row corre-
sponds to a pair composed of a node and a time instant.
[Taylor et al., 2017] introduced a similar representation known
as supra-centrality matrix and study the eigenvector cen-
trality on this matrix. We investigate this method deeper
in Chapter 3.

This representation was used by [Prado et al., 2016] to
analyze two books. The authors aggregated each chapter
in a single graph. In other words, they used a snapshot
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method, with each snapshot representing a chapter. Their
study showed that aggregating the whole book fails, com-
pared to aggregating per chapter, to capture the dynamic-
ity of the book, for instance as the appearance and disap-
pearance of characters in the books overtime. Additionally,
the importance was attributed to the wrong character in
the books when the books were aggregated.

[Lerman et al., 2010] proposed an adjacency matrix that
represents the whole dynamic process. The adjacency ma-
trix of each snapshot is computed and afterwards, these
matrices are combined into a matrix of size N × N, where
N is the number of nodes. In this matrix, the element
i, j represents the cumulative amount of information that
reaches j from i. Two types of matrices are generated, one
where information can be kept within the node (conserva-
tive diffusion) and another corresponding to paths where
the information is lost if it is not passed forward imme-
diately to another node (non conservative diffusion). They
introduced the dynamic centrality, which measures the im-
portance a node u by the total amount of information sent
by u that reaches all the other nodes.

In this work, their main goal is detecting influential pa-
pers in citation networks. They compared dynamic cen-
trality with PageRank, which consists of aggregating the
network and omitting all the temporal information. This
comparison showed that the results given by dynamic cen-
trality are different from that given by PageRank. This
indicates that the temporal aspect should be taken in con-
sideration

This method was further extended in [Ghosh et al., 2011,
Ghosh and Lerman, 2012]. They studied citation networks,
with each snapshot representing a period of one year. They
showed that PageRank is better to find important actors in
the conservative model than α-centrality[Bonacich, 1987].
However, in the case of a non conservative model, α-centrality
performed better.

[Rozenshtein and Gionis, 2016] proposed a unique method
to adapt PageRank to the temporal case that the authors
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call Temporal PageRank. They redefined the notion of
path, to respect the chronological order, rather than recon-
sidering the adjacency matrix as is commonly done with
spectral centrality adaptations. Their study concentrated
on the theoretical aspects of the classic PageRank3 and tem- 3. Aggregating the network into a static

graph.poral PageRank. Interestingly, they showed that in certain
cases the temporal PageRank is an estimation of PageRank
centrality in the aggregated graph.

1.2.4 Conclusion

We observe, for both shortest path based and spectral cen-
tralities that there are many adaptations taking into ac-
count the temporal aspect of the datasets. While these
adaptations might appear to be quite different, in most
cases they share many aspects. Several adaptations can
be seen as snapshot based, aggregating certain periods of
time for efficiency reasons. Another class of adaptations
introduced similar path definitions with subtle differences.

Additionally, certain methods still represent the impor-
tance of a node by a single value and do not study the time
evolution of this importance. Other methods are compu-
tationally demanding for highly active datasets, either be-
cause of the very large memory requirements or high algo-
rithmic complicity. For a review, see [Holme and Saramäki, 2012,
Holme, 2015]. To conclude, we can observe several prop-
erties that a good adaptation should possess:

1. Each node should have a centrality value at each instant;

2. The complexity should be low;

3. A notion of temporal path should be used.

1.3 Approximation

As we observed in the previous sections, computing both
static and temporal centrality methods can be quite expen-
sive. For example, to compute the static betweenness cen-
trality for a node, all the shortest paths need to be com-



30 m. ghanem

puted. [Brandes, 2001] proposed a method to compute be-
tweenness centrality in O(NM), where N and M are the
number of nodes and edges respectively. This is much
lower than the straightforward method in O(N3). Thus,
the community designed methods estimate the centrality
rather than efficiently compute the exact value.

1.3.1 Static graphs

We start by investigating the methods proposed for the
static case. [Eppstein and Wang, 2001] introduced one of
the first methods to estimate closeness centrality. They ran-
domly select a number of nodes, from which they compute
the shortest paths to all the other nodes of the graph. Af-
terward, for each node they compute the average distance
to the sampled nodes, and use this value to estimate the
node’s centrality. [Brandes and Pich, 2007] used the same
random strategy proposed in [Eppstein and Wang, 2001]
and proposed several strategies to select nodes for the es-
timation, such as: randomly selecting nodes in proportion
to their degree, to increase the chances to find the hubs;
a strategy to increase the distance between the sampled
nodes, to cover the whole network better; a strategy to se-
lect the periphery nodes; a strategy to decrease the dis-
tance between the sampled nodes, to avoid the overestima-
tion of the distances. After comparing all these strategies,
they concluded that the random strategy performs much
better than the other sophisticated selection strategies.

Several adaptive sampling methods were introduced. In
such methods, the number of nodes as well as the na-
ture of nodes varies in relation to the network in ques-
tion. [Bader et al., 2007] built on the sampling concept in-
troduced [Eppstein and Wang, 2001] and proposed an adap-
tive sampling method. For a given node, they randomly
sample a number of nodes to approximate their between-
ness centrality. However, the number of sampled nodes
is not fixed, thus the method is considered adaptive. The
number of sampled nodes depends on the information ob-
tained from each previously sampled node. In other terms,
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after each sample, the number of required sampled nodes
can increase or decrease. [Potamias et al., 2009] studied the
estimation of the distance between nodes. They show that
finding the optimal set of sampling nodes is a NP-hard
problem. Thus, they study several heuristics to be able
to select these nodes. Later on, [Tretyakov et al., 2011] im-
proved this method to be able to estimate the distances
between nodes in milliseconds for graphs with over three
billion edges.

[Maiya and Berger-Wolf, 2010] used concepts from graph
expanders [Hoory et al., 2006] to sample the nodes for the
approximation. This method consists in randomly select-
ing a node, and afterwards all following sampled nodes
are selected from the neighborhood of the already selected
nodes. Each time they sample a node, they select the node
that would give the largest number of possible nodes to
be sampled for the next turn. Thus, this slowly expands
the graph. They show that this method can approximate
betweenness, closeness and eigenvector centrality. They
compared this method to random-walk (RW) and breadth-
first search (BFS) sampling methods that were introduced
in [Brandes, 2001, Eppstein and Wang, 2001]. They showed
that their proposed method performs better than RW and
BFS. Later on, [Lim et al., 2011] modified this method and
presented an extensive study, from which they showed that
taking into account the nodes’ degree centrality helps in
estimating other centrality metrics.

[Borassi et al., 2015] proposed a method to detect the top
k nodes: the k most important nodes. To do, the au-
thors modified the BFS procedure used in computation of
closeness centrality. When computing the closeness for
a node u, the proposed BFS procedure stops once it is
sure that the node u is not in the top k nodes. Later
on, [Bergamini et al., 2016] built on this method and in-
troduced a faster algorithm for unweighted graphs. They
keep track of the lower bound of the farness of each node.
The farness is the opposite of closeness, it measures how
far a node is to the others. A node’s lower bound farness
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indicates if the node is in the top k nodes.
In a different approach, [Okamoto et al., 2008] suggests

estimating the ranking of the nodes rather than estimating
the centrality values. To identify an important node, the
centrality value is not as useful as simply knowing how
well a node performs in comparison to the others. Thus,
Okamoto et al. introduced a ranking method for closeness
centrality that uses both the estimation method of [Eppstein and Wang, 2001]
as well as the exact method of [Fredman and Tarjan, 1987].
Their method simply evaluates how each node compares
to the others rather than computing the centrality value.
This is much more efficient than estimating the centrality
and ranking the nodes afterwards. However, again this
method only estimates the ranking rather the centrality
value. Thus for example, distinguishing two nodes with
quite similar centrality values is not possible. More over,
[Saxena et al., 2017] showed that ranking versus closeness
centrality always follows a sigmoid pattern; using ran-
domly selected nodes, they estimate the centrality for nodes
of average importance. Afterwards, with this estimated
value and the sigmoid form, they estimate the ranks and
values of centrality of all the nodes.

1.3.2 Evolving graphs

Finally, we are not aware of any estimation methods that
exists for temporal graphs. Nevertheless, certain meth-
ods have been proposed for evolving graphs. Bergamini et
al. [Bergamini et al., 2014] introduced one of the first meth-
ods to estimate betweenness centrality for weighted and
unweighted evolving graphs. Their method proves to be
much faster than existing methods that recompute the es-
timation from scratch, however, they estimate the central-
ity after a batch of modification and not after every single
modification. Other methods were introduced in [Kourtellis et al., 2015,
Riondato and Upfal, 2016], however, they do not take into
account the totality of the temporal aspect. In other terms,
they consider chronologically meaningless paths, and thus
their methods are only relevant for evolving graphs and
not temporal ones.
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Datasets

In this thesis we are interested in datasets that represent
a set of interactions occurring between entities at different
instants over a fixed duration. Depending on the context,
the entities for instance can be individuals and an inter-
action is the simple act of being near another individual.
Another example is the exchange of emails between email
accounts; in this case, the entities are the email accounts
and sending an email is an interaction between the sender
and receiver. Social networks such as Twitter, can also be
considered, where the Twitter accounts are the entities, and
retweeting a tweet of another account is the interaction.

In this chapter, we split the datasets that we analyzed in
this work by groups depending on their nature. For each
dataset, we describe its basic properties and study certain
aspects such as the activity over time. All the datasets are
anonymised.

2.1 Email-exchange Networks

The datasets in this group are based on the exchange of
emails. In this group, the entities are individuals or more
precisely email accounts. The interactions correspond to
one email account sending an email to another account.
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When a single email is sent to several accounts, this is rep-
resented by several interactions.

Enron

The Enron dataset represents the emails exchanged by 150
employees of the Enron company [Shetty and Adibi, 2005].
The dataset was obtained by the Federal Energy Regula-
tory Commission during its investigation in Enron’s col-
lapse. The 150 employees exchanged over 47, 000 emails
during three years. For each email exchanged, information
on the senders, receivers, and the moment it was sent is
available.

Radoslaw

Similarly to the Enron dataset, the Radoslaw dataset rep-
resents the exchange of emails between the employees of
a mid-size company [Michalski et al., 2011]. The company
contained 168 employees, who exchanged over 80, 000 emails
during a period of 9 months in 2010. Like Enron, for each
email, it records information on the senders, receivers, and
the moment they were sent.

Democratic National Committee (DNC)

This dataset comes from a leak of the emails exchanged
between the members of the Democratic National Com-
mittee, which is the formal governing body for the United
States Democratic Party [Kunegis, 2013]. The leak occurred
in 2016 and the email dump contained all email data ex-
changed by the 1891 members. This corresponds to around
40, 000 email exchanges from September 2013 to May 2016.
Here, we only kept the sender, receivers, and the moment
each email was sent.

UC Irvine messages network (UC)

These are the messages exchanged by the students of the
University of California, Irvine [Opsahl and Panzarasa, 2009].
This dataset contains just under 60, 000 messages that were
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Figure 2.1: Evolution of the number of
active nodes as a function of time for
the four email based datasets.

exchanged during 6 months. In this case also, the mes-
sages can be sent to several students, which corresponds
to multiple interactions that have a common source and
timestamp.

For each dataset, we study the evolution of the num-
ber of active nodes over time. We employ the snapshot
method: the network is considered as a sequence of static
graphs considered separately. We study the number of ac-
tive nodes for each period1. Figure 2.1 presents the evolu- 1. See table 2.1 for the size of snapshot

for each dataset in page 47.tion of the activity for the four email-exchange datasets. In
three datasets (Enron, DNC, UC-Email), we observe some
peaks of activity, however most of the time the activity can
be considered low. For example, this is quite obvious in
DNC, where the activity is quite low for most of the du-
ration of the dataset, except for the peak around the 900th
day. Additionally, at most 700 members are active, yet the
dataset contains a total of 1891 nodes. Finally, Radoslaw is
the exception, at any given time, around 80% of the nodes
are active.

Additionally, for each dataset, we study for each node
the amount of time it is active2 and the number of inter- 2. The difference between first and last

interaction that involves the node.actions that involve it. Figure 2.2 presents the correlation
between the duration of activity and the number of inter-
actions. Each dot in the figure represents a node. In En-
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Figure 2.2: Duration of activity v.s.
number of interactions for the four
email based datasets.

ron, the values are quite distributed, additionally, the same
node has the the largest number of interactions and longest
duration of activity. However, globally certain nodes are
active for a long period of time, without participating in a
lot of interactions. On the opposite, certain nodes are ac-
tive for much shorter times, yet they interact much more
during this short period. In Radoslaw, most nodes have
almost the same duration; however, they do not interact
the same amount of times. The rest of the nodes have a
smaller duration: at most one third of the dataset’s du-
ration. In DNC, we observe the same phenomenon as in
Radoslaw, but most of the nodes are active for a short pe-
riod of time and only one node has a high duration. In UC
we observe values all over the spectrum.

Finally, for each node we study its degree in the aggre-
gated graph. Figure 2.3 presents the inverse cumulative
distribution of the degree for the four datasets in logscale.
In Enron, one node comes in direct contact with half of
nodes, while 90% of the nodes are in contact with less than
30% of the nodes during the whole dataset. In Radoslaw,



Chapter 2. Datasets 37

 0.0001

 0.001

 0.01

 0.1

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

N
u
m

b
e

r 
o
f 
n
o

d
e
s
 (

N
o

rm
a
liz

e
d
)

Degree (Normalized)

Enron
Radoslaw

DNC
UC

Figure 2.3: Inverse cumulative distri-
bution of degree centrality normalized
by total number of nodes for the email
based datasets.

nodes have higher relative degrees: one node is in contact
with over 90% of the nodes and 10% are in contact with at
least 50% of the nodes. In DNC and UC, we observe low
values of the degree, in both datasets the maximum degree
does not reach 25% of the nodes.

2.2 Co-occurrence networks

The networks in this group do not necessarily come from
the same source, however they share the same notion of
link. A link here represents two entities being present to-
gether in a specific context, like for example two hashtags
in the same tweet.

HashTags

This is a 22 day long twitter dataset3 generated by twit- 3. This dataset is not publicly available.

ter accounts known to be associated with terrorist groups.
Each node represents a hashtag. When two hashtags are
used in the same tweet, a link between both exists. Thus,
a tweet with several hashtags generates several links. The
dataset contains 3048 hashtags and 100, 429 links.
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Figure 2.4: Evolution of the number of
active nodes as a function of time.

Articles

A dataset provided by the Guardian newspaper3. Each
article published on the guardian website has a set of key-
words, for example, Australia. The keywords here repre-
sent the nodes of the graph. Each link (u, v, t) represents
two keywords u and v appearing on the same article at
time t. During the 15 years, 2902 keywords were used,
producing over 500, 000 links.

We start by studying the evolution of activity for these
two datasets in figure 2.4. We should first note that due
to the log scale, when the number of active nodes is zero,
the values are not presented and we observe empty peri-
ods. The first observable phenomenon in both datasets is
the low activity: the number of active nodes at any given
instant is much lower than the total number of nodes. This
is expected as keywords or hashtags are not constant and
vary depending on the current situation (example: news of
the day). Thus, here the nodes appear for a certain period
and then disappear completely, which explains why the all
the nodes are never active at the same moment.
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Figure 2.5: Duration of activity v.s.
number of interactions for the two
co-occurrence datasets.
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Now, we concentrate on the duration of activity and
number of interactions for each node in figure 2.5. In Hash-
tags, we can observe values all over the spectrum. Certain
nodes are present for really short periods (less than 1 day),
however they have a lot of interactions. These nodes are
probably related to a specific event that everyone tweets
about for a short period of time. In Articles, we observe the
same distribution except for certain nodes that are active
for almost all the dataset, and at least three years more than
the other nodes. Manual investigation showed that these
nodes correspond to general keywords, e.g. India, Plants,
Animals. From the activity profile (figure 2.4) and duration
of activity (figure 2.5), we can conclude that nodes become
active for the first time at different times. For example,
in Articles, only a small number of nodes are active for
the whole duration of the datasets, yet the global activity
remains quite constant.
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Figure 2.6: Inverse cumulative dis-
tribution of degree centrality for the
co-occurrence based datasets.

Figure 2.6 presents the inverse distribution of the degree
centrality. For HashTags, the nodes are rarely in direct
contact with many others. The node with highest degree
is in contact with around 20% of the nodes. This is not
the case in Articles, the node with highest degree is almost
in contact with all the others, and globally all the nodes
have a higher degree than that observed in HashTags. We
estimate that this due to fact that hashtags can be written
in different ways, however in Articles as the keywords are
chosen by the editors they are more likely to be written in
the same manner and be more general.

2.3 Social Networks

All networks in this group come from similar sources, such
as Twitter and Facebook. Here the nodes of the datasets
can represent social accounts, such as Facebook account or
Twitter accounts.



40 m. ghanem

Retweets

From the same twitter dataset used in HashTags, we ex-
tracted the subset of 27, 919 re-tweets generated by the
10, 484 twitter accounts. Each link (u, v, t) represents a user
v re-tweeting a tweet of user u at time t.

Facebook

This dataset is a 1 year long record of the activity of Face-
book users between 31st of December 2015 and 31st of De-
cember 2016 [Viswanath et al., 2009]. The dataset contains
8 977 Facebook users and their 66 153 posts on each other’s
wall on Facebook. The nodes of the network are users, and
each link represents a user writing on another user’s wall.

Bitcoins

Bitcoin is a cryptocurrency that is used to trade anony-
mously over the web [Kumar et al., 2016]. This anonymity
can lead to fraud quite easily, as finding the person phys-
ically or his identity after a transaction is near impossible.
Thus after transactions, user’s can rate one another evalu-
ating their trust. Each link (u, v, t) represents u rating v at
time t. This dataset contains 24, 186 interactions between
3783 accounts during a period of 5 years.

Now, we study the evolution of activity for the three
datasets in figure 2.8. As observed with the co-occurrence
networks, the number of active nodes is always low com-
pared to the total number of nodes. Figure 2.7 presents the
inverse cumulative distribution of the duration of activity
of nodes for the three datasets. In Retweets (resp. Bitcoins)
just under 90% (resp. 80%) of the nodes are active for only
20% of the total duration of the dataset or less. The most
plausible reason is likely people changing accounts in twit-
ter or trading with the different accounts in Bitcoin.
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Figure 2.7: Inverse cumulative distribu-
tion of duration of activity of nodes for
the social networks datasets.

Additionally, we can observe that in Retweets the activ-
ity starts extremely low and increases slowly, with drops
at certain moments. In Facebook, the activity continues to
increase over time, as new nodes are constantly appearing.
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Figure 2.8: Evolution of the number of
active nodes as a function of time for
the social networks datasets.
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Figure 2.9: Duration of activity v.s.
number of interactions for the three
social networks.

Interestingly, in Bitcoins, the activity at the beginning of
each year fluctuates quite strongly then becomes stable till
the following year. This is likely due to a seasonal transac-
tion period.

Finally, we study the duration of activity and number
of links for each node in Figure 2.9. Again, as for like
co-occurrence networks we observed values all over the
spectrum. We are not able to point out a specific profile:
some nodes are active for a short period, but they have a lot
of interactions; some nodes are active for long periods with
a small number of interactions; and nodes are in between.
Also, we observe that the node with highest number of
interaction is not the node with the longest duration and
vice-versa.
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Figure 2.10: Inverse cumulative distri-
bution of degree centrality for the social
based datasets.

We finally study the inverse cumulative distribution of
the degree in figure 2.10. We can observe that the values
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are much lower than those observed in the other groups
of dataset. Again this is not surprising: in Facebook, indi-
viduals communicate only with their friends; for a node to
have a degree close to 100% of the total number of nodes,
it would need to write on the facebook wall of 8977 dif-
ferent individuals. In Retweets and Bitcoins the values are
higher but remain quite low; again this can be related to
the nature of the datasets and how users behave.

2.4 Motion networks

In this group of networks, all the nodes represent individ-
uals, participating in an event or being present at the same
location for a certain period of time. Two individuals at
close proximity at a certain time are represented by a link
here.

RollerNet

This dataset was collected during a rollerblading tour in
Paris in August 2006 [Tournoux et al., 2009]. The tour is a
weekly event and gathers approximately 2500 participants.
It takes place in the streets which implies acceleration and
speed reductions due to traffic lights for example. Among
the participants, 62 were equipped with wireless sensors
recording when they were at a communication distance
from one another. These sensors use bluetooth technology
to look for neighbors every 15 seconds. The dataset there-
fore contains the proximity links between the individuals
carrying the sensors. The total dataset duration is approx-
imately 2 hours and 45 minutes (note that there is a break
of approximately 30 minutes during the tour).

Reality

During a period of 9 months, 96 students from the Mas-
sachusetts Institute of Technology (MIT) [Opsahl and Panzarasa, 2009]
participated in a data collection experiment. The students’
phones registered each time they came in contact with an-
other student. From September 2014 to May 2015, the 96
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students came into contact over 1, 000, 000 times.

Taxi

For 30 days, 320 Taxi in the city of Roma had a tablet device
that sent the GPS location every 7 seconds [Bracciale et al., 2014].
From this dataset, we produced a network in which every
link represents two taxis coming into near proximity, 30
meters from one another. In the analysis we only consid-
ered an 8-hour interval, the duration of a taxi driver’s shift.
During this 8 hour interval, 131 taxis were active and had
over 80, 000 contacts.

Primary

242 students and teachers in a primary school participated,
from the beginning of a working day till the end of the next
working day [Gemmetto et al., 2014]. They wore a wire-
less sensor that records the proximity between each other.
A link between any two individuals is registered if the in-
dividuals are in proximity. The capture is made every 20
seconds. Thus, a 1 minute encounter produces three links.
We should note that as this dataset was recorded over 2
days, it includes the evening and night. As during this
time each individual returns to his home, a period of to-
tal inactivity exists. Thus, we produced a second dataset
that represents the first working day, that we call Primary-
day1. The total dataset contains over 120, 000 interactions,
from which around 60, 000 occurred in the first day.

HyperText

During the ACM Hypertext 2009 conference, the confer-
ence attendees volunteered to participate in a data collec-
tion experiment [Isella et al., 2011]. Around 100 partici-
pants wore radio badges that monitored their proximity
over about 2.5 days. This produced around 20, 000 links.

Infocom

Similarly to HyperText dataset, a 4 days an experiment was
conducted during Infocom 2006 in Barcelona [Chaintreau et al., 2007].
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98 devices were deployed among which 78 were partic-
ipants, 17 were placed at fixed points and 3 have been
placed in the elevators. They scanned their surroundings
every 120 seconds, to detect the other devices in proximity.
This produced around 100, 000 links.

Finally, we study the evolution of activity for these six
datasets in figure 2.11. We shall study each dataset in or-
der. First of all, we can observe in RollerNet and Reality,
that most of the nodes are constantly in contact with the
others during the whole duration of the datasets. The one
exception being the drop in activity in Reality, that repre-
sents the end of year holidays. In Taxi, the nodes are never
all active at the same instant; this is due to the fact that
the drivers’ shifts do not necessarily start at the same time,
hence the nodes are not active at the same moment. In
Primary and Hypertext, the evolution can be considered
similar to Rollernet; almost all the nodes are active during
the working hours and then become completely inactive
during the evening. Finally, in Infocom, we can observe a
similar evolution, where the activity decreases overnight,
but never reaches zero.

Now we study the duration of activity and number of in-
teractions each node has for the six datasets in figure 2.12.
In RollerNet, all the nodes have a similar duration and
number of links, except for two nodes. In other datasets,
we can observe the same phenomenon to different extents.
In each dataset, groups of nodes share the same duration
and then have different values of number of interactions.
The only exception to this is Taxi, where the values are
quite distributed all over the spectrum.

Finally, figure 2.13 presents the inverse cumulative dis-
tribution of the degree for the six datasets. We observe
several different profiles. For example for RollerNet most
of the nodes are in almost in direct contact with all others
nodes, while in the case of Taxi, the highest value is 30%
of the total number of nodes. However, globally the values
are much higher than those observed in the other classes of
datasets. This is expected from the nature of the datasets,
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Figure 2.11: Evolution of the number of
active nodes in function of time for the
motion datasets.
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Figure 2.12: Duration of activity v.s.
number of interactions for the motion
datasets.

which usually consist of a group of individuals remain-
ing in the same area for a period of time. This naturally
increases the chances of interacting with the others.
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Figure 2.13: Inverse cumulative dis-
tribution of the degree for the motion
based datasets.

2.5 Conclusion

To conclude, a total of fifteen datasets were presented. Four
datasets have an email exchange nature, two have a co-
occurrence nature, three came from social networks and
the remaining six are motion datasets. They all vary in
the number of nodes, number of interactions and dura-
tion. Certain datasets are quite dense such as RollerNet
and some are quite sparse such as Retweets. For each
dataset, we had to compute the median inter contact time
and snapshot size. These values as well as the basic prop-
erties of each dataset are present in Table 2.1.
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Datasets |V | |E| Duration Nature

Median
inter contact

time
(Seconds)

Snapshot
duration

Enron 151 47 088 3 years Email 960 1 week
Radoslaw 168 82 876 9 months Email 53 1 week

DNC 1891 39 264 2 5 years Email 57 1 week
UC 1899 59 835 6 months Email 38 1 week

HashTags 3 048 100 429 22 days Social 16 3 hours
Retweets 10 484 27 919 20 days Social 18 1 hours
Facebook 8 977 66 153 1 year Social 278 1 week
Articles 2 902 571 877 15 year Social 9134 1 week
Bitcoins 3 873 24 186 5.2 year Social 86400 1 week

RollerNet 62 403 834 3 hours Motion 4 60 seconds
Reality 96 1 063 063 9 months Motion 600 1 week

Taxi 131 85 732 8 hours Motion 1 60 seconds
Primary 242 125 773 32 hours Motion 20 60 seconds

Primary-day1 242 60 611 8.6 hours Motion 20 60 seconds
HyperText 113 20 818 2.5 days Motion 20 60 seconds
Infocom 98 155 524 4 days Motion 20 60 seconds

Table 2.1: number of nodes |V|, number
of links |E|, dataset duration, median of
inter-link time and snapshot duration
for each dataset.
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Temporal Centralities under scrutiny

As we observed in Chapter 1, several methods were intro-
duced to adapt existing centrality measures for the tem-
poral case. Some adaptations were introduced to modify
specific centrality metrics. Others introduced global solu-
tions that can apply to any centrality metrics. The range of
techniques used in those adaptations are wide and there
is a lack of understanding on how these techniques differ
and perform against one another.

In this chapter, we introduce a framework to compare
the centrality metrics. We apply it to four centrality adap-
tations. We investigate how these four methods differ on
both the global and node level on several real world datasets.

3.1 Centralities

In this section, we present the four centrality methods that
we consider. These four centralities are emblematic of the
adaptations that can be found in the current literature.
These adaptations consist of either redefining the notion
of path, representing the graph in an aggregated form or
splitting the graph into several snapshots. We focused on
centralities that respect several aspects: they have to at-
tribute each node a centrality value at each instant; they
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must be computationally feasible; they must take into ac-
count all the temporal information; notice also that we are
not interested in updating a classic centrality metric as the
graph evolves, but in metrics aiming at describing the evo-
lution of nodes centrality.

3.1.1 Temporal Closeness

The first method was presented by [Magnien and Tarissan, 2015].
A dynamic network G = (V, E) consists of a set V of
nodes and a set E of timed links of the form (u, v, t) where
u, v ∈ V and t is a timestamp. In this formulation, the set
of nodes does not evolve over time. We should note that for
this method and all the others, we consider the networks
as undirected. For example a link (u, v, t) is equivalent to
a link(v, u, t).

C

B

A

D

E

1
2

3

3

4

Figure 3.1: A toy example of a dynamic
graph. The labels on the links indicate
the instant in which the link occurs.

The authors use the notion of temporal path. A temporal
path from v0 to vk+1 consists of:

• a starting time ts;

• a sequence of links (v0, v1, t0), (v1, v2, t1), · · · , (vk, vk+1, tk);

such that:

1. ∀i, i = 0 · · · k− 1, ti < ti+1;

2. t0 > ts.

This path starts at ts, and its duration is equal to tk− ts. A
path from u to v starting at time ts is a shortest path if it has
the shortest duration among all paths from u to v starting
at time ts. From this, the temporal distance between u and
v at ts is defined as the duration of the shortest path from u
to v at ts, and is denoted by dt(u, v). In the same fashion as
the classic path definition (see section 1.1.1), the distance
is equal to infinity when there is no path between the two
nodes starting at a specific instant.

To get a better understanding of this definition, we ob-
serve in Figure 3.1 a toy graph with five nodes and five
links: the labels on the link represent the instant in which
the link occurs. If we consider the nodes B and E, we ob-
serve two paths starting at time 0. The first (B → A →
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C → E) departs at t = 1 and arrives at t = 3, its duration
is equal to 3. The second path (B → A → E) departs at
t = 1 as well; however, it arrives at t = 4, thus, its dura-
tion is equal to 4. This toy example shows that while the
first path contains structural links than the second path,
its duration is shorter than that of the second. Thus, the
first path is considered the shortest path between B and E
starting at t = 0.

Before we introduce the temporal closeness definition,
we recall the definition of closeness centrality for node u
in non-evolving graph defined in [Bavelas, 1950] as:

C(u) = ∑
v 6=u

1
d(u, v)

(3.1)

where d(u, v) is the classical graph distance (see Sec-
tion 1.1.1 for more details).

Replacing d(u, v) by dt(u, v) gives the temporal closeness
definition:

Ct(u) = ∑
v 6=u

1
dt(u, v)

, (3.2)

This definition of Ct(u) requires to compute the value for
each time instant t. To reduce the computational needs, we
suggest computing the temporal closeness every I seconds.
The value of I is based on median of inter-link duration,
which is the time separating two consecutive links.

3.1.2 Snapshot

The second method was proposed by [Uddin et al., 2013].
They introduced a framework that represents a temporal
network Gt as a sequence of static networks known as
snapshots. Each snapshot represents an aggregation of all
the interactions for a given period of the temporal network.
Given a static centrality metric, each snapshot is analyzed
separately as a normal classic graph. Thus, the computed
centrality value for a node u during a snapshot represents
the node’s importance during the whole period that the
snapshot represents. Figure 3.2 represents the toy example
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Figure 3.2: A snapshot representation of
the dynamic graph in figure 3.1. Each
Snapshot represents a period of two
instants.

of Figure 3.1 in the form of three snapshots, each repre-
senting a period of duration 2. If one wants to compute
the closeness centrality for the node a, the centrality would
be computed on each snapshot individually.

For comparison purposes, we consider that the value of
a node’s centrality is constant during the whole snapshot.
Here, we use this framework with the classic closeness def-
inition, which we denote from now on as SnapshotCl.

3.1.3 Temporal Eigenvector

This method was introduced by [Taylor et al., 2017]. Un-
like the two previous methods that base the importance of
a node on the notion of the shortest path between nodes,
this third method is a spectral one, and thus is based on
paths of all lengths. The network is split into periods rep-
resenting each an equal duration of the network. For each
period, the authors construct an adjacency matrix A. The
adjacency matrix at time t is given by At. They combine
these matrices into a large matrix called supra-centrality
matrix. Its size is NT × NT, where N is the number of
nodes and T is the number of time periods. The diagonal
contains the adjacency matrices constructed for each pe-
riod. The remaining of the supra-centrality matrix contains
an identity matrix weighted by ω parameter. See figure 3.3
for an illustration.

A =



A0 ωI ωI · · ·

ωI A1
. . .

. . .
. . . ωI

. . .
. . .

. . .
. . .

. . . At


Figure 3.3: Example of a supra-centrality
matrix, with At represents the adja-
cency matrix of instant t.

This weight ω couples each node with itself over the dif-
ferent periods. This allows the representation of the wait-
ing times, where a node keeps information till it can pass
it forward. When ω → 0+, the layers are uncoupled and
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a node does not store the information over several layers.
When ω → ∞, the layers (periods) are strongly linked, the
weights on these inter-layer links becoming higher than
those inside each period. Thus, the inter-layer links be-
come more important than the intra-layer links. In other
words, paths that consist of storing the information with
same node for a long time become more important than
those that consist of passing the message forward right
away.

With this supra-centrality matrix, the eigenvector central-
ity can be computed. This computation would consider all
the temporal aspects of the network such as the diffusion
of information over time. It also attributes each node a cen-
trality value for each period. We consider this method with
a period equal to I and denote it as Temporal Eigenvector.

3.1.4 Coverage Centrality

The fourth method and considers the temporal aspect in a
different manner and was proposed by [Takaguchi et al., 2016].
They represent a temporal network as a static network
where each temporal node consists of a pair of a structural
node (original node of the network) and a timestamp t. For
example, a node u that interacts with other nodes at t1 and
t2 will be represented by two temporal nodes (u, t1) and
(u, t2). These two nodes are then linked, to simulate the
retaining of information within the same node for a period
of time. The second type of links represents the true in-
teractions of the network. In a graph, if the path (u, v, t)
exists, it is represented by a two link, one from node (u, t)
to (v, t + 1) and a second one from node (v, t) to (u, t + 1).
See Figure 3.4 for illustration.

A

B

C

D

t0 t1 t2 t3 t4 t5
time

Figure 3.4: A toy graph in the form of a
direct acyclic graph.

Building on this representation, the authors introduce
two notions of centrality. First, temporal coverage centrality
represents the importance of a temporal node (u, t) by the
fraction of structural nodes for which a shortest path pass
through the node (u, t).

In certain cases, a node can have several opportunities
to pass the message, and all these opportunities produce
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the same result (the same departure and arrival time). In
Figure 3.4, if information is diffused from A to D, we can
observe that node B has three occasions (at t1, t2 and t3) to
pass forward the information. If B’s presence at t1 is re-
moved all the the paths from A to D are destroyed. How-
ever, if the B is removed at t2 (white node in the figure),
a path still exist via B at instant t3. While, the presence
of B at t3 is the last chance for B to forward the mes-
sage. The authors argue that instants where the node can
be removed without altering the diffusion need to be de-
tected. Thus, they introduce the temporal boundary coverage
centrality, which gives higher importance to nodes on the
boundary (node B at t1 and t3) than the nodes that can be
removed (node B at t2).

Our preliminary results showed that both centralities re-
acted in the same way and the difference in results is not
significant. Thus, we consider the temporal coverage central-
ity in this chapter. We denote it by Coverage.

3.2 Comparison protocol

In this section, we introduce a formal method that com-
pares any two centrality metrics. This method compares
these metrics on two levels. First, on the global level, we
study how each metrics globally evaluates the importances
of nodes. Second, on the node level, we study how each
node’s global importance is perceived by the metric as well
as the evolution of this importance overtime. Before pre-
senting this comparison method, we discuss certain tools
that are required to facilitate this comparison.

3.2.1 Ranking

A node’s centrality quantifies it’s importance. However,
inevitably this value alone does not indicate the node’s
significance compared to the others. For example, a node
with a degree centrality equal to 100 is not significant if
another node in the network has a degree centrality of
1000. On the other hand, this node is significant if no
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other node in the network has a degree centrality higher
than 100. Thus, we can see that the net value of central-
ity is not necessarily informative without any knowledge
about the other nodes’ centrality values. Furthermore, if
two centrality metrics attribute different values to the same
node, comparing these values without any knowledge of
the other nodes’ centrality values is meaningless.

To be able to take into account the centrality values of the
remaining nodes, we consider the node’s rank rather than
its centrality value. This remains a numerical figure and
it indicates how this node performs against all the others.
Thus from a node’s rank, we can deduce the significance
of the node in comparisons to the remaining nodes of the
network. To rank the nodes, we consider the inverse compe-
tition ranking method. This method is defined as follows:

1. The rank 0 is always attributed to the least important
nodes;

2. The ranking of each node is equal to the number of less
important nodes.

A = B > C = D = E > F︸ ︷︷ ︸
Centrality Relation

4 4 1 1 1 0︸ ︷︷ ︸
Ranking

Figure 3.5: Centrality relation of six
nodes and the ranking.

To get a better understanding of how this method ranks
the nodes. We consider the example in Figure 3.5, we ob-
serve six nodes, with the following relationships between
their centrality values: F is the least important, nodes C,
D and E have an equal importance and finally A and B
are the most important nodes with equal importance. The
node F evidently is attributed the rank 0 as it has the small-
est ranking value. Afterward, the nodes C,D and E are as-
signed the rank 1 as their centrality value is only higher
than that of F. Finally, nodes A and B are assigned the
rank 4 as they are more central than the rest. It is easy to
see that knowing that A’s rank is 4 gives more indication
that it’s centrality value.
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With the ranking of nodes, we get a better image of how
central each node is compared to the others. For all the in-
stants, we rank all the nodes and produce a ranking vector.
For all the centrality metrics we consider, the nth element
of this vector gives the rank of the nth node in the dataset.
We now discuss how to compare the ranking vectors of
two centrality metrics.

3.2.2 Kendall Tau correlation

To compare two rankings, we calculate the Kendall tau cor-
relation [Kendall, 1938]. The Kendall tau correlation mea-
sures the similarity between two rankings. The correlation
is equal to 1 if both rankings are perfectly equal, and equal
to −1 if the rankings are the inverse of one another; if both
ranks are independent, the correlation is 0.

We start by defining a concordant pair. For two nodes
u,v and two ranking vectors X and Y, if in both ranking
vectors u is more important than v or vice versa, the pair
u,v is considered concordant. If this condition is not satis-
fied then they are considered discordant, in other words,
ranking X considers u to be more important than v and Y
considers v to be more important than u. With these two
notions, the Kendall tau correlation between two rankings
X and Y is defined as:

τ(X, Y) =
Number of concordant pairs−Number of discordant pairs

n(n− 1)/2
(3.3)

As each metric will be computed every Ith instant, the
nodes’ will be ranked at these instants producing a rank-
ing vector for every Ith instant. We measure the Kendall
tau correlation between these ranking vectors, producing
the correlation between the strategies over time. The cor-
relation provides a complete image of the evolution of the
difference between strategies, showing how each method
reacts to the different activities of the datasets.
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3.2.3 Difference in ranks

Once each metric is computed on a dataset, each node has
a rank that evolves overtime for each metric. The Kendall
tau correlation described above does not give any insight
on the difference in ranks between metrics on a given node;
it only provides a global perspective of how all nodes are
perceived differently by the metrics. To deepen our un-
derstanding of the differences between two metrics on the
node level, we compute for every node the difference be-
tween the nodes’ two ranks. For a given node and two
ranks given by two different metrics, we compute the dif-
ference between the two ranks. A large difference indicates
that the two rankings have a strong divergence regarding
the importance of the node, while a value closer to 0 indi-
cates that they both agree on its relative importance in the
network. Similarly to the Kendall tau method, this method
will be computed for all the time instants of the network,
revealing how the difference evolves as time passes.

3.2.4 Global Importance

A node that is frequently attributed a high rank intuitively
can, be considered as a globally important node. To pro-
vide a global perspective on the importance of a given
node, we study the number of times the node is attributed
a high or a low rank.

To compute this number, first, we need to be define a
high and low ranks. We start by defining three regions
in the ranking vector called the top, middle and bottom
region. A rank in the top region is considered as a high
rank, while a rank in the bottom region is considered as
low. Formally, for a network of n nodes, a node with a
rank higher than bn ∗ 0.75c is considered to be in the top
region and thus, to be highly important. While a node
with a rank lower than bn ∗ 0.25c is considered to be in the
bottom region and therefore, to have a low rank. Ranks in
between are considered to be in the middle region.

As we compute the centrality and ranks for the nodes
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every I-th second, the number of times each node is in the
top (resp. bottom) region can be represented by a duration
that we denote Durtop (resp. Durbot). To compute these
durations, we consider that a node is present in the top re-
gion or bottom region from the instant where we compute
the centrality to the following computing instant. Given a
node u, if R(u) is the sequence of ranks of u and the i-th
element of R(u) denoted by ri gives the node’s rank at the
i-th instant, we formally define Durtop(u) and Durbot(u)
as:

Durtop(u) = I · |{i ≤ k− 1, ri ≥ bn ∗ 0.75c}| ,
Durbot(u) = I · |{i ≤ k− 1, ri ≤ bn ∗ 0.25c}| .

(3.4)

From these values, for each node, we gain a better un-
derstanding of how each node is globally perceived by a
centrality metric. Moreover, if we want to understand the
difference between two centrality metrics, we can compute
these values for a node using the ranking produced by each
metric and compare the computed values.

3.3 Results

In this section, we compare how the different methods pre-
sented in section 3.1 quantify the importance of the nodes
in the dynamic networks. We start by analyzing the global
difference between the methods before evaluating how this
impacts the relative importance of nodes. Finally, we com-
pare how the nodes are globally perceived by the methods
as well as which nodes are identified as globally important.

From the datasets that we presented in Chapter 2, we
compared these centrality methods on six datasets: Enron,
Radoslaw, Rollernet, HashTags, Retweets, and Facebook.
However, we present the results for only three datasets,
that are representative of the different phenomenas ob-
served: Enron, Rollernet, and HashTags. We should also
note that coverage centrality was too computationally ex-
pensive to be computed on any other dataset than Enron.
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Figure 3.6: Evolution of the Kendall tau
correlation between Temporal closeness
and Snapshot over time for the three
datasets. Top left: Enron. Top right:
RollerNet. Bottom: HashTags.

3.3.1 Global Observation

The first two methods that we compare are Temporal Close-
ness and SnapshotCl. Figure 3.6 presents the evolution of
the Kendall tau correlation between the rankings provided
by the two methods for the three datasets. For Enron (Fig-
ure 3.6 top left), the correlation is quite low at first, near
0.2, as large number of nodes are inactive and SnapshotCl
attributes the lowest ranking (0) to all of them. However,
temporal paths involving links that appear later in the net-
work exist for most of the nodes. Therefore, they have
a non-zero centrality value and thus a non-zero ranking
value is attributed to these nodes by temporal closeness.

As the network evolves, more nodes become active and
they are taken into account by SnapshotCl, therefore the
correlation between both methods increases. This phe-
nomenon is not restricted to the beginning of the network.
We observe that in certain cases there is a drop in correla-
tion, for example around the 1000-th day. Manual inves-
tigation revealed that these drops are caused by the same
phenomenon. At these instants, a significant number of
nodes become inactive, and as SnapshotCl considers only
the activity during a specific period, the nodes that are in-
active during these periods, are attributed the rank 0 by
SnapshotCl. However, as in the totality of the network
they still participate in temporal paths, Temporal Close-
ness then attributes then non-zero ranks. We denote these
instants as temporary inactive moments. Finally, we observe
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how at the very end the correlation shoots and increases
rapidly; this is due to the fact that nodes become perma-
nently inactive and are ranked 0 by both methods, which
decreases the difference between them. Thus, at the very
end, a large percentage of nodes are inactive, increasing
the correlation significantly.

In contrast with the Enron dataset, if we consider the
RollerNet dataset (Figure 3.6 top right), we can observe
two different properties. First, the correlation fluctuates
highly. Second, the correlation is globally lower than that
of Enron. Third, the correlation can be negative. These ob-
servations are clearly related to the high activity of Roller-
Net (See Chapter 2). This high activity generates snap-
shots much denser than in Enron. As the density increases,
the number of paths increases, but also the number of
paths that do not respect time increases. Thus, the snap-
shots contain a large number of these temporally impos-
sible paths, causing the huge divergence with Temporal
Closeness.

Finally, we focus on the HashTags dataset (Figure 3.6
bottom). As we observed in Chapter 2, the activity in
this dataset is quite low at the start; the number of ac-
tive nodes starts to increase only at the 14-th day. Thus,
for the same reasons observed in Enron, the correlation is
quite low till this time. Additionally, in Enron we observed
drastic drops in the correlation due to drops in the activ-
ity and here we observe the same phenomenon. We rec-
ognize several periods with high correlation; these periods
are due to increases in activity. We can conclude from these
three datasets that the correlation between both methods is
highly affected by the activity; extreme activity cases (too
high or too low) decreases the correlation drastically.

Now we turn our attention to Temporal Eigenvector. Fig-
ure 3.7 presents the evolution of the correlation between
Temporal Closeness and Temporal Eigenvector for the three
datasets. First, in Enron (Figure 3.7 top left), the correla-
tion fluctuates constantly. However, it globally follows an
increasing trend over time, before dropping as the total ac-



Chapter 3. Temporal Centralities under scrutiny 61

−0.2
 0

 0.2
 0.4
 0.6
 0.8

 1

 0  200  400  600  800  1000  1200

K
e

n
d

a
ll 

C
o

rr
e

la
ti
o

n

Time (days)

−0.4
−0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  0.5  1  1.5  2  2.5  3

K
e

n
d

a
ll 

C
o

rr
e

la
ti
o

n

Time (hours)

−0.2
 0

 0.2
 0.4
 0.6
 0.8

 1

 0  5  10  15  20  25
K

e
n

d
a

ll 
C

o
rr

e
la

ti
o

n
Time (days)

Figure 3.7: Evolution of the Kendall tau
correlation between Temporal Closeness
and Temporal Eigenvector over time for
the three datasets. Top left: Enron. Top
right: RollerNet. Bottom: Twitter.tivity drops (around 1000-th day). From this, we can con-

clude that the correlation is linked to the level of activity;
if the activity increases (resp. decreases), the correlation
increases (resp. decreases).

More interestingly, the correlation drops at the very end,
instead of increasing as observed with the snapshot method.
Manual investigations here confirmed an observation made
by [Fenu and Higham, 2017] that Temporal Eigenvector con-
siders paths that do not respect the chronological order of
links and therefore go backward in time. Thus, nodes be-
coming permanently inactive are still attributed a non-zero
rank by Temporal Eigenvector.

In the case of RollerNet (Figure 3.7 top right), we observe
a similar evolution to that witnessed with SnapshotCl. The
correlation fluctuates excessively. However, it is much lower
than that observed with SnapshotCl. Finally, in Twitter
(Figure 3.7 bottom), we find a constant low correlation,
except for two peaks that can be linked to an increase in
activity. We can easily conclude that these two methods
do not share the same notion of importance; their global
vision on the does however become close in certain cases
when the activity is at a certain level.

−0.2
 0

 0.2
 0.4
 0.6
 0.8

 1

 0  200  400  600  800  1000  1200

K
e
n
d
a
ll 

C
o
rr

e
la

ti
o
n

Time (days)

Figure 3.8: Evolution of the Kendall tau
correlation between Temporal Closeness
and Coverage over time on Enron
dataset.

Finally, we compare Temporal Closeness and Coverage.
Figure 3.8 presents the evolution of the correlation between
both methods on the Enron dataset. We can remark how
the correlation is very low and only increases at the very
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end. Even when the activity increases, the correlation re-
mains low, unlike the other methods. This is a good indica-
tion that these methods detect two different notions of im-
portance. Finally, as observed with SnapshotCl, the corre-
lation slightly increases at the very end of the dataset. This
increase is due to the fact that a small number of nodes
remain active. This compensates for the difference in def-
inition of importance, as being active becomes enough to
be considered important by both methods.

From this first analysis, we can conclude that the cor-
relation between Temporal Closeness and SnapshotCl is
strongly related to the number of active nodes in the net-
work. However, we observe two strong limitations of Snap-
shotCl: when the nodes become temporarily inactive, it is
unable to detect the importance that future connections
gives them; conversely, when many nodes are active, it
considers many temporally impossible paths and therefore
cannot quantify accurately the importance of the nodes.
This likely causes an overestimation in the nodes’ impor-
tance. Though the Temporal Eigenvector and Coverage do
not have the same limitations, we have seen that they both
detect different types of temporal importance compared to
Temporal Closeness. We will investigate this further but it
is worth noting that Temporal Eigenvector considers paths
that may go backward as well as forward in time.

3.3.2 Impact on individual nodes

The previous section revealed that the four approaches
generate significantly different rankings for the importance
of nodes. However, this does not necessarily mean that the
ranking attributed to a given a node is very different. In or-
der to study this aspect, this section analyses the difference
in the ranks provided by the four methods for each node.
More precisely, for each time instant and for each node,
we compute the difference between the ranking granted by
Temporal Closeness and the one provided by either Snap-
shotCl, Temporal Eigenvector or Coverage. We then study
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the distribution of the obtained values.
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 Figure 3.9: Inverse cumulative distribu-
tion of the difference in ranks between
Temporal Closeness and other methods
on the datasets. Top: SnapshotCl; Mid-
dle; Temporal Eigenvector and Bottom:
Coverage.

We start by comparing the difference between Temporal
Closeness and SnapshotCl. Figure 3.9 (top) presents the in-
verse cumulative distribution of the difference of the ranks
for each node at every instant and for the three datasets.
For Enron and Twitter, Temporal Closeness attributes a
higher ranking than SnapshotCl in more than 70% of the
cases. This is in agreement with the conclusions drawn in
the previous section that in temporary inactive moments
SnapshotCl attributes a ranking 0 to a node, while the
Temporal Closeness ranks it higher. However, in RollerNet
which is a highly active network, the numbers of negative
and positive values are more balanced. This is in contrast
to what we observe when we compare Temporal Closeness
and Temporal Eigenvector (Figure 3.9 middle). Except for a
slight percentage in Rollernet, both methods almost never
attribute the same rank. Finally, we consider the differ-
ence between Temporal Closeness and Coverage centrality
(Figure 3.9 bottom). Interestingly, similarly to the com-
parison to the SnapshotCl, Temporal Closeness tends to
attribute higher ranks than Coverage (around 70% of the
nodes). Since Coverage is not affected by temporary in-
active moments, this indicates that the Coverage measures
the importance differently.
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Figure 3.10: Inverse cumulative distri-
bution of ranks attributed by Temporal
Closeness during temporary inactive
moments.

We recall that SnapshotCl does not consider the tempo-
rary inactive moments. To get a better understanding of
the importance of these moments, we study the ranks at-
tributed by Temporal Closeness. Figure 3.10 presents the
inverse cumulative distribution of the ranks for the three
datasets. In Enron, the temporary inactive moments ac-
count for over 50% of all the (node,instant). In 20% of the
(node,instant), nodes have ranks in the top region. A simi-
lar trend is observed with RollerNet; however this dataset
is extremely active, so temporary inactive moments are
rare. Finally, in Twitter, due to low activity the temporary
inactive moments account for over 70% of the total num-
ber of (node,instant). In 30% of the (node,instant), nodes
have a rank in the top region. As so many (node,instant)
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Figure 3.11: Evolution of ranks at-
tributed by the four methods over time
for a randomly selected node.

are inactive, this has an immense effect on the divergence
between the two methods.

In order to illustrate the differences between the four
methods, figure 3.11 presents the evolution of the ranking
for a given node of Enron, for the four methods. We can
observe that this node has many temporary inactive mo-
ments, where SnapshotCl ranking is equal to 0. In contrast,
Temporal Closeness takes into account future communica-
tions and therefore attributes a ranking higher than 0 at
these moments. This is particularly remarkable between
days 100 and 400. The links occurring around day 400 give
it a high Temporal Closeness and hence a high ranking
not only at that time, but also influence previous times:
even though the Temporal Closeness rank at certain in-
stants, e.g., 300 is lower than at instant 400, it is still high
enough to guarantee a significant ranking for this node.
This is again in sharp contrast with SnapshotCl which per-
ceives the node as unimportant for the whole period and
clearly detect the role of the node only during peaks of
activity.

In the case of the Temporal Eigenvector, although it can
detect the importance during inactive moments, the ranks
fluctuate extremely for no apparent reason. Quite inter-
estingly, we observe in particular that, after the 1000-th
day, although this node is no longer active, the ranking
still fluctuates and at certain instants is very high. This
confirms the observation we mentioned at the end of Sec-
tion 3.3.1: the Temporal Eigenvector method considers paths
that go backward in time (otherwise it would give a rank-
ing 0 to this node). Even more strikingly, we see that
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the importance of this node evolves in a nonmonotonic
way even though it does not have any activity. This in-
dicates that this method attributes centrality values in a
non-intuitive way.

Concerning to the Coverage, although it is difficult to
conclude on its relevance, the ranking evolution confirms
that it captures a different notion of importance during the
temporarily inactive moments. One can see in particular
that between days 400 and 500 the Temporal Closeness
and Coverage evolve in opposite directions: the Temporal
Closeness ranking increases as the future links get closer,
while the coverage ranking decreases and drops to 0 after
the links have occurred.

The observations presented above confirm and refine the
conclusions outlined in the previous section: not only do
the four methods give different global rankings, but they
also have strong differences for individual nodes.

3.3.3 Identifying globally important nodes

Although the results presented in the previous sections
suggest that networks are highly dynamic and that nodes’
importance varies over time, this does not mean that there
are no nodes (or groups of nodes) that are globally impor-
tant. Indeed, some nodes could stay important during a
large period of the dataset. In this section, we investigate
how long each node is considered important (Durtop) and
unimportant (Durbot) by each method.

Figure 3.12 (Left) presents the correlation between Durtop

and Durbot (defined in section 3.2.4) for each of the four
methods, for the Enron dataset. We observe that certain
nodes in Temporal Closeness are always important (resp.
irrelevant); the Durtop (resp. Durbot) value is equal to the
duration of the dataset. However, mainly the nodes have
a wide distribution of values and thus a wide distribu-
tion of importance. This is in contrast with SnapshotCl,
where we can observe the nodes are almost either in the
top or bottom region (Durtop + Durbot ' Durtotal)1. This 1. Durtotal is equal to the dataset’s

duration.indicates that ranks in the middle region (bN ∗ 0.25c <
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Figure 3.12: Left: For each node, the
Durtop and Durbot values attributed
by each method on the Enron dataset.
Right: For each node the Durtop value
attributed by Temporal Closeness
versus the Durtop attributed by the
other methods on the Enron dataset.

R < bN ∗ 0.75c) are rarely attributed to nodes, which is
well illustrated by the case presented in Figure 3.11. In
Temporal Eigenvector, we observe that values are well dis-
tributed but are generally all lower than those attributed
by the other methods. This can be an indication that the
fluctuation seen in Figure 3.11 is a general phenomenon.
Manual investigation showed that all nodes fluctuate in
the same manner. In Coverage, we observe a similar distri-
bution to that of the SnapshotCl, but the Durtop values are
at most 600 days.

Despite these differences, one can see in Figure 3.12 (right)
that the Temporal Closeness, SnapshotCl, and Temporal
Eigenvector perceive similarly the global importance of nodes;
the difference between the three approaches therefore lies
mainly in how they evaluate unimportant nodes, as well
as the nodes of average importance. However, we observe
different results in Coverage, because the most important
node for Coverage is of average importance for the other
methods. Vice-versa the most important node in the three
methods has an average importance in Coverage. This fur-
ther supports our claim that coverage centrality detects a
completely different notion of importance.

Interestingly, these observations are completely different
for RollerNet. In this dataset, one can see in Figure 3.13

(left) that no node spends time in the top (or bottom) re-
gion more than half of the total duration, whatever the
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Figure 3.13: Left: For each node, the
Durtop and durbot values attributed by
each method on the RollerNet dataset.
Right: For each node the Durtop value
attributed by Temporal Closeness
versus the Durtop attributed by the
other methods on the RollerNet dataset.

method used (except for one node that is almost always in
the bottom region). Besides, when comparing the global
importance attributed to nodes by different methods (eval-
uated by DurTop, Figure 3.13 right), one can see that the
correlation between Temporal Closeness and the other meth-
ods is not very strong and is even anti-correlated for Tem-
poral Eigenvector. All these observations indicate that in
this dataset, the notion of global importance may not be
meaningful. We claim that this is due to the very dense
(both temporally and structurally) nature of this dataset.

The Twitter dataset is also interesting as it combines
the behaviors previously seen in Enron for the four meth-
ods. Figure 3.14 (left) shows that the comparison between
Durtop and Durbot is similar to what we observed on En-
ron, and even more extreme: for SnapshotCl, points are all
situated on the line y = T− x (where T stands for the total
duration), meaning that at all times, any node is either in
the top or the bottom region, but never in-between. Behav-
iors are more nuanced for the Temporal Closeness, and for
Temporal Eigenvector, all the nodes have very similar val-
ues. This is similar to what we observed for Enron, but far
more extreme. However, in contrast with Enron, the global
importance (i.e. the Durtop value) attributed by Temporal
Closeness is not at all correlated to the one attributed by
the other methods (see Figure 3.14 Right).
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Figure 3.14: Left: For each node, the
Durtop and durbot values attributed by
each method on the Twitter dataset.
Right: For each node the Durtop value
attributed by Temporal Closeness
versus the Durtopattributed by the other
methods on the Twitter dataset.

Finally, we study the results obtained for Coverage cen-
trality for the Enron dataset. We observe that Coverage
is close to SnapshotCl in the sense that all nodes are al-
most always either in the top or in the bottom region (Fig-
ure 3.12, left figure, bottom right). However, as pointed
out before, Coverage does not capture the same notion of
importance as Temporal Closeness, which can be seen by
comparing the correlation between the DurTop values (Fig-
ure 3.12 right figure, bottom plot). The elements provided
in this study do not allow to conclude on the reasons of
the divergence observed with coverage and we leave this
question for further studies. To be able to have a better
understanding, obtaining datasets with a known ground
truth would be a first step.

3.4 Discussion

3.4.1 Average centrality

In this work, we considered four centrality methods that
quantify the time-evolution of nodes’ importance. For the
comparison of the values computed by each of the four
centralities, we performed several steps. This included
ranking the nodes with respect to their centrality values,
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Enron RollerNet Twitter Figure 3.15: Durtop value versus the
average Temporal Closeness centrality.

as well as computing a global duration that represents a
node’s global importance. [Kim and Anderson, 2012] pro-
posed the study of the average temporal centrality rather
than its evolution. They consider that this single value is
representative of the node’s complete evolution during a
dataset.

To assess this claim, we propose to analyze the correla-
tion between Durtop and the average Temporal Closeness.
Figure 3.15 presents this correlation for the three datasets.
In the case of Enron and RollerNet, these values seems
correlated (particularly for RollerNet). However, the cor-
relation is very low for Twitter: some nodes have a high
average Temporal Closeness, yet a low Durtop, and con-
versely. We argue that the average Temporal Closeness is
not representative as it does not give each instant an equal
amount of importance. As we saw, a node can have an ex-
tremely high Temporal Closeness at a single instant (and
therefore a high average Temporal Closeness) even though
it may have a very low activity (and hence, very low Tem-
poral Closeness) in the rest of the dataset. However, the
Durtop value considers that all instants have an equal im-
portance.

3.4.2 Absence of importance

In section 3.3.3, we observed in RollerNet the absence of a
notion of meaningful importance; all the nodes had quite
close values of Durtop. In this section, we investigate this
further. We investigate twelve datasets of Chapter 2 to
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Figure 3.16: Inverse cumulative distri-
bution of the Durtopvalues attributed to
the nodes normalized by the duration
of the datasets for twelve datasets.

verify the presence or absence of importance. For each
dataset, we compute the Durtop values of all the nodes
and plot the inverse cumulative distribution. Figure 3.16

presents the distribution for the twelve datasets with the
Durtop values normalized by the duration of each dataset.
The first thing that we notice is the vertical line of UC.
This indicates that all the nodes have a Durtop of around
a quarter of the duration of the dataset. In other terms,
all the nodes spend an equal duration in the top region.
This is a clear sign that the absence of importance is not
limited to RollerNet, and occurs in other datasets. Sec-
ond, we observe that most of the datasets, have nodes with
Durtop values that are equal to the datasets’ duration. In
other words, they contain nodes that are constantly im-
portant. Naturally, we can conclude that in these datasets,
the notion of importance exists. Finally, we observe that
the datasets Taxi and Primary have a similar distribution
to that of RollerNet. The highest Durtop value is at most
equal to 60% of the duration of the dataset. This means
that in these datasets and RollerNet, not a single node be-
comes clearly more important than the others.

From this study, we can conclude that the notion of global
importance is not always meaningful. This is similar to
a case, where we would like to find the closest node to
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all the others and find that all the nodes are at an equal
distance from one another: pointing out the prime node
would not be an obvious task. In certain cases, such as
RollerNet or Primary the nature of the dataset explains this
phenomenon. The individuals in these datasets have simi-
lar activity profiles, they all become active and inactive at
the same moments and communicate between each other
in a similar manner.

3.4.3 Ranking methods

In this chapter, we considered the inverse competition rank-
ing method. However, a natural and common way to rank
nodes is to simply order them by increasing value. Here,
we discuss our choice of ranking method. The normal
ranking method has two issues, let us consider the exam-
ple in Figure 3.17. In the figure, we observe six nodes and
the relationship between their centrality values. Certain
nodes share the same centrality values.

A = B > C = D = E > F︸ ︷︷ ︸
Centrality Relation

5 4 3 2 1 0︸ ︷︷ ︸
Ranking 1

4 5 3 1 2 0︸ ︷︷ ︸
Ranking 2

Figure 3.17: Centrality relation of six
nodes and the two possible ranking
possibilities.

The first issue is observed when nodes share the same
centrality value: this method can produce several possibil-
ities, hence the two possible ranking possibilities in Fig-
ure 3.17. Nodes with equal importance can be ranked in
any configuration, as we observe C, D and E can be ranked
in the order 3, 2, 1 or 3, 1, 2. Both ranks are formally cor-
rect, thus there is a lack of consistency in this ranking
method. Similarly, node A can be ranked higher than B
or conversely. This brings us to the second issue with this
ranking method: it does not allow the detection of equally
important nodes. In the example in figure 3.17, we notice
how the ranking results do not display the equality in im-
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portance between nodes A and B nor between nodes C, D
and E.

This might seem to be an unnecessary modification, as
one would assume the chances of nodes sharing the ex-
act same centrality value is rare. Thus, the standard rank-
ing should be quite sufficient. However, in real-world net-
works this is far from the case. Figure 3.18 presents the
evolution of the rank for six nodes randomly selected from
the Enron dataset. The nodes were ranked in relationship
to their Temporal Closeness values. In the top figure, the
nodes are ranked using the inverse competition ranking and
in the bottom figure the standard ranking was used. In the
top figure, we can observe how the ranks decrease slowly
towards the rank 0. This is due to the fact that the nodes
become permanently inactive. We can observe that the
standard ranking does not detect this phenomena at all.
The more nodes become inactive, the more nodes have the
same centrality value (0), the more nodes are attributed
random ranks for the reasons mentioned previously. More
interestingly, due to this artifact the rank of the fourth node
(Id = 3), which is always inactive, increases at a certain
moment. As other nodes become inactive, their centrality
becomes equal to that of the fourth node. Thus, this node
becomes affected by the random ranking phenomena and
its rank increases. This effect is completely absent with the
inverse competition ranking.

With this ranking of nodes, we get a better image of how
each node is central compared to the others.

3.4.4 Conclusion

In this chapter, we proposed a methodology to compare
centrality methods. We applied this methodology to four
centrality methods. Each one of them had its unique tech-
nique to take the temporal aspect into account. We com-
pared these method on both the single node and the global
level and our observations can be summarized as follows:

1. different centralities produce different results; nodes that
were identified as important by the Temporal Closeness,
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Figure 3.18: A heatmap in which each
line represents the evolution of the rank
for a node. Top figure: nodes ranked
by inverse competition ranking; Bottom
figure: nodes ranked by standard
ranking.

were perceived as irrelevant by coverage centrality;

2. different datasets have different properties regarding the
node’s importance; for one of our datasets, the impor-
tance of all nodes fluctuates extremely rapidly between
high and low values; it is meaningless in this case to state
that one node is globally more important than another,
except for a very limited time span; in other datasets
however, we find that some nodes are consistently im-
portant for the whole network time span;

3. a node can be inactive (i.e. not have any links) yet be
highly important since it can be a waiting point in an
important temporal path between two nodes;

From these observations, we can draw a couple of con-
clusions regarding how these metrics perform. First, Snap-
shotCl is unable to relate a temporary inactive node to its
future connections and it attributes this node a centrality
equal to zero. Therefore, it does a poor job in quantify-
ing the importance of a node as a relay for future com-
munication. Another interesting conclusion drawn from
this study is that Temporal Eigenvector is less accurate that
Temporal Closeness. Both methods detected the same im-
portant nodes, however, Temporal Eigenvector considers
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paths that go backward in time, which reduces its accuracy.
Additionally, we can conclude that Coverage perceives a
different importance than that of the others centralities.

Finally, during these comparisons, we introduced a no-
tion of global importance that we compared to the aver-
age centrality. Our comparisons showed that nodes can re-
main important while having a low average centrality. Fi-
nally, we have observed the absence of global importance
in the RollerNet dataset. Further investigations showed
that is was not limited to RollerNet, but was found in
four datasets, one of which where all nodes had a quite
similar Durtopvalue (one quarter of the dataset’s duration).
Thus, in certain cases the notion of global importance can
be meaningless.
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Approximation and Identification

In this chapter, we investigate one of the main issues con-
cerning temporal centralities: their high computational de-
mand. For a node, a temporal centrality should be able to
give the node’s centrality at every instant in the dataset.
Thus, the centrality has to be updated or recomputed from
scratch for each of those instants, hence the high computa-
tional cost of these methods.

One of the main purposes behind computing the tempo-
ral centrality is detecting the globally important nodes. For
this, the knowledge of how each node ranks compared to
the others is sufficient. In other terms, for such a task the
exact centrality values are not necessary. Here we propose
different methods to reduce the computational demand for
finding the highest ranked nodes for Temporal Closeness.

4.1 Less computation

In [Eppstein and Wang, 2001, Brandes and Pich, 2007], to
reduce the computational time and approximate the cen-
trality values, the authors sample out a certain number of
nodes. Using these nodes, the authors approximate the
centrality values by computing only the paths between or
towards this set of nodes. Temporal Closeness offers more
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possibilities to reduce the computational cost. In this sec-
tion, rather than reducing the number of nodes that are
considered in the computation, we reduce the number of
instants. Temporal Closeness is computed every I sec-
onds. In other words, for each node, we have a central-
ity value every Ith second representing the node’s impor-
tance at this exact instant. We previously stated that an I
value equal to the median of inter-contact difference gives
a good compromise between accuracy and computational
cost. Later on, we denote this value by Iop. The higher the
value of I is, the lower the number of instants for which
a computation is made, which translates to a lower com-
putation time. However, a downside of this solution is
the decrease in precision. As the value of I increases the
number of computing instant decreases, which affects the
accuracy of Durtop (which is the time during which a node
has a rank in the top 25%). After a certain decrease in ac-
curacy, the global ranking of nodes becomes affected. To
get a better understanding of this, we consider the artificial
node in Figure 4.1. We observe the evolution of the rank-
ing captured with two I values. We can observe that at the
6th second, the node’s rank crosses the top 25% limit. This
increase is detected when I is equal to 2, and not when I is
equal to 4. Therefore, when I is equal to 4, the computed
Durtop value will be lower than the true value; in other
cases it could be higher.

25 limit

 0  2  4  6  8  10  12

Time (Seconds)

I=2 I=4

Figure 4.1: Toy example of the evolution
of ranks for a node, captured with two
different values of I.

For each dataset, we investigate the impact of increasing
the value of I on the global ranking of nodes. We com-
pute the Temporal Closeness with different multiples of
Iop. For each multiple, we compute the global ranking in
relationship to the obtained values of Durtop, and compare
this ranking to the global ranking produced using Iop. We
compare both rankings using the Kendall tau correlation.
Additionally, we study the decrease in the computational
time.

For each dataset, for multiples of Iop (2, 10, 100, 1000), Ta-
ble 4.1 presents the original computation time, the Kendall
tau correlation and the computation time1. First, we focus

1. Normalized by the computation time
when I = Iop.
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Datasets Iop Iop × 2 Iop × 10 Iop × 100 Iop × 1000
time

(Seconds)
τ

time/time
Iop

τ
time/time

Iop
τ

time/time
Iop

τ
time/time

Iop

Enron 161 0.99 0.54 0.99 0.19 0.99 0.11 0.92 0.099
Radoslaw 909 1.0 0.53 0.99 0.14 0.85 0.05 0.85 0.05

DNC 199580 0.99 0.49 0.99 0.098 0.99 0.002 0.977 0.002
UC 45526 0.99 0.468 0.99 0.11 0.99 0.03 0.99 0.02

HashTags 30300 0.99 0.57 0.99 0.13 0.99 0.04 0.97 0.03
Articles 5649 0.99 0.85 0.99 0.70 0.95 0.64 0.72 0.62

Facebook 438950 0.99 0.51 0.99 0.12 0.99 0.02 0.97 0.003
Bitcoin 878 0.99 0.62 0.98 0.30 0.80 0.23 0.60 0.20

RollerNet 46 0.97 0.95 0.90 0.89 0.73 0.89 0.48 0.89
Reality 186 0.94 0.85 0.94 0.81 0.92 0.79 0.74 0.76

Taxi 17 0.99 1.0 0.98 0.94 0.80 0.94 −0.18 0.94
Primary-

day1

26 0.98 0.88 0.92 0.84 0.63 0.80 0.01 0.80

Table 4.1: For the 12 datasets, the
computation time of the temporal
closeness with Iop, and Kendall tau
correlation between global ranking
I and Iop. The computation time is
normalized by the true computation
time for different multiple of Iop.

on the evolution of the correlation as I increases. We ob-
serve in most cases that the correlation remains quite high
until the multiple 100. Afterwards, at 1000, we note that
the correlation starts to drop drastically in certain cases.
In Taxi, the correlation drops from 0.80 to −0.18. This is
due to the fact that the value of I is close to the dura-
tion of the datasets. This proximity decreases the num-
ber of computing instants drastically, hence the computed
Durtop becomes meaningless and thus, the correlation is
low. In other cases, like Enron, this decrease is absent,
since the multiple of 1000 remains quite small compared
to the duration of the dataset. Additionally, manual in-
vestigation showed that the correlation starts to decrease
once the value of I becomes larger than or equal to certain
nodes’ Durtopvalue. Notice that for some datasets. such
as Bitcoins, Taxi, or Primary-day1 the correlation begins to
lower significantly at I = Iop × 1000.

Now we consider the computation time gained as the
value of I increases. In most cases, the evolution is similar.
The computation time decreases linearly with the value of
I. When the value of I is doubled, the time is halved and



78 m. ghanem

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0
.0

0
1

 0
.0

0
2

 0
.0

0
3

 0
.0

0
4

 0
.0

0
5

 0
.0

0
6

 0
.0

0
7

 0
.0

0
8

 0
.0

0
9

I X 2
N

u
m

b
e

r 
o

f 
n

o
d

e
s

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0
.0

1

 0
.0

2

 0
.0

3

 0
.0

4

 0
.0

5

 0
.0

6

 0
.0

7

I X 10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0

.1
 0

.2
 0

.3
 0

.4
 0

.5
 0

.6
 0

.7
 0

.8
 0

.9  1

I X 100

N
u

m
b

e
r 

o
f 

n
o

d
e

s

Relative Error

 0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0

.2
 0

.4
 0

.6
 0

.8  1
 1

.2
 1

.4
 1

.6
 1

.8  2

I X 1000

Relative Error

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0
.0

1

 0
.0

2

 0
.0

3

 0
.0

4

 0
.0

5

 0
.0

6

 0
.0

7

 0
.0

8

 0
.0

9
 0

.1

I X 2

N
u

m
b

e
r 

o
f 

n
o

d
e

s

 0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0

.2
 0

.4
 0

.6
 0

.8  1

I X 10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0

.5  1
 1

.5  2
 2

.5

I X 100

N
u

m
b

e
r 

o
f 

n
o

d
e

s

Relative Error

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5
 1

0
 1

5
 2

0
 2

5
 3

0
 3

5

I X 1000

Relative Error

Figure 4.2: Inverse distribution of
relative error for different multiplies of
Iop. Left four figures: Enron; right four
figures: Taxi.when I is multiplied by 10, the time is 10% of the original

time. Finally, we can observe that afterwards, the time gain
becomes quite small. The computation times for I equal to
100 and 1000 are almost the same. This is due to the fact
that the computation time that remains is the time required
to analyze the raw dataset2 and thus, the effect of I on the

2. The dataset without the extra
timestamps added by every I instant.

computational time is negligible. In other cases, mostly in
the movement datasets, we can observe that changing the
value of I has a limited effect on the computational time.
These datasets are quite dense and the effect of I is already
negligible.

After studying the global ordering, for each node, we
observe how the Durtop value changes as the value of I
increase. For each value of I, for each node, we calculate
the relative error between its Durtop value and the value
computed using Iop

3. Figure 4.2 presents the inverse cu- 3. Only one node had a Durtop equal
to zero, which we removed from our
calculation of relative error.mulative distribution of the relative error for two datasets:

Enron (left four figures), which has a stable Kendall tau
correlation over all multipliers of I, and Taxi (right four
figures), for which the Kendall tau correlation decreases
drastically4. In Enron, we can observe that as I increases, 4. The plots for the other datasets are

presented in the appendix.the distribution keeps the same shape, though the values
change. As we observed previously the Kendall tau re-
mains high, which means that the ordering of nodes re-
mains stable. This can explain that the similarity here is a
result of all the nodes being affected by I in the same man-
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ner. We observe two differences as the multiple of I in-
creases from 2 to 1000. First, the maximum error increases
from 0.009 to 2; second the average error is multiplied by
100. We manually study the nodes with a large error. We
observe that those nodes had a small Durtop value and
once the value of I is larger that nodes’ Durtop, the newly
computed Durtop increases a lot, thus the large error.

In the Taxi dataset, we observe larger errors compared
to those observed in Enron. This is in coherence with the
evolution of the Kendall tau correlation observed in Ta-
ble 4.1. We observe that as I increases more nodes have
larger relative errors. Finally in the extreme case where
is I is multiplied by 1000, several nodes have a huge rel-
ative error, while others have a considerably smaller error
compared to the rest. And, finally around 70% of nodes
have an error equal to 1. Manual investigation revealed
that nodes had a Durtop value equal to 0 or the value of
Iop× 1000. This is not shocking as the value of I is actually
larger than half of duration of the dataset, therefore, there
is only one computing instant in this case. We also observe
that the maximum error reaches 32 when I is multiplied by
1000. Afterwards, we study the average error for these 2
datasets in Table 4.2. When I is multiplied by 2 the average
error in Enron (resp. Taxi) is 0.0006 (resp. 0.006). This aver-
age finally increases in Enron (resp. Taxi) to 0.19 (resp. 2.0)
when I is multiplied by 1000. We can see clearly a factor
of 10 between both datasets.

PPPPPPPPPI
Datasets

Enron Taxi

I × 2 0.0006 0.006
I × 10 0.004 0.03

I × 100 0.03 0.3
I × 1000 0.19 2.0

Table 4.2: Average error for the different
multiples of I in Enron and Taxi.

Finally, we study each node of these two datasets more
in details. For each node, we observe the relative error
as the value of I increases. Figure 4.3 presents for both
datasets, for different multiples of I, the relative error ver-
sus the rank attributed for each node using Iop. In Enron,
we observe that as the value of I increases, the nodes of
low rank are the ones most affected. This further confirms
our previous assertion, that the nodes are affected by the
increase when the value of I is near the nodes’ Durtop val-
ues. In the Taxi dataset, we observe that all nodes are
rapidly affected by the increase in I; however, as seen with
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Figure 4.3: Relative error for Durtop as a
function of the rank. Left four figures:
Enron; right four figures: Taxi.Enron, the least important nodes are affected more by this

increase. Finally, when I is multiplied by 1000, we observe
that most nodes have a relative error equal to one. This
is due to the fact that the value of I becomes extremely
large. All these nodes are given a Durtop value equal to
zero, thus, the relative error is equal to one.

4.1.1 Conclusion

We conclude that increasing slightly the value of I can be
beneficial. Doubling the value of I decreases the computa-
tional time by half, while practically not modifying the re-
sults. However, as the value of I becomes closer to the total
duration of the dataset it becomes disadvantageous. The
computation time ceases to decrease, yet the quality de-
creases dramatically. On the node level, we observed that
for any node, the instant the value of I is larger than the
node’s Durtop (computed using Iop), the newly computed
Durtop value is meaningless. Additionally, we demonstrate
that in most cases as I increases, only the nodes of low im-
portance are affected. Thus, for detecting the top 25%, a
value of I larger than the optimal can be used.

4.2 Identifying important nodes

As observed in the previous section, increasing the value of
I can be quite beneficial. However, the computational time
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can remain substantial. Additionally, this method has a
limited effect, since after a certain point no additional ben-
eficial effect occurs. Here, we propose a second method to
reduce the computational time further. We suggest meth-
ods similar to those introduced in [Eppstein and Wang, 2001,
Okamoto et al., 2008]. Instead of computing the Temporal
Closeness, we exploit structural properties of the nodes to
rank the nodes. In the obtained ranking, the prime nodes
are expected to have a globally important Temporal Close-
ness. Thus, using this ranking, we can identify the top
nodes. This method does not require the computation of
Temporal Closeness, and thus reduces extremely the com-
putation time.

4.2.1 Strategies

First, we propose to rely on global properties for each node
that are easy to compute. We argue that they represent the
base of Temporal Closeness. A temporal graph G = (V, E)
where V is a set of nodes and E is a set of timed links,
is transformed into an aggregated graph GA = (V, EA)

where EA = {(u, v) ∈ V × V|∃t, (u, v, t) ∈ E}. In other
words, we consider only the nodes and links between each
node without taking into account when each link has oc-
curred.

From the aggregated graph we compute for each node u
several properties:

• Closeness Centrality (CC): The sum of the inverse of
distance between u and all other nodes in the graph [Bavelas, 1950].

• Degree Centrality (DC): The number of neighbors of u
in the aggregated graph.

In addition to these structural properties, we consider
three properties that take into consideration the temporal
aspect of the node’s activity:

• Number of links (NL): The total number of interactions
involving u.
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• Duration (DU): The duration of activity for the node u,
that is the time elapsed between the last and first inter-
actions that involve u.

• Average inter-contact time (LD): The average of the dif-
ference in time between each link in which u is involved.

We propose two strategies that exploit these five strate-
gies to give each node a rank.

Parameter based strategy: The first class of strategies
combines any of these two properties. For a node u and a
property Px, the function rank(Px(u)) returns the ranking
of u with respect to the property Px. From this we attribute
the node u a final rank that considers the two properties P1

and P2 in the following manner:

R(u) = α× rank(P1(u)) + (1− α)× rank(P2(u)). (4.1)

The value of α is in [0, 1]. Note that α = 1 (resp. α = 0)
implies that only the ranking of P1 (resp. P2) is taken in
consideration. From this strategy, we can produce all pos-
sible combinations of properties as well as consider a single
property. Table 4.3 presents the combination of properties
that we consider, the denomination of each combination
as well as which strategy is taken into account when α

is equal to either one or zero. We should mention that
we also considered the case of combining the raw values
and then ranking nodes rather than combining the ranks;
however, combining the ranks seemed to produce better
results.

Parameterless strategy: As the Parameter based strate-
gies contains an α parameter for which we do not know
the best value, we propose a second strategy that does not
contain a parameter. This allows the strategy to be used
directly; however, this has a disadvantage as the strategy
cannot be refined for each dataset. This strategy considers
only two properties: the number of links and the dura-
tion. In addition, it considers the raw values rather than
the ranks as seen with the parameter based strategy. For-
mally for a node u, this strategy is defined as follows:
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R(u) = rank(NL(u)× DU(u)). (4.2)

Denomination Strategies α = 1 α = 0

CC/DC Closeness
Degree Closeness Degree

CC/NL
Closeness

Number of links Closeness Number of links

CC/DU Closeness
Duration Closeness Duration

CC/LD
Closeness

Average inter-contact
time

Closeness Average inter-contact time

DC/NL
Degree

Number of links Degree Number of links

DC/DU
Degree

Duration Degree Duration

DC/LD
Degree

Average inter-contact
time

Degree Average inter-contact time

NL/DU Number of links
Duration Number of links Duration

NL/LD
Number of links

Average inter-contact
time

Number of links Average inter-contact time

DU/LD
Duration

Average inter-contact
time

Duration Average inter-contact time

Table 4.3: Denomination of all the
combination of strategies that are
considered, and the considered strategy
when α = 1 and α = 0.

4.2.2 Best combination

In order to find the best combination of properties for the
Parameter based strategy as well as the best value for α

a comparison method is required. We start by defining
the hit vector. For any strategy, this vector represents the
evolution of the strategy’s success. In this vector, the kth
element represents the number of nodes correctly found by
the strategy when trying to detect the top k nodes5. The hit 5. For example, if the value is equal to

5 for k = 10, this means that half of the
nodes in the strategy’s top 10 belong to
the real top 10.

vector of a perfect strategy is equal to [1, 2, 3, . . . , n], where
n is the total number of nodes in the dataset. Figure 4.4
shows an example of the hit vector for three strategies: the
perfect strategy, the worst strategy and the random strat-
egy.

Intuitively, the closer a strategy is to the perfect strategy,
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the better the ranking of the strategy is. To find to which
extent a strategy is efficient, we measure the euclidean dis-
tance between its hit vector and the perfect strategy’s hit
vector6. Finally, to be able to compare the performance of 6. The distance between two vectors p,q

is distance(p, q) =
√

∑n
i=1 (qi − pi)

2.the strategy over different datasets, we need to normalize
this value. To accomplish this, we consider the distance
separating the perfect and worst strategy as the normaliz-
ing factor. From here, we can attribute to each strategy a
score signifying its quality. This score is formally defined
for a strategy S as follows:

score(S) = 1− distance(per f ect_strategy, S)
distance(per f ect_strategy, worst_strategy)

.

(4.3)
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Figure 4.4: Evolution of hit vector for
Random Strategy, Best Strategy and
Worst Strategy.

To study the performance of the strategies in another
way, we introduce also the hitratio. We define real(D, k)
as the set of top k nodes of the dataset D. Moreover, we
represent the set of top k nodes identified by a strategy S by
sampled(S, D, k). From these two definitions, we calculate
the fraction of correctly detected nodes by S in D, in the
following manner:

hitratio(S, D, k) =
|sampled(S, D, k)

⋂
real(D, k)|

k
.
(4.4)

This ratio is between 0 and 1, where 0 implies the strat-
egy was not able to identify a single node accurately. On
the contrary, 1 signifies the strategy is perfect for the cor-
responding value of k. This is somewhat redundant with
the hit vector, but we argue that it is easier to study the hit
ratio as the value it returns for any k represents directly
the efficiency of the strategy.

4.2.3 Results

Here we consider all the combinations of strategies on the
twelve datasets. Firstly, we will determine the two combi-
nations that produce the best results as well as the α that
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gives these results. Secondly, we will examine these two
strategies as well as the parameterless strategy more in de-
tails.

Figure 4.5 shows for all the combinations, the score value
as a function of α. We first consider the communication
datasets. In the Enron dataset, we observe that NL/DU
and DU/LD give the highest score. Both produce a score
of 0.84, while the third highest score is 0.74. Furthermore,
NL/DU is also the top strategy for Radoslaw, while the
second highest score is produced by CC/NL. Neverthe-
less, the scores for all the strategies remain globally quite
close. For DNC, the same observations can be made, how-
ever with scores that are lower than that of Radoslaw. Fi-
nally, in the case of UC, the strategies are all quite similar.

In the case of the two co-occurrence and the two social
datasets, the strategies have all the same behavior. For ex-
ample, the DU/LD score increases as α increases in the
four datasets. In the case of HashTags and Facebook, CC/DU
is the most efficient. However, the difference between the
strategies’ peak scores remains negligible. In the case of
Articles and Bitcoins, DU/LD produces the best results.
However, the best scores also remain quite close.

Finally, we consider the motion datasets. The strategies
behave differently on each dataset. Moreover, we can ob-
serve behaviors that are unique to these datasets. First,
for certain strategies, the difference between the maximum
and minimum score can be remarkably large. Second,
other strategies produce a consistent score for any α. Fi-
nally, the top strategy is different in each of the four datasets.
From these results, we observe that while not always the
best, DU/LD and NL/DU produce frequently the best
outcome. From now on, we eliminate the other strategies
and consider only DU/LD, NL/DU, and PS. We study
the values of α. Table 4.4 gives the values of α that give the
best score for DU/LD and NL/DU for each dataset. We
can observe that the nature of the dataset influences the
choice of α. For instance, in RollerNet and Primary-day1

all the nodes are active for the same amount of time, hence
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Figure 4.5: Score as a function of α for
each strategy on the twelve datasets.
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Datasets DU/LD NL/DU Datasets DU/LD NL/DU
Enron 0.6 0.6 Radoslaw 0.3 0.8
DNC 1.0 0 UC 0.6 1.0

HashTags 0.7 1.0 Facebook 0.7 1.0
Articles 0.6 0.8 Bitcoin 0.9 0.1

RollerNet 0.0 0.1− 0.9 Reality 0.5 0.5
Taxi 0.9 0.1 Primary-day1 0.0 1.0

Table 4.4: Best α for DU/LD and
NL/DU for all the datasets.

α = 0 in DU/LD. We therefore argue that the nature of
the dataset should be taken into account when choosing
the value of α.

Datasets DU/LD NL/DU PS Datasets DU/LD NL/DU PS
Enron 0.84 0.84 0.81 Radoslaw 0.86 0.88 0.88
DNC 0.58 0.58 0.58 UC 0.42 0.43 0.42

HashTags 0.53 0.54 0.52 Facebook 0.69 0.72 0.70
Articles 0.75 0.74 0.74 Bitcoin 0.64 0.64 0.63

RollerNet 0.42 0.79 0.81 Reality 0.80 0.81 0.79

Taxi 0.77 0.77 0.67
Primary-

day1
0.83 0.85 0.84

Table 4.5: score values produced by
DU/LD, NL/DU and PS.

Before studying these two strategies as well as PS more
in details, we compare the scores produced by DU/LD
and NL/DU with the best values of α and those of PS in
table 4.5. We can observe that in most cases, PS scores are
close to the best score produced by the other methods.

Now we consider how accurate each strategy is. For
each strategy, we examine the hitratio(S, D, k) for all val-
ues of k ∈ [0, n], where n is the number of nodes of the
dataset in question. Figure 4.6 presents the values of the
hitratio as a function of k for the three strategies on three
datasets that are representative of what we observed for
the twelve datasets, using the optimal value of α. In Enron
and most the datasets, we observe that the three strategies
behave similarly. The only exceptions are RollerNet and
Taxi. In the case of RollerNet, DU/LD has the weakest
performance; this is due to the fact that all the nodes in
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Figure 4.6: Evolution of the hitratio

as a function of k for 3 datasets: Enron;
RollerNet; Taxi.this dataset set communicate constantly with each other,

thus the property LD can be meaningless.
In Taxi, PS has a weaker performance than the other

strategies. Manual investigations showed that a lot of nodes
have a similar number of links and durations, but they ap-
pear for first time at different instants. PS does not take
this in account, but Temporal Closeness does. Nodes that
become active later are more important than nodes active
for the same duration but earlier, as they participate in
temporal paths for a longer time.
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Figure 4.7: Results of hitratio(25, _, _)
for both DU/LD NL/LD with best and
worst α, PS and random strategy.

We now examine how each strategy performs when de-
tecting the top 25% nodes. We compare NL/DU, DU/LD
(best and worst α) and PS against a random sampling
strategy7. Figure 4.7 shows the value of the hitratio for 7. The average hit score of 100 trials of

randomly selecting 25% nodes.
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k = 25% of the nodes on the 12 datasets for the five strate-
gies in question. Firstly, as expected the random strategy
produces a hitratio approximately equal to 0.25 for the
12 datasets. Secondly, both NL/DU and DU/LD produce
similar results in the optimal α. Thirdly, remarkably in sev-
eral cases, PS performs as well as NL/DU and DU/LD.
Lastly, the hitratio can vary notably between the opti-
mal and the worst α in certain datasets. In the case of the
worse α, except UC, NL/DU always performs better than
DU/LD. In other words, DU/LD is affected more by the
changes in the value of α. Again these observations remain
coherent with the previous results.

4.2.4 Ordering

Datasets DULD NLDU PS
Enron 0.47 −0.25 0.45

Radoslaw 0.11 −0.05 0.48
DNC −0.04 0.53 0.58
UC 0.08 −0.02 0.06

HashTags 0.005 0.02 0.02
Articles 0.01 0.05 0.69

Facebook −0.08 0.25 0.25
Bitcoin 0.03 0.05 0.03

RollerNet 0.06 0.46 −0.33
Reality 0.14 0.1 0.68

Taxi −0.01 −0.08 0.19
Primary-

day1
0.01 0.04 0.35

Table 4.6: Kendall tau between each
strategy’s ranking and the accurate
ranking for the 25% sampled nodes.

In certain cases detecting the top 25% nodes might be in-
sufficient; additionally, one might require the correct or-
dering between those nodes. Thus, for each strategy, we
investigate how its ranking correlates with the actual rank-
ing. To obtain the actual ranking, we compute the Tempo-
ral Closeness and Durtop values of the 25% nodes ranked
highest by the considered strategy, and then rank the nodes
in relationship to their Durtop values. Table 4.6 presents the
Kendall tau correlation between the actual ranking and the
ranking produced by each strategy using the optimal α of
each dataset. We can observe that the correlation is low;
the highest value is 0.69. Additionally, we can observe that
the performance is far from constant and varies extremely
across datasets and strategies. For example, the strategy
PS has correlations ranging from −0.33 to 0.69 across the
datasets, which are also the highest and lowest values over-
all. From this, we conclude that while these strategies can
detect the important nodes, they are not able to detect them
in the same order as that of Durtop. This low correlation is
quite expected, since a node mis-identified by a strategy is
normally less important than all the other true important
nodes. Thus, if a strategy miss samples the second node,
it naturally causes discordant pairs for a high number of
nodes.
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4.2.5 Conclusion

We studied three strategies that use structural properties
to detect the central nodes. Two of these strategies re-
quire a parameter and in most cases, the optimal value of
this parameter depends on the nature of the dataset. Fur-
thermore, the third strategy does not require a parameter,
yet produces results quite similar to the first two strate-
gies when detecting the top 25% nodes. NL/DU found
on average 70% (resp. 50%) of the top nodes with optimal
(resp. worst) α. DU/LD found on average 60% (resp. 30%)
of the top nodes with optimal (resp. worst) α. PS found
on average 50% of the nodes. Finally, we observe that
these strategies are capable to find efficiently the impor-
tant nodes. However, those methods cannot provide the
ranking of these nodes. We also note that these methods
are computed instantly, compared to Temporal Closeness
that can take several hours for certain datasets.

4.3 Approximation

In addition to identifying the important nodes, one might
want to know the duration for which each node is impor-
tant. In this section, we propose a method that gives an
approximation of this duration, without the need to com-
pute it. In other words, we shall try to approximate the
Durtop value for each node without computing the Tempo-
ral Closeness. We exploit statistical characteristics related
to the distribution of these values. Here we consider only
the datasets that have a clear notion of importance: Enron,
Radoslaw, DNC, HashTags, Facebook and Articles8. 8. See Section 3.4.2.

[Saxena et al., 2017] showed that the ranking versus close-
ness centrality always follows a specific pattern in static
graphs. We investigate this here for the temporal case.
Figure 4.8 presents for all the nodes the ranks versus the
Durtop values normalized by the dataset’s total duration,
for the six datasets we consider. We observe two inter-
esting characteristics. Firstly, in five datasets, the largest
Durtop is roughly equal to the total duration of the dataset:
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Figure 4.8: For all the nodes the
Durtop values versus the ranks for
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it is over 97% of the total duration; it is equal to 85% for the
sixth dataset. Secondly, for all the datasets (except DNC),
the distribution of points can be represented by exponen-
tial function. The distribution for DNC can be represented
by a sigmoid function. We can exploit these observations
to approximate the values of Durtop. We denote from now
on the accurate Durtop value as Durtop Accurate.

4.3.1 Exponential function

We start by studying the datasets that present an expo-
nential function9. For each dataset, the number of nodes, 9. Enron, Radoslaw, HashTags, Face-

book and Articles.the minimum Durtop Accurate value (equal to 0) and the
maximum Durtop Accurate value are known. To generate
approximations of the Durtop value for each node, we con-
sider an exponential function that generates n values be-
tween 0 and M, where n is number of nodes and M is
maximum Durtop Accurate value. We propose the follow-
ing function:

f (x) = M×
[
(

1
1− e−β

)(eβ( x
n−1) − 1) + 1)

]
, (4.5)

where β is a constant that changes the curvature of the
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plot; we discuss this value later on. When x = 0, this
function returns 0 thus, the node with lowest ranking will
have a Durtop equal to 0. On the other side, when x = n,
f (x) = M, thus the node with the highest rank will have a
Durtop equal to M.

To evaluate the quality of this method, we will first eval-
uate the performance in the optimal situation: M is equal
to the highest Durtop Accurate; we have identified correctly
the top 25% nodes and their ranking; β is equal to the
value that gives the best results10. With these values, we 10. We manually computed the optimal

value for β.generate n values, from which we keep the top 25%, and
attribute these values to the top 25% nodes following the
correct ranking. To assess the performance of this method,
for each of the top 25% nodes, we study the relative er-
ror between the correct Durtop Accurate and the estimated
value.
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Figure 4.9: Inverse cumulative distribu-
tion of the relative error for the Durtop
estimation in the best case.

Figure 4.9 presents the inverse cumulative distribution
of the relative error for the five datasets. We can see that
the worst error is just under 0.2, in HashTags. Both email
exchange datasets (Enron, Radoslaw) have a quite similar
distribution, with a maximum error quite close (0.1 for En-
ron and 0.12 for Radoslaw). In the case of Facebook, the
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maximum error is quite low (around 0.02); finally for Arti-
cles, we can see a similar distribution to that of HashTags,
with a lower maximum error. Finally, the average relative
error in these five datasets is between 0.006 and 0.06. One
can assume that a tailored function for each dataset would
give better results; however this is impossible as a tailored
function would require pre-knowledge, such as the exact
curve, that we do not necessarily have.

In reality the correct value of M is unknown. Nev-
ertheless, we observed in figure 4.8 that the maximum
value (Durtop Accurate value) is close to the duration of the
datasets. From that, we propose to set M to the duration
of the dataset. With this value, the average relative error
increases to a minimum of 0.02 with the maximum remain-
ing at 0.06. Thus, we conclude that a non-optimal value of
M has a low effect on the estimation and that the duration
of the dataset can be used. Table 4.7 shows the average
relative error for both M values.

PPPPPPPPPDataset
M = Durtop

Accurate
Duration

Enron 0.05 0.06
Radoslaw 0.03 0.02
HashTags 0.06 0.06
Facebook 0.006 0.02
Articles 0.05 0.05

Table 4.7: Average relative error using
M equal to maximum Durtop Accurate
and Duration for the five datasets.

Before proceeding to the practical case, where we lack
any pre-knowledge about the dataset, we study the opti-
mal values of β. The optimal values for the 5 datasets are
all between 3.4 and 4.0, even through these datasets do not
have the same nature. We study the effect of modifying the
value of β on the 5 datasets. For each dataset, for all β val-
ues between 3.4 and 4.0, we compute the average relative
error value of the top 25% node. Figure 4.10 presents for
each dataset the average error as a function of β.

We can observe that in all datasets except Facebook, the
evolution of the relative error is similar. The lowest relative
error for the four datasets is between 3.8 and 4.0; addition-
ally, the relative error does not vary much between these
two values. The Facebook dataset has a different evolution:
as the value of β increases, so does the relative error. The
relative error increases only when the value of β is lower
than 3.4. In most cases the relative error remains low com-
pared to the other four datasets. While this is not definitive
and would require more testing, we think values between
3.8 and 4.0 can be used for any dataset. Further testing on
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Figure 4.10: Average relative error
as a function of β for the 5 datasets:
Enron; Radoslaw; HashTags; Facebook;
Articles.

more datasets would give better indicators for this interval.

4.3.2 Sigmoid function

Now, we concentrate on the case of DNC, where the dis-
tribution can be represented by a sigmoid function. A
sigmoid can be defined using the formula S(x) = 1

1+e−x .
However, this function only reaches 0 (resp. 1) when x =

−∞ (resp.x = ∞). While in our case, when x = 0 (resp. 1)
we want the function to return 0 (resp. M). To obtain a
sigmoid distribution between 0 and M, we define the two
following functions:

g(x) = −ln(
1− x

x
), (4.6)

f (x) =
M

1 + e−β(g(x)−α)
, (4.7)

where M is the maximum value, α is a constant that con-
trols the center of the curvature and β controls the degree
of curvature.

As we previously did with the exponential distribution,
we study the relative error in the optimal case, where M
is equal to the maximum Durtop Accurate value, and we
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know the optimal α and β values. Additionally, we study
the case where M is equal to the duration of the dataset.
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Figure 4.11: Inverse cumulative distri-
bution of the relative error for the DNC
dataset.

Figure 4.11 presents the inverse cumulative distribution
of the relative error for the Durtop estimation for the top
25% nodes, for M equal to the maximum Durtop Accurate
value and to the dataset’s duration. First of all, the two
distributions are almost the same; this is expected as the
difference between both values of M values is negligible.
The largest error is close to 0.2, the same as we observed
in the case of the exponential. Finally, we note that the
average relative error is 0.012.

Now, we study the effect of changing the values of α and
β. Figure 4.12 presents the average relative error between
the estimated and Durtop Accurate for the top 25% nodes
in function of α and β. For most combinations (over 90%)
of α and β the average error is less than 0.1. Thus we con-
clude that the effect of α and β is limited unless one uses
extreme values such as α = 1 and β = 1 which produce
large average errors. Unfortunately, we didn’t encounter
the sigmoid distribution on any other dataset, thus we are
unable to verify if the changes in the values of α and β
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Figure 4.12: Average relative error
between Durtop estimation and true
Durtop for the top 25% as a function of
α and β for DNC.

would have the same effect on other datasets.

4.3.3 Conclusion

From this section, we observed that in most cases, the
datasets have a quite similar distribution of Durtop Accurate
values, corresponding to an exponential distribution. For
corresponding datasets, we proposed a function that gen-
erates estimated values of Durtop. Additionally, for the
sixth dataset where the nodes’ Durtop Accurate values dis-
tribution corresponds to a sigmoid distribution, we pro-
posed a function as well. In the case where the exact rank-
ing of the nodes is known, both functions produces an ex-
cellent estimation.

4.4 Overall protocol

In this section, we consider the case that is the closest to a
real context, where we lack any pre-knowledge about the
dataset, and our goal is to detect the top 25% nodes and
approximate their Durtop Accurate value. To achieve this
goal, we combine the methods introduced previously in
Sections 4.1, 4.2 and 4.3.
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Datasets Iop × 2 Iop × 10 Iop × 100 Iop × 1000
τ time τ time τ time τ time

Enron 1.0 0.22 0.98 0.19 0.97 0.11 0.91 0.11
Radoslaw 1.0 0.28 1.0 0.15 0.98 0.07 0.94 0.07

DNC 0.99 0.18 0.99 0.08 0.99 0.01 0.95 0.008
HashTags 0.99 0.12 0.99 0.06 0.99 0.02 0.97 0.02
Facebook 0.99 0.07 0.99 0.04 0.99 0.04 0.96 0.04
Articles 0.99 0.17 0.98 0.16 0.86 0.15 0.67 0.15

Table 4.8: Correlation and computation
time normalized by that of Iop for
different I values (Sampled 25%).4.4.1 Methodology

First, we use the identification method of Section 4.2 to
pick out the top 25% of nodes. For simplicity we use the
parameterless strategy (PS), thus we are not required to
find the optimal α. From this strategy, we obtain a (un-
known) percentage of the true important nodes, 50% on
average. In Section 4.2.4 we observed that ranking these
nodes according to their PS value does not necessarily give
the correct order among them. To get the correct order in
an efficient way, we apply the method introduced in Sec-
tion 4.1. First, we start by computing the exact Temporal
Closeness for each node. However, instead of using Iop, we
use a larger value of I. Second, we rank the nodes accord-
ing to the obtained values at each time step, in the same
manner as in Chapter 3. Finally, we compute the Durtop

value value for each node, however, this value is incorrect
for two reasons. First, the optimal I was not used. Second
only 25% of nodes are taken into account, thus the com-
puted Durtop for a node represents the amount of time it
is in the top 25% of those identified nodes. We call this
value Durtop25. We will try to improve the estimation of
the Durtop value by using the method proposed in Sec-
tion 4.3 using the ranking produced by the Durtop25.

4.4.2 In practice

We apply this protocol on the six datasets for which we
observe a clear notion of global importance. First, we recall
that in those six datasets, the identification method was
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able to detect correctly around 50% of the top 25%. For
the identified nodes, we compute the Temporal Closeness
centrality as well as the Durtop25, and use this value to
obtain an ordering on these nodes.

Before proceeding, we study how accurate this ordering
is, as well as the effect of increasing the value of I. We
compute the Kendall tau correlation between the ranking
produced by the Durtop25 for each I and the one obtained
by the normal procedure11. Table 4.8 presents for the six 11. Computing the Temporal Closeness

for all nodes with Iop, ranking all nodes
and computing Durtop Accurate.datasets, the Kendall tau correlation and the computation

time for different multiples of Iop. We observe that when
Iop is multiplied by 2, the correlation is almost perfect, yet
the computation time is much shorter than the case where
all the nodes are taken into account. As Iop is multiplied
by 100, the correlation starts to decrease and the computa-
tion time ceases to decrease. Thus, we can conclude from
this that Iop × 10 should be used instead of Iop to further
decrease the computation time.

With Iop× 10, we compute the Temporal Closeness, ranks
and Durtop25 values for the identified nodes. Table 4.9
presents the average and median relative error between
Durtop25 and Durtop Accurate for our six datasets. This
validates our argument that these values are incorrect and
the method proposed in Section 4.3 should be used. To
better estimate the Durtop values for a dataset, we need to
know which function (exponential or sigmoid) can be used
to represent the distribution of the Durtop values. Recall
that the six datasets did not exhibit the same distribution
shape. Hence, for the identified nodes, we study the ranks
against the Durtop25 values. Figure 4.13 presents the val-
ues of Durtop25 normalized by the longest Durtop25, versus
the ranks. We observe the same behaviors as in Figure 4.8.
Five datasets12 have a distribution that corresponds to an 12. Enron, Radoslaw, HashTags,

Facebook and Articles.exponential function, while DNC presents a sigmoid func-
tion. Note that in the figure, it is hard to notice that Articles
can be represented by an exponential function. However,
the distribution corresponds to an exponential between the
range 0.9 and 1. From this, we conclude that the identified
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nodes represent a good indication of the shape of the dis-
tribution of the Durtop values. Therefore, we can use this
distribution to determine the function that should be used
to estimate the Durtop values.
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Figure 4.13: Durtop25 values versus the
ranks for the sampled nodes.

At this point, we have sampled the top 25% nodes us-
ing the PS strategy and computed the Temporal Close-
ness with I = Iop × 10. From this we have a close ap-
proximation of the ordering between those nodes (see Ta-
ble 4.8). Additionally, we know the correct shape of the
distribution of the Durtop values and the dataset’s dura-
tion. Hence, we have all the required information to esti-
mate the Durtop value following the method described in
Section 4.3. We call the obtained value DurtopEst.

Now, we observe how close the DurtopEst values are to
the true values (Durtop Accurate). Figure 4.14 shows the
distribution of the relative error for the six datasets we con-
sider. In the case of Enron and Radoslaw, the relative error
reaches a value of around 1.0, yet the average remains low:
0.25 and 0.20 in Enron and Radoslaw respectively (see Ta-
ble 4.9). In these datasets, the nodes that were wrongfully
identified, i.e. the ones that are not supposed to be in the
top 25%, are the ones with a high relative error. The rel-
ative error is larger for the other datasets as the sampling
had a lower hitratio. Therefore, a larger number of mis-
identified nodes were attributed values belonging to the
top 25% when normally they should have lower values.
Nevertheless, if we compare these values with the error of
Durtop25, see Table 4.9, the average error tends to be higher
than with Durtop25, but the median is much lower.

Datasets Durtop25 DurtopEst
Average Median Average Median

Enron 0.5 0.6 0.25 0.1
Radoslaw 0.5 0.6 0.20 0.1
HashTags 0.5 0.5 8.9 0.5
Facebook 0.6 0.6 1.4 0.1
Articles 0.8 0.9 0.8 0.3

DNC 0.6 0.8 0.4 0.46

Table 4.9: Average and median of the
relative error for the six datasets for
both values: Durtop25 and DurtopEst.
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Figure 4.14: Inverse cumulative dis-
tribution of the relative error for
DurtopEst for the six datasets.

This further shows that the estimation gives good re-
sults for the nodes that have been correctly identified by
PS. Hence, the ability to remove the wrongfully identified
nodes would decrease this error.

4.5 Discussion

4.5.1 Absence of importance

In Section 4.3, to estimate the Durtop value, we considered
only datasets that had a clear notion of importance. To
identity these datasets, we studied the distribution of the
Durtop values in section 3.4.2. Here, we discuss how to de-
tect these datasets without needing to compute the Tem-
poral Closeness and Durtop values for all the nodes.

The first obvious solution is to study the distribution of
properties that we used in Section 4.2. Figure 4.15 repre-
sents the inverse cumulative distribution of raw PS values,
i.e. the number of links multiplied by the duration, for the
12 datasets that we considered in Section 3.4.2.

For RollerNet and Primary-day1 we can observe how
most nodes are closer to the average compared to the other
datasets. This is a sign of the absence of a notion of global
importance: the nodes with the highest value are less dif-
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Figure 4.15: Inverse cumulative distri-
bution of raw PS.

ferent from the other nodes than for the other datasets.
From this method, distinguishing the other datasets that
we know do not have a meaningful notion of global im-
portance is not feasible. We discuss other approaches in
the perspectives in Chapter 6.

4.5.2 Conclusion

In this chapter, we proposed several methods to replace
or increase the efficiency of the complete process of com-
puting the Temporal Closeness and Durtopvalue. The first
method consisted of increasing the value of I, thus having
fewer computing instants. This decreases the computation
time without significantly affecting the accuracy of the re-
sults. However, after a certain point the computation time
becomes constant.

Therefore, we propose a second method that involves
several strategies that exploit structural prosperities to sam-
ple out the important nodes. These strategies found up to
90% of the important nodes. These methods gave instantly
the results, compared to several hours of computation for
certain large datasets with the exact method. However, we
observed that this method does not necessarily give the
correct order for the sampled nodes.
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Thirdly, in certain cases the value of Durtop can be re-
quired. For this, we observed that the values of Durtop tend
to have a similar distribution across datasets. From the
ranking of nodes, the number of nodes and duration of
dataset, to generate estimations for these values.

Finally, we proposed a protocol that uses these three
methods, to detect the top nodes and approximate their
Durtop values. This protocol depends highly on the qual-
ity of the sampling. Thus, one perspective is developing a
method to eliminate the mis-identified nodes.

We should also note that this protocol reduces the com-
putation time extreme, as the sampling method is com-
puted almost instantly in most cases even for large datasets.
Additionally, computing the Temporal Closeness for the
sampled nodes takes around one eighth of the original
computational time. Finally, approximating the Durtop val-
ues is also almost instantaneous. Thus, globally this method
is fast compared to the normal method.
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Ego-betweenness

A node’s ability to relay information in a network is one
of the most common criteria to evaluate its importance.
This importance is often measured using the betweenness
centrality [Freeman, 1977]. As we discussed in Chapter 1,
several adaptations extending this centrality notion to the
dynamical context have been proposed. These adaptations
tend to be computationally demanding, which renders their
use in real-world situations unfeasible.

Here, we concentrate on a special case of networks, De-
lay Tolerant Networks (DTN), in which end-to-end connec-
tivity is not guaranteed. Unlike standard networks, these
networks can be partitioned for long periods of time, with
links between nodes absent for long durations (for more
details, please refer to [Jain et al., 2004]) and, most often,
a path requires waiting time on the intermediary nodes,
before the required link appears. Real-world examples
of this type of networks are disaster situations (diffusing
warning notifications to victims) or intra-vehicle commu-
nication networks (diffusing traffic news). In these net-
works, several constraints exist such as: communication is
not always guaranteed; global knowledge of the network
may not exist; information transfer is not instantaneous
and can be expensive. Thus, when diffusing messages in
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these networks, choosing which node to pass the message
is an important question. One way to select these nodes is
using betweenness centrality. This bases the importance of
a node, on the amount of shortest paths that go through it.

Protocols that use betweenness centrality or more gen-
eral information about nodes to select them are known as
social-aware protocols [Magaia et al., 2015, Zhu et al., 2013].
[Kim et al., 2014] used an ego-point of view to introduce a
DTN routing protocol which considers the chance of fu-
ture contacts occurring between nodes. In a similar man-
ner, [Daly and Haahr, 2007] proposed a DTN routing pro-
tocol known as SimBet, which mixes a graph-based ego-
betweenness centrality, which considers an ego-centric point
of view. A similarity measure was also used. It measures
how similar two nodes are in order to evaluate if a given
node is an appropriate relay for message passing. Another
good example is BubbleRap [Hui et al., 2011], in which the
authors adapted the idea to temporal data by proposing a
measure which is derived from the simulation of propaga-
tion through flooding. In these works and others, simula-
tions often achieve good performances in terms of delivery
ratio and cost when compared to benchmarks, which val-
idates these approaches. However, the large majority of
these protocols use a static definition of the betweenness
centrality. Moreover, some of these definitions require the
knowledge of the global structure of the network, which in
practice is not always available.

For this reason, we introduce a novel adaptation of the
betweenness centrality that takes into account real-world
constraints. First, we consider dynamic graphs to take into
account the temporal aspect. Second, as the global knowl-
edge of network may not be available, we consider an ego-
centric point of view, which also lowers the computational
demand of this centrality. Finally, we think that in these
situations, the novelty (how recent) of the information is
a more interesting criterion than the speed of transfer or
number of links required to transfer information between
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two nodes. We therefore propose the notion of the most re-
cent path instead of the classical shortest path. We evaluate
the performance of this centrality in detecting the impor-
tant nodes against other adaptations of the betweenness
centrality.

5.1 Ego-centric vision

As previously mentioned, our goal here is to introduce a
centrality measure that takes into perspective real-world
constraints. We consider an ego-centric vision, i.e. we con-
sider that a node does not have access to all the network
but only to its neighborhood. In this section, we study the
classic ego-graph definition and introduce the equivalent
notion for the dynamic case.

5.1.1 Ego-graph and ego-dynamic graph

An ego-graph is composed of a node e (usually referred to
as ego), its links to its neighbors and the links between its
neighbors [Everett and Borgatti, 2005]. In other words, it
is the subgraph induced by e and its direct neighbors. An
ego-dynamic graph is the natural equivalent of this notion
in the dynamic context. Therefore, an ego-dynamic graph
is centered around a node e and contains only the inter-
actions between e and any of its neighbors, as well as the
interactions between any two neighbors of e.

Let us consider a dynamic a graph G = (V, E), where
V is a set of nodes and E is a set of edges in the form of
(u, v, t) where u, v ∈ V×V and t is a timestamp. Each link
stands for an interaction between nodes u and v, taking
place at instant t. If the interactions are directed from u to
v, we will refer to the network as a directed, otherwise, it is
undirected. Additionally, instead of t, we will often use the
notation tuv, or tu→v if the graph is directed, to indicate to
which interaction t is related. For a node e ∈ V (ego), the
ego-dynamic graph Ge = (Ne ∪ {e}, Ee), where Ne is the
set of neighbors of e, Ee = {(u, v, t) ∈ E|u, v ∈ Ne ×Ne}.

If we consider the dynamic graph of Figure 5.1, we can
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observe in bold red the ego-dynamic graph obtained with
A as the ego node. It contains the nodes A as well as B,
C and E as they have direct links with A. Node D does
not belong to the induced graph, as it does not have a
direct link with A, and naturally the link (D, E, 3) does
not belong to it.

C

B

A

D

E

1
2

3

3

4

Figure 5.1: A toy example of a dynamic
graph. The labels on the links indicate
the instant in which the link occurs. In
bold red the subgraph graph induced
by the node A as an ego node.

5.1.2 Paths

Time-respecting paths

Recall that a path in a dynamic graph is a sequence of links,
in which each link occurs before the following link. We use
here the same definition of path. A path from u1 to un is a a
sequence of links (u1, u2, tu1u2), . . . , (un−1, un, tun−1un) such
that ∀i, tuiui+1 > tui−1ui . Using this definition, information
is not transferred instantly and there is a delay between
the emission of a message and its reception. For exam-
ple, the path {(C, E, 3), (E, D, 3)} is invalid as both links
occurred at the same instant, and information is cannot be
transferred instantly.

Most recent path

As previously mentioned, we consider that relaying the
most recent information is more important than transmit-
ting old information rapidly. Hence, instead of computing
the shortest path or fastest path here, we consider the no-
tion of most recent path. A most recent path is the path that
gives the most recent information about the source.

Formally, a most recent path between u1 and un at time t is
a path (u1, u2, tu1u2), . . . , (un−1, un, tun−1un) such that tun−1un ≤
t and tu1u2 is maximum time among the times of all paths
from u1 to un that occur before t. In other words, the infor-
mation arrives to the destination at time t at most, and the
path starts at the latest possible time (most recent informa-
tion).

Before proceeding with the computation of the most re-
cent paths in dynamic graphs, we study the computation
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of the shortest path in an ego-graph. This computation is
quite straightforward, as the distance between two nodes is
at most 2. Let us consider two nodes u and v that are neigh-
bors of e. Nodes u and v are either directly connected or
they are not. If they are directly connected the distance is
1, otherwise the distance is 2 because of the path u− e− v
and possibly because of another path u−w− v passing via
another neighbor w of e. We now consider the situations
that can be encountered in an ego-dynamic graph.

Figure 5.2 presents three situation; in each situation, each
horizontal line represents a node, and the dotted red and
blue arrows represent a path between two nodes (transfer
of information). In all theses situations, we consider that
the time of analysis is τ. In the first case (top figure), a di-
rect communication from u to v at time tu→v = 2 allows v
to know u’s status dating from time 2 (blue path in figure).
If we consider the path that goes via e (red path), it arrives
at time te→v = 5, which is after tu→v, however it provides
information about u that dates from t = 1. As we are inter-
ested here about the most recent information, at instant τ

the most recent path is {(u, v, 2)}. In the second case (mid-
dle figure), the blue path that goes via e allows v to gain
information about u dating from tu→e = 2, while the red
path that goes through w reaches v before the blue path
but gives the status of u at tu→w = 1. As a result, the most
recent path from u to v at instant τ is {(u, e, 2), (e, v, 5)}.
Finally, let us consider a more complex situation (bottom
figure), with several possibilities for the status of u to reach
v: the direct path between both nodes at instant tu→v = 2,
as well as a second path via e that allows v to have the sta-
tus of u from tu→e = 1. Both these paths require a one or
two links, however they give information that is older than
the one given by the path {(u, w1, 3), (w1, w2, 6), (w2, v, 8)},
which gives the status of u from tu→w1 = 3. Thus, we see
here that the most recent path can contain more links or
take a longer time to reach the destination.
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Figure 5.2: Various examples of most
recent paths from u to v (in blue) at
time τ. In dotted red, alternative paths
from u to v.

To conclude, in this section, we presented the natural
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adaptation of ego-graphs to the dynamic case. Addition-
ally, we defined the most recent path, which is the path that
delivers the most recent information about the source.

5.2 Ego-betweenness

5.2.1 Definition

Recall that the betweenness centrality of a node u in a static
graph is defined as the sum of the fractions of shortest
paths between the pairs of nodes on which u is located.
From this, the classic ego betweenness definition was in-
troduced in [Freeman, 1982]. For a node e (ego), it is the
sum of the fraction of shortest paths between the pairs of
neighbors of e on which e is located. Formally this is de-
fined for a node e as:

C(e) = ∑
i,j∈Ne×Ne

gij(e)
gij

,

where gij is number of shortest paths between i and j
and gij(e) is the number of shortest paths that go through
e. Let us now introduce the ego-betweenness centrality in
dynamic graphs. The ego-betweenness centrality at instant
τ is defined in a similar way. It is the sum the fraction of
most recent paths between the pairs of neighbors of e on
which e is located. Moreover, to remain close to the spirit
of the classic definition, we consider only the paths that are
at most of length 2. Here, we apply the same definition of
length as in the static case, i.e. the number of links. For ex-
ample the blue path in Figure 5.2 (bottom) is not taken into
account when computing the ego-betweenness definition.

Formally, we define the ego-betweenness for a node e at
instant τ in a dynamic graph in the following way:

C(e, τ) = ∑
i,j∈Ne×Ne

pij(e, τ)

pij(τ)
, (5.1)

where pij(τ) is the number of most recent paths of length
at most 2 from i to j at time τ and pij(e, τ) is the number
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of these paths that go through e. This definition can be
applied to both directed and undirected dynamic graphs.
It should be noted that our point of view is retrospective,
since at a time τ, we measure the paths that already exist
in the graph. Consequently, the ego-betweenness centrality
depends on the past and not the future. Thus, at time τ,
the centrality can be seen as the extent to which the node
has recently been important as a relay of information. This
can be considered as an approximation of the chance of the
node remaining important in the future.

5.2.2 Computation

We propose here an algorithm to compute the ego-betweenness
of a node e. We consider the case of a directed dynamic
graph, the undirected case being simple to deduce from it.
As we are interested in the ego-dynamic graph around e,
we only consider the links involving the nodes of Ne ∪ e,
that is e and its neighbors. We go through these links in
chronological order. e

u

v

t1 2 3

Figure 5.3: Toy example of a graph with
three structural nodes and three links
that occur at two instants.

At time t, we store the links that occurred at instant t. In
addition, for each pair of nodes u, v we store two informa-
tions: first, the timestamp of the last direct link between
them; this allows us to construct the possible paths, and
second, the timestamp of the most recent paths between
both nodes as well the intermediate node on these paths.
Before discussing how we compute the ego-betweenness,
we discuss the need to store the links at t as well as the last
direct link. In Figure 5.3, we observe three links between
the three nodes, and in dotted red the most recent path.
At t = 2, we must keep the information about the link
(u, e, 1) in order to be able to detect the dotted red path.
For that reason, when computing the ego-betweenness at
an instant t, the links at instant t are treated differently
than other links.

To compute the ego-betweenness for a node e at instant
t, we compute all the most recent paths between all pair of
nodes u, v. Three cases have to be considered:
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1. there exists a direct link between u and v at time t, there-
fore v has the latest information of u;

2. the links at time t do not produce any interesting paths
compared to the already stored paths;

3. that deliver more recent information than the previously
computed most recent paths are created by using both
the direct links stored and the links at instant t.

Note that in the last case, the links at instant t can only
be arrival links1; these links cannot be the start of a path, 1. The second link in a path of length 2.

as there is no links that occur after them. Once all the
most recent paths are computed, computing the centrality
is straightforward.
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Algorithm 1: Calculate Dynamic Ego-Betweenness Centrality

Input: Node e , Ne, links Ee ordered by timestamp
1 begin
2 I ← ∅ . Information about most recent paths

3 direct← ∅ . Information about direct links

4 current_links← ∅ . Information about links of current timestamp

5 current_t← 0

6 for (ut, vt, t) ∈ Ee do
7 if t = current_t then
8 current_links[ut → vt] = t

9 else
10 for (u, v) ∈ Ne ×Ne do
11 ce[u→ v] = 0
12 if u→ v /∈ current_links then

.Obtain the nodes exist on a path between u and v
13 F = {x ∈ Ne ∪ {e} \ {u, v} |
14 direct[x � v] > direct[u→ x] ∨ current_links[x � v] > direct[u→ x])}

.Obtain from F the nodes with latest information about u
15 Q = {x, x = arg max

x∈F
(direct[u→ x])}

.Obtain from F the timestamp of the latest information about u
16 latest = maxx∈F (direct[u→ x])
17 if I[u→ v] = (tu→v, _) ∧ latest > tu→v then
18 I[u→ v] = (latest,Q)
19 else if I[u→ v] = (tu→v,Q′) ∧ latest = tu→v then
20 I[u→ v] = (latest,Q)
21 else if u→ v 6∈ I then
22 I[u→ v] = (latest,Q∪Q′)
23 (_,Q′′) = I[u→ v]
24 if e ∈ Q′′ then
25 ce[u � v] = 1/|Q′′|

26 else
27 I[u→ v] = (current_t, {})

28 centrality = ∑(u�v)∈Ne×Ne ce[u � v] .Compute centrality at time current_time
29 Print centrality
30 current_t = t

.Update direct using current_links
31 for u→ v ∈ current_links do
32 direct[u→ v] = current_links[u→ v]

33 current_links← ∅
34 current_links[ut → vt] = t

.Repeat lines 10 to 29
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The algorithm is presented in Algorithm 1. For each pair
of nodes, we compute all the possible paths of length 2 be-
tween them. From these paths, we keep only those that
deliver the most recent information. Afterwards, we com-
pare these paths against the paths stored. If both deliver
information that date from the same instant we keep them
all, else we keep the paths that give the latest information
only. Finally, we compute the ego-betweenness centrality.

Complexity

Finally, we study the complexity of this algorithm. We
can express it as a function of Ne = |Ne|, and Me = |Ee|,
the number of links in the ego-centered dynamic graph.
The complexity for the centrality of one node is O(MeN3

e ).
We should mention that this algorithm is naive as we re-
compute all the paths from scratch (line 13). The compu-
tation can be much more efficient. For example, we can
compute only the modified paths rather than computing
all the paths from scratch at every instant. Hence, update
the ego-betweenness rather than computing it from zero.

Practical example

To illustrate this definition on a practical example, we
compute the evolution of the centrality of e at time t, de-
noted by C(e, t), in the dynamic graph of Figure 5.4. At
times 0 and 1, there is no most recent path going through
e, so that e’s centrality is equal to 0. Starting from time 2,
e is located on the only most recent path from u to v, so
C(e, 2) = 1. But at time 3, there is a new most recent path
from u to v, which is {(u, v, 3)}, and as e is not located on
it, C(e, 3) = 0. At time 4, we identify that e is located on
{(u, e, 1), (e, w, 4)} which is the only most recent path from
u to w, that implies that C(e, 4) = 1. At time 5, e is also
located on a path from w to u: {(w, e, 4), (e, u, 5)}, how-
ever there is another path which is as recent: {(w, u, 4)};
C(e) is therefore increased by 1

2 and is equal to 1.5. At
time 6, there are two new most recent paths which allow
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Figure 5.4: Toy example of a dynamic
ego graph with four nodes, with e as
the ego node.

to relay information from w to v: {(w, e, 4), (e, v, 6)}; and
{(w, u, 4), (u, v, 6)}, the first one contributes for 1

2 to e’s cen-
trality, so that C(e, 6) = 2.

5.3 Dynamical betweenness under scrutiny

In this section, we discuss the analysis processes. We shall
compare ego-betweenness against the closest centrality met-
rics; metrics that capture a similar notion of importance.
The first centrality metric we consider is coverage central-
ity, that we first studied in Section 3.1.4. This centrality
quantifies the importance of a node u by the number of
shortest path that passes via u. This method quantifies
the importance quite similarly to ego-betweenness. The
second method is the snapshot method (presented in Sec-
tion 3.1.2). The network is represented as a sequence of
static graphs, each graph representing a fixed period of
the dataset and being analyzed separately. For a node u
in a snapshot, the classic betweenness definition is com-
puted; the computed value represents the node’s impor-
tance during the whole period of the snapshot. We denote
this method as snapshot.

5.3.1 Common base

To compare the three methods, we define a common base
for the comparison. We use a flooding method as the ref-
erence. A flooding process consists of diffusing the infor-
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mation as much as possible and as soon as possible. Once
a node receives the message it starts sending it to nodes
as it encounters them for the first time. We simulate one
flooding protocol starting from each node and count the
average number of times a node relays a message. This
provides a common reference to all the other measure-
ments. We should mention that the flooding method is
used in practical contexts as a substitutes for a centrality
measure [Hui et al., 2011]. Thus, it can be used as a tech-
nique to evaluate the capacity of a node to act as a relay.
We shall refer to this method as flooding.

5.3.2 Datasets

For the comparison, we considered four datasets. Three
are motion datasets: HyperText, Infocom, Primary. These
datasets can be considered as a DTN networks. The cen-
trality metrics we study can have other uses so we consid-
ered as well the Enron dataset, an email exchange dataset.

5.3.3 Comparison tools

After computing each of the centrality metrics, for each
node a centrality value for every instant, at a regular inter-
val, is obtained. As previously mentioned in Section 3.2.1,
comparing the values of centrality is not necessarily infor-
mative. Thus, we rank the nodes using the inverse compe-
tition ranking method. This produces a ranking vector for
each method for each computation instant.

To understand how each centrality metric differs, first
we compute the Kendall tau correlation between the rank-
ing produced by each metric against the ranking produced
by the flooding method. We then the evolution of the
Kendall tau over time for each method.

Secondly we consider the Spearman footrule correlation,
defined formally, for two rankings r1, r2 as:

F (r1, r2) = 1− ∑i |r1(i)− r2(i)|
M

,
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where rx(i) designates the position of node i in ranking x,
M is the maximum footrule distance, i.e. the largest possi-
ble distance which is equal to 2dN/2ebN/2c and N is the
length of the ranking (which is also the number of nodes
in the network). This is complementary to the Kendall tau.
However, it considers each node’s ranks difference solely,
without taking into account how its relationship of impor-
tance to other nodes is modified as the Kendall tau does.

5.4 Results

Before studying the results of the comparison, we discuss
briefly the computation times of the three methods. For the
four datasets, we obtain the following computation times.

Coverage Ego-betweenness Snapshot
Hypertext 3.7 days 6 hours 0.5 seconds
Infocom 12.5 days 15 hours 2 seconds
School 83 days 40 hours 2 seconds
Enron 4 days 5 hours 1 seconds

Table 5.1: Computational time for cov-
erage, ego-betweenness and snapshot in
four datasets.

In the four datasets, snapshot performs faster. Neverthe-
less, ego-betweenness performs between 20 and 50 times
better than coverage centrality. This is quite expected as at
each instant coverage considers all the nodes, while ego-
betweenness considers only the node’s neighborhood. The
computation of the coverage centrality at each instant has
a complexity of O(|N|log(|M|)), where |N| is the number
of nodes and |M| is the number of links in the datasets.
Hence, computing the centrality for one node is in O(|N|M|log(|M|)).
This is quite expensive compared to the complexity of ego-
betweenness. Naturally, the snapshot method is much faster
as it uses the static definition, which has a lower complex-
ity.

Figure 5.6 presents the evolution of the Kendall tau be-
tween the ranking obtained for each centrality and the
flooding method, for the four datasets. The first obvious
observation is that at certain instants the correlation is con-
stant. These instants represent periods of inactivity. Dur-
ing these periods, flooding method, ego-betweenness, and
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coverage constantly attributes the last computed value. How-
ever, when it comes to snapshot, only the period of the
snapshot is taken into account. All the nodes are attributed
a centrality equal to 0, hence the correlation is close to zero,
which can be considered as a random ranking in relation
to the flooding’s ranking. Secondly, ego-betweenness is
the most correlated to flooding in most cases, compared
to the two other centrality metrics. The snapshot method
does not consider the past nor future; additionally, it can
consider paths that do not respect the chronological or-
der. Hence, it is normal to expect ego betweenness central-
ity to be more correlated than the snapshot method. On
the other side, the low correlation of coverage centrality
is unexpected, as it seems to rely on a similar intuition
as ego-betweenness. Several reasons can be evoked to ex-
plain this observation: the fact that coverage centrality is
not normalized by the number of paths going from one
node to another or the difference between a fastest and a
most recent path. However, we think that the most plausi-
ble cause is the fact that coverage centrality considers the
whole stream, while ego-betweenness is restricted to the
sub-stream around e. In a flooding experiment, a node
which receives a message sends it to all its future neigh-
bors, so this measurement also relies mostly on the local
structure around e. Thus, the ego-betweenness as we de-
fined it seems to be closer to what a flooding process would
do.

 0
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Figure 5.5: Evolution of fraction of the
active nodes over time.

Finally, for Infocom dataset, we can observe that the cor-
relation for snapshot and coverage is highly related to the
level of activity (see figure 5.5). Comparing with the evo-
lution of Kendall tau, it is easy to notice that when the
activity increases snapshot becomes more correlated, and
that coverage becomes less correlated, and vice-versa. This
can also be observed in the other datasets, however to a
lesser extent2. 2. See Figures 2.1, 2.11 in pages 35, 45

respectively.Figure 5.7 presents the Spearman footrule correlation. It
confirms the global observations made on the Kendall tau
correlation. In the four datasets, the ego-betweenness re-
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mains the closest to the flooding method. Globally, the dif-
ference between ego-betweenness and the other methods is
larger than that observed with the Kendall tau correlation.

This effect is likely due to the fact that when a node’s
rank is different, this changes its relation of importance
with the other nodes and has a high impact on the Kendall
tau, whereas this change only shifts the other node’s rank-
ing and affects less the Spearman footrule correlation.
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Figure 5.6: Evolution of the Kendall-tau
correlation between each method and
the flooding method over time for the
four datasets: HyperText(Top left),
Infocom(Top right), Primary(Bottom
left), Enron(Bottom right).
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5.5 Conclusion

In this chapter, we defined the ego-betweenness centrality
in dynamic graphs as an extension of the ego-betweenness
centrality in static graphs. We also proposed an algorithm
to compute this value, which proved to be tractable on sev-
eral real-world datasets. Its node-centered design allows to
compute it with the mere knowledge of the neighborhood
of a node. Such a property is desirable in many contexts,
notably networks where there is no guarantee of an end-
to-end connectivity. We compared the ego-betweenness to
other centrality measurements in the literature, which also
aim at assessing the utility of a node as a relay of informa-
tion in a dynamic network. We observed that most of the
time, it is relatively highly correlated to a flooding-based
centrality measure. Therefore, we have good hopes that the
ego-betweenness could be useful for opportunistic routing
in DTN. In order to develop this application, the next step
is to implement a comprehensive protocol that uses this
centrality measure. Existing protocols based on centrality
often use it jointly with a similarity measurement, thus we
contemplate the idea of defining an ego-centered similarity
measure that would be possible to compute in this context.
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6
Conclusion and perspectives

In this thesis, we studied the use of graph theory in the
analysis of networks such as social networks. We concen-
trated on centrality metrics which are used to detect the
important nodes of a network. In particular, we focused
on the metrics that take into account the temporal aspect
of the data. In this chapter, we summarize our conclusions
for each chapter and discuss the perspectives.

Temporal centralities under scrutiny

We studied several temporal centralities from the litera-
ture, representing the principal approaches that take into
account the temporal aspect of the current literature. Each
method proposes a different manner to take into account
the temporal information in the network. Some methods
base the importance of a node on the notion of the short-
est path, while others base it on paths of all lengths. Our
goal was to understand how they differ from one another.
To do so, we proposed a comparison framework that com-
pares any two centrality metrics. This framework com-
pares them on two levels: the node and the global level.
We compared several metrics using this framework. From
this, we observed several phenomena. First, a node can be
perceived as important by one metric and as irrelevant by
another. Second, a node can be inactive at a given moment
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(i.e. it doesn’t not have any links) and yet be highly impor-
tant. Third, nodes can be globally important while having
a low global average centrality.

In the comparison framework, we introduced the Durtop

value that represents the global importance of each node.
Examining the distribution of this value showed that for
some datasets, all the nodes have similar values; hence, no
node is significantly more important than the others. Thus,
in certain cases, the notion of global importance can be ab-
sent or meaningless, though of course a node may be more
important than others at specific instants. Additionally,
in this chapter, we compared different ranking methods.
This comparison showed that in certain cases, the classi-
cal method misrepresents the nodes, especially when they
become completely inactive.

This work opens several interesting perspectives. First,
we would like to apply this approach to more datasets.
Studying several datasets stemming from very different
contexts may strengthen the conclusions drawn from this
study. This would allow us to confirm our findings and
might help identify specific patterns in the evolution of
the nodes’ importance that are context-dependent. In ad-
dition, our current classification of networks (email based;
co-occurrence; social; movement) is based on the source
of the network, rather than structural or temporal proper-
ties. Identifying such patterns would help produce a better
classification for the networks.

Following up on this point, it would be very interest-
ing for many real applications to be able to detect spe-
cific patterns in the evolution of centrality measures. This
would certainly allow predicting which nodes are likely to
be important in the future, which is key importance for
several applications, ranging from protocols of communi-
cation to recommendation systems. For example, an indi-
vidual is likely to communicate with his colleagues during
the working days, however, during the weekend he will
communicate more with friends and family. In both cases,
he might be of importance, however not to the same in-
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dividuals. Detecting such cycles and evolutions of impor-
tance can be useful for many applications such as diffusing
information or vaccination campaigns.

We have seen that some of our observations allow the de-
tection of nodes that have an atypical behavior, and/or mo-
ments where something unusual happens in the network’s
dynamics. We have observed this both when studying the
time-evolution of the closeness of individual nodes, and
when comparing different importance measures. This sug-
gests that temporal centrality measures are relevant met-
rics when trying to detect anomalies in the network, which
is a crucial question in many contexts [Wilmet et al., 2018,
Heymann et al., 2012]. In particular, it seems that nodes
that are important with respect to one metric but not to
another have a particularly interesting behavior. A sys-
tematic comparison of different metrics would therefore
certainly lead to very interesting insights about the consid-
ered dataset.

Throughout the literature, several centrality metrics con-
sider different types of paths such as the fastest path, short-
est path and foremost path. Comparing each of these cen-
trality metrics can give a better understanding on how the
choice of path affects the centrality. For example, we ob-
served that a node can be relevant for one centrality but
not another; this is likely to be observed with the different
notions of paths as well. For example, betweenness cen-
trality can depend on shortest paths, fastest paths or most
recent paths; comparing this centrality among the different
path types can give a better grasp on how each path notion
affects the centrality measure. It would allow a better use
of the centrality metrics for real-world applications.

Approximation and Identification

After comparing several centrality metrics, we observed
that these methods can be computationally expensive. There-
fore, we studied deeply one of those methods: Temporal
Closeness. Our goal in the chapter was to efficiently detect
the nodes with a high global Temporal Closeness .
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Temporal Closeness is computed every Iop seconds; here
we argued that this value can be increased. Which leads
to computing the centrality less frequently and therefore
requires less computational time. We observed that this
reduces the computational time by at least half, without
affecting the global ranking of nodes.

Even though the computational time is significantly re-
duced, it can remain consequential. Thus, we proposed a
second method to identify the nodes of interest. By exploit-
ing structural properties, we were able to propose three
strategies that identify the globally important nodes. On
most of the datasets that we considered, these strategies
were able to find a significant percentage of the 25% most
important nodes in a negligible time.

Afterwards, we considered the case where the duration
spent as important by each node, i.e. the Durtop value,
is required. By exploiting statistical properties such as
the distribution of these durations or the duration for the
most important node, we proposed a method to estimate
these values. In the datasets with a strong notion of global
importance, the proposed method estimated the durations
with a good precision.

Finally, by combining these different approaches, we de-
veloped a protocol. This protocol identifies the top nodes
and estimates the duration spent by each node as impor-
tant. The drawback of this protocol is the mis-identified
nodes1. This brings us to the first perspective of this work. 1. Nodes that are not supposed to be in

the top 25%.

Identifying the false positives would be beneficial, as this
would lower the error in the estimation of the Durtop val-
ues. One way to do so would be to study the evolution of
the temporal closeness for the 25% identified nodes. We
can examine each node and look for nodes that are much
less important than the rest. Another approach would be
to introduce another identification strategy. However, we
argue that unless the strategy can identify all the nodes
perfectly, mis-identifying nodes will remain an issue. Fur-
thermore, developing a method to select automatically the
α parameter for the two parameter based strategies would
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increase the performance of these strategies as well as ren-
der them easier to use.

When estimating the Durtop values, we are confronted
with one (resp. two) parameters that have to be defined in
the case of an exponential (resp. sigmoid) curve. In the case
of networks with an exponential curve, values between 3.4
and 4.0 yield the best results. Formally proving that these
values give the best results for all the datasets or develop-
ing a method that returns the best value for the parameter
is an interesting perspective. This would be harder for the
case of a sigmoid curve. Firstly we only encountered one
network that exhibits this curve, thus it is difficult to gen-
eralize the results. Therefore, finding other networks with
such a curve and testing them should be the first step. This
can result in finding networks that exhibit other forms of
distribution, which would open a new challenge. But ad-
ditionally, it can introduce a new classification system for
the networks in question. Secondly, as the sigmoid curve
requires two parameters, finding two optimal values is nat-
urally harder than the case of an exponential that has one
parameter. Nonetheless, the results on the tested dataset
showed that only extreme values of the parameters pro-
duced a weak performance. Again this would be validated
with the study of more networks. In the same direction,
the use of machine learning methods can be a possibility to
find the value of parameters. Another perspective would
be developing the same protocol for other temporal cen-
tralities. For example, betweenness centrality is expensive
to compute for the temporal case, so developing an iden-
tification strategy would be useful. We would be able to
find the important nodes instantly, avoiding the expensive
computation.

In this work, we considered only datasets with a strong
notion of global importance. This was detected using the
exact computation of Temporal Closeness, hence the need
to develop a method to detect the datasets without a notion
of importance, without computing the exact computation
of Temporal Closeness. We think one way to do so is by an-
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alyzing the evolution of Temporal Closeness over time for
the identified nodes. Nodes in datasets with a meaningless
global importance, might have a particular evolution, for
instance fluctuate extremely. On the other hand, nodes in
datasets with a strong notion of global importance would
have a more stable evolution, constantly high for example.

Ego-betweenness

In this chapter we considered another centrality metric: the
betweenness centrality. We argued that most adaptations
do not take into account possible applications, as each ap-
plication has its own restrictions. Here, we concentrated
on the case of delay tolerant networks (DTN). To take into
account the aspects of delay tolerant networks, we consid-
ered the notion of most recent path. We use this instead of
the shortest path, as we claim the novelty of information is
more interesting than the speed of its transfer. Addition-
ally, we considered an ego-centric point of view, as again
in DTN networks nodes do not have a global knowledge
of the network. From this, ego-betweenness centrality was
introduced.

We compared ego-betweenness with similar centrality
metrics on several motion networks. This comparison showed
that the results produced by ego-betweenness centrality
were the closest to the flooding method, which is used by
several DTN protocols to select the important nodes.

From this work, two main perspectives emerge. First
the developing of a DTN protocol that uses this central-
ity. In practice nodes do not know their neighbors in ad-
vance, but this is required by the introduced centrality
algorithm requires the neighborhood in advance. Hence,
an approximated centrality could be computed. In such a
DTN protocol, each node would keep an up-to-date value
of its centrality. Whenever two nodes meet, the decision
to exchange the information or not would be based on the
centrality score of each node as well as a similarity mea-
sure, such as nodes belonging to a same community or a
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distance between the node and the destination of the mes-
sage.

For example, consider a vehicular network (taxis for ex-
ample), in a city in which nodes exchange traffic news us-
ing bluetooth or wifi. When two taxis come in contact, they
update their centrality value and then exchange centrality
values to decide if exchanging information is beneficial.
As mentioned above a similarity measure is required. If
we consider that the message is to be delivered to a spe-
cific vehicle, its last known position can be used as the base
of similarity. The closer a taxi is to the the destination, the
more similar it is to the destination. Hence, it is more likely
to successfully deliver the message.

This brings us to other perspectives. In our work, in
order to compute the ego-betweenness, the ego node has
to know in advance its neighbors and keep track of their
interactions. However, in reality a node does not know
in advance the nodes it will interact with in the future nor
can track all communications between them. Hence, an ap-
proximation of ego-betweenness can be introduced, where
the ego-betweenness centrality is computed with a subset
of the links of the ego-dynamic graph.

In a vehicular network, one can imagine that the vehicles
appear and disappear over time (the start and end of a
taxi driver’s shift). The absence and presence of a node
is not represented in the temporal graphs. However, it is
presented in the stream graph formalism introduced by
[Latapy et al., 2017]. A perspective would be adapting our
centrality method for this formalism to take into account
the presence and absence of nodes.

Another major perspective is the use of this centrality as
an approximation of the general betweenness centrality2. 2. Considering all the nodes in graph,

instead of only the direct neighbors.Rather than considering all the nodes in the calculation, we
would consider a subset. In this work, we considered all
nodes that are directly connect to the ego node, i.e. nodes at
distance 1. We can increase this distance to consider nodes
that are at distance larger than 1 from the ego node. Pre-
liminarily results showed that considering all the nodes
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that are at most at distance 3 or 4 produced a good ap-
proximation of the betweenness. However, work remains
in this direction before validating such an approach, such
as considering more datasets.

Global Conclusion

To conclude, in this thesis we concentrated on temporal
centralities. We studied several aspects. We compared
several centralities against one another; proposed several
methods to identify nodes with high temporal closeness;
proposed a novel ego-centric centrality based on the be-
tweenness centrality. From this work, we observed that
temporal closeness is not directly correlated to the snap-
shot method, where the static closeness centrality is used.
Yet, when we considered simpler static measure such as
number of link or duration, the results were more corre-
lated. This is quite interesting as we can observe how basic
measures can actually be more efficient and closer to tem-
poral centralities rather than static measures, even if they
are based on the same notions.

Additionally, as we analyzed several networks that have
different natures, as they come from different sources, we
observed that these networks share statistical properties
such as the distribution of Durtop values. This indicates
that temporal networks share certain aspects, even if they
come from different sources. Exploiting these properties
can render the computation of other temporal metrics more
efficient.

Furthermore, in these networks, certain datasets did not
have a meaningful notion of global importance; all the
nodes were equally important. Finding more datasets that
exhibit this should be interesting. In RollerNet, where all
the participants become active and inactive at the same in-
stant, and they all remain close to one another, these two
characteristics are clear signs for the absence of impor-
tance. Thus, computing simple metrics such as duration
or number of links should be considered as early indica-
tions for the absence of importance. Additionally, a sys-
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tematic comparison of centrality metrics on these datasets
can be insightful. It would be interesting to see if these
datasets have any notion of centralities that bring to light
a global notion of importance, if yes which centralities.
Thus, studying several centralities that do not share the
same notion of importance on these datasets would be in-
teresting.

Global Perspectives

Many other perspectives emerge from our work. We mostly
concentrated on the importance of nodes. The definition
of closeness that we mainly studied relies on the computa-
tion of temporal distance from one node to all the others.
This is particularly relevant in our context, where we are
concerned by the importance of a node in the dissemina-
tion process: a node will be important if it can reach many
other nodes quickly. In other contexts however, the impor-
tance of a node v may be more closely related to the fact
that the distances from all other nodes to v are short. This
may be the case for instance in Web graphs, in which the
importance of a page comes from the links towards it, not
from its outgoing links. Comparing these two notions of
closeness would lead to interesting insights.

In the same manner, we introduced the ego-betweenness
centrality for a specific application. Other applications
could require replacing the most recent path by other no-
tions of path that are more relevant to the application. Ad-
ditionally, as mentioned above, it would be interesting to
understand how the different paths affect the centrality
metrics, however in the ego-centric context.

In [Magnien and Tarissan, 2015], the authors studied Tem-
poral Closeness on Enron. They observed a node that is in-
active for most of the dataset, except for one instant where
it has two links with two other nodes. From these two
links, the node becomes the third most important node at
this instant. This is an indication that specific links can
be quite important. Hence, we think it would be quite
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interesting to define a reliable method for identifying im-
portant links. On the one hand, this would lead to another
approach for event detection in the network, complemen-
tary to the one sketched above. On the other hand, notions
of link centrality have been successfully used in the case of
static networks for community detection [Girvan and Newman, 2002].
Using a notion of importance in a dynamic network for dy-
namic community detection is therefore a promising idea.
This would consist of applying the method proposed by
Girvan et al., however we would consider the temporal in-
formation. To do so, we can start by computing Temporal
Closeness (or Ego-betweenness) and compute the globally
important nodes. Afterward, we remove a certain number
of nodes at specific instants. Once these nodes are removed
certain paths will no longer exists, separating groups of
nodes. These groups would correspond to our communi-
ties. This method can also be useful in local community
detection in dynamic graphs. The difference from the clas-
sical community detection is that local community detec-
tion focuses on a set of nodes of interest, and it tries to find
the best community for this set of nodes. Furthermore, as
these methods require knowing only top important nodes,
our identification methods can be of great use.

Finally, to our knowledge, there is yet no consensus on
relevant generative models for dynamic networks. Since
we have observed that different networks have different
properties regarding the temporal closeness centrality, this
is probably an important ingredient to take into account
when proposing a new model. The distribution of global
importance can be one characteristic for these models, as
well as finer analysis of the evolution of the importance for
each node.
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A.1 Relative Error per multiple of Iop
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P2PTV Multi-channel Peers Analysis

In this Chapter, we present work that was done on P2PTV
networks. This work was part of the master internship and
was completed during the first months of the thesis, which
was published [Ghanem et al., 2016]. In this paper, we an-
alyzed several P2PTV traces that were captured using 10
PCs. It allowed us to have a better understanding on how
these P2PTV applications work, even through we have no
access to their code.

B.1 Introduction

After being the support of the data and voice convergence,
the Internet has become one of the main video providers
(live TV or video on demand). Those multimedia services
were previously confined to the video broadcasting infras-
tructures (terrestrial, satellite or hybrid fiber/coax). The
transmission of broadcasting quality TV streams in High
Definition (or soon in Ultra High Definition 4K/8K) re-
quires the use of huge amount of communications net-
works resources. The development of dedicated technolo-
gies to distribute these contents is either local and limited
to a residential operator (IPTV), or global but complex and
expensive (CDN).

The alternative to these limited or expensive technolo-
gies could be partly or completely based on P2P. In this
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context, peers communicate via virtual mesh networks (over-
lays) that connect them. The dynamic topology of these
overlays depends on many parameters: location of resources,
network status, internal mechanisms of peers, as well as
the distributed content and the behavior of the peers di-
rectly involved as consumers of content.

In the case of TV streams, specific constraints require
significant adaptation of P2P (specifically related to real-
time aspects). A new application class realizes this kind
of service: P2PTV. For these applications, the content con-
sists of audio/video streams to distribute in real-time to
a large number of receivers. The large number of streams
and their intrinsic real-time characteristics generate timing
constraints which are difficult to guarantee in the consid-
ered dynamic environment. Strict compliance with these
constraints impacts directly on the peer’s quality of expe-
rience and thus on his behavior, which in turn impacts the
overlay.

P2PTV applications broadcast hundreds of channels, each
carrying a live audio/video content to thousands of peers.
Each channel corresponds to an overlay integrating peers
wishing to receive its contents, and these peers can switch
channels at any time (usually depending on the contents)
adding an extra dynamic factor.

It is this dynamical aspect we intend to address in the
present paper. Although several works have been pro-
posed to measure and analyze the activity on P2PTV in-
frastructure, tracking the presence of peers active on dif-
ferent channels remains challenging. Here we show that
we can rely on non-invasive measurement techniques such
as Wireshark to track peers switching from one channel
to another. To do so, we rely on 2 datasets obtained by
measurements campaigns that coordinate several points of
measure on a well known P2PTV infrastructure; we show
that although the views obtained by such a measurement
approach are partial, they are sufficient to detect multi-
channel peers and highlight particularities in their behav-
ior, thus leading the way to a more in-depth investigations
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on the subject.
The remainder of the paper is organized as follow: we

start by presenting existing works related to the analy-
sis of P2PTV applications (Section B.2) before presenting
the dataset used in the present paper (Section B.3). Then
we turn to the study of the information contained in the
dataset in order to analyze the behavior of multi-channel
peers. We start by exploiting the dataset by aggregating
all the information (Section B.4) before refining our anal-
ysis using narrowed views provided by sliding time win-
dows (Section B.5). Then we show that comparing the two
datasets gives insight on how diffusion through P2PTV has
evolved (Section B.6). Finally we conclude the paper by
presenting the perspectives opened by the present study
(Section B.7).

B.2 Related Works

Several studies and experiments have been done to analyze
P2PTV applications [Agarwal, 2007, Alessandria et al., 2009,
Spoto et al., 2009, Valenti et al., 2009, Tang et al., 2009, Rossi et al., 2011,
Bermolen et al., 2011]. Rossi et al.proposed a framework
for comparing P2P applications [Rossi et al., 2011] in which
they define a set of observable features related to the pro-
tocols used by the applications. They highlighted the main
similarities and differences between several P2P applica-
tions. In particular, they provided the key elements that
open the way to passive analyses one can use when the
applications are proprietary and no internal access is pro-
vided. Spoto et al.presented an investigation of PPLive us-
ing both active and passive measurements [Spoto et al., 2009].
Using a crawler, they were able to classify the traffic into
three classes as well as to show that only 15% of peers
could be considered as active peers, revealing the poten-
tials and limits of PPLive active measurement strategies.

Other works have been done on a more quantitative per-
spective [Hei et al., 2007, Jia et al., 2007, Hoßfeld and Leibnitz, 2008,
Wu et al., 2009]. Hei et al.proposed for instance a large
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scale measurement study of P2PTV, using a PPLive dedi-
cated crawler [Hei et al., 2007]. By collecting a huge amount
of data in different scenarios, they have shown that P2P-
TV peers have the same behaviour as IPTV users. They
also demonstrated the existence of a small set of super-
peers that highly contribute to the video uploading. Sim-
ilarly, using a crawler, Jia et al.tried to characterize PP-
Stream [Jia et al., 2007]. They were able to find certain
characteristics such as geographical clustering, arrival/de-
parture patterns and playback quality.

Magharei et al.proposed a study on the structure of net-
works that most P2PTV applications used. They examine
key issues with such structures and how bottlenecks can
appear [Magharei and Rejaie, 2006].

By passively studying the traffic in P2PTV infrastruc-
tures, Silverston et al.were able to compare different appli-
cations pointing out their similarities and differences [Silverston et al., 2009].
Looking more deeply into the traffic, they discovered that
signaling traffic tends to have a large inter-packet time
while video traffic tends to have a smaller one. They also
looked into peer behavior, revealing that the vast majority
of peers tend to receive data more than they send, pointing
out potential reciprocity issues.

There are also few studies more specific to the peer be-
havior and the multi-channel observations [Cha et al., 2008,
Mendes et al., 2010, Wang et al., 2013, Mizutani et al., 2015].
Wang et al.analyzed the traffic that is characteristic to peers
switching from one channel to another [Wang et al., 2013].
Using the most popular P2PTV applications such as PPLive
or SOPCast, they monitored a channel for a given period
and then suddenly changed to another one. They revealed
that switching has a huge impact on the network efficiency
as it increases the overload and adds a significant over-
head. Finally, Mitzutani et al.were able to detect video
servers as well as to find new characteristics of PPTV by
monitoring multi-channel PPTV traffic [Mizutani et al., 2015].
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Property 2013 2015

Duration 14 hours 7 days
Number of channels 12 10

Number of peers 100 809 289 710

Maximum number of
peers per channel

21 518 96 258

Average payload size 504 B 408 B
Total payload size 193 GB 601 GB

Table B.1: Properties of the dataset

B.3 DataSet

In this section, we present the datasets that were used dur-
ing this work. It consists of two distinct measurement cam-
paigns conducted on PPTV at a different time. The key
aspect of those campaigns is that they coordinated traf-
fic measurements from different points of measure. Con-
cretely, the measurements were conducted on several PCs
each running the application on a different channel thus,
from the application’s point of view, they acted as a regu-
lar peer. Every PC had an Internet connection provided by
FLET’S HIKARI NEXT, 100 Mbps optical access service via
Plata HIKARI Mate as an ISP in Japan. For capturing and
monitoring traffic, Wireshark [wir, ], a well-known packet
sniffer, was running on every measurement PC during the
campaigns. Therefore we have the totality of the traffic that
has been sent and received by our machines.

The first dataset was extracted from a 14 hour long traffic
measured on December 2013 using 12 points of measure,
while the second was extracted from a 7 day long traffic
measured on July 2015 using 10 points of measure. We
shall refer to those datasets later on as 2013 and 2015 re-
spectively.

Table B.1 presents the global properties of both datasets.
We can particularly notice the huge amount of data ex-
changed (193 GB and 601 GB for 2013 and 2015 respec-
tively). It is also worth noticing that, although 2015 dataset
is way longer (12 times longer than 2013 dataset), it ex-
hibits a less dense traffic than expected (the total payload
size is for instance only 3 times higher), which is partly



144 m. ghanem

due to the lower number of channels.
As mentioned in many previous works [Hei et al., 2008],

traffic generated by such applications can be shared out
into two categories. Control (or signaling) traffic which
could be either a heart beat signal, a peer’s list exchange
or buffer maps in form of a bit vector, representing the
data a peer has available or missing from its video buffer.
The second kind of traffic is data (or video) traffic which is
transferred in the form of data chunks.

Most P2PTV applications were initially designed as a
P2P mesh-based architecture [Magharei and Rejaie, 2006]
including PPlive and PPStream [Jia et al., 2007]. Nowa-
days, most applications use hybrid P2P infrastructures with
super-peers to guarantee that the viewers receive a bet-
ter quality. Each transmitted channel by a P2PTV applica-
tion would have its own P2P mesh-based network, which
contains two types of peers. The first are the super-peers
that are servers. They are active the whole time and ap-
pear in more than one P2P mesh in the same slot of time
with the goal of maintaining the infrastructure of such sys-
tems. The second type is the regular peers that might ap-
pear in more than one channel due to switching behav-
iors [Wang et al., 2013].

B.4 Global analysis

In this section, we exploit all the information contained in
the collected data in order to detect multi-channel peers.
We start by presenting global properties of the dataset (B.4.1)
that complete those provided in Section B.3. Then we focus
on the topics of this paper, namely the presence of multi-
channel peers (Section B.4.2). Note that in the rest of the
section, if not mentioned otherwise, we will present the re-
sults on the 2015 dataset as it is the more recent and the
larger one.
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Figure B.1: Inverse CDF of payload size
and maximal payload size/peer

B.4.1 Tracking exchanges of video content

As mentioned in Section B.3, since we monitored the en-
tire traffic using Wireshark, it is necessary to distinguish
exchanges depicting the activity of a peer watching a TV
program from the traffic dedicated to controlling the P2P
infrastructure. To do so, it is reasonable to assume that
a peer actively watching a TV program will trigger ex-
changes of video content, thus leading to a stream of pack-
ets with a significant size.

Figure B.1 shows the inverse cumulative distribution of
the payload size (plain circles). One can clearly observe
two regions. The first region involves packets smaller than
1000 bytes (68%) while a second region involves packets
larger than 1000 bytes (32%). Obviously, the first one is
related to control traffic while the second one can be cate-
gorized as video exchanges. In order to simplify the anal-
ysis, we will further make the assumption that any packet
whose size is less than 1000 bytes is not a video content.
Furthermore, a peer involved in at least one traffic contain-
ing a video will now be referred to as an active peer.

In order to get a better image of the peers behavior, we
also display on Figure B.1 the inverse cumulative distri-
bution of the maximal payload size a peer has exchanged
(cross dots). In other words, a (x, y) dot in this plot indi-
cates that y% of the peers have exchanged packets with x
bytes at most. This plot reveals that only 25% of the peers
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Figure B.2: Distribution of the peers
over the channels.

are actively involved in video traffic

B.4.2 Presence multi-channel peers

Turning now to the analysis of multi-channel peers, we
start by studying the proportion of peers identified in sev-
eral channels. It is worth remembering that the dataset
consists of partial and independent measurements of the
10 channels (Section B.3). Thus, it is absolutely not guar-
anteed to detect such a behavior.

Figure B.2 presents the distribution of the peers over the
10 channels. For each channel, we show the number of all
peers detected (left bar in blue) and the number of active
peers (right bar in green) as defined above. In addition, we
show for each of these quantities the fraction of the peers
that are also detected in at least one other channel (bottom
part of the bars with hatched lines). We will therefore re-
fer to those peers as multi-channel peers (or multi peers for
short).

The chart shows that the majority of the peers are con-
centrated in three channels. More importantly, it answers
the first question raised in this paper which confirms that
the measurement approach on which we rely on enables us
to detect peers that appear in several channels. It turns out
that 8% of the peers are multi-channel peers. Moreover,
one can notice that this statement still stands even if we fo-
cus only on peers that exchange video contents, although
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Figure B.3: Inverse CDF of the average
multi-channel presence.

the ratio then drops to 0.8% of the total number of peers.
However, the ratio of multi-channel peers actively watch-
ing a TV program still involve 3% of the active peers, thus
revealing that a non negligible fraction of peers exchanging
video content are involved in several channels. Note that
this percentage could be overestimated if distinct active
peers are recorded with a single identifier, which would
be the case if they are behind a NAT. Although we did not
investigate deeply this question in a systematic manner, we
manually looked in detail the most susceptible peers of the
dataset. Our preliminary results show that this is not the
case and that those IPs detected on several channels depict
a unique peer.

B.5 Exploiting sliding time windows

The results presented in the previous section are interest-
ing as they highlight the presence of multi-channel peers
but aggregating all the information contained in the dataset
prevents further refinement regarding the real behavior of
the peers. In particular, it does not allow to distinguish a
peer that switches between different channels (referred to
further as a switching peer) from a peer that stops watching
TV programs and starts watching another one way later
on.

To overcome this issue we propose in the present sec-
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tion to rely on the view provided by sliding time win-
dows. More precisely, we sliced the whole dataset into
non-overlapping windows of similar size and studied whether
it enables an in-depth analyses of multi-channel peers. As
one can expect, the size of the window becomes a key
parameter in this approach. Since we focus on tracking
the presence of switching peers, the size has to be short
enough to discard peers that disconnect but it also has to
be long enough to be able to detect the presence of the
peers in several channels. Therefore we decided to use a 1

minute size window.
In the following sections, we will investigate how this

approach enables us to distinguish between different types
of peers (Section B.5.1) and different types of super-peers
(Section B.5.2).

B.5.1 Different peer behavior

By relying on short-time windows, we are now able to de-
tect peers present simultaneously on different channels. In
particular, we can determine the number of peers present
in different channels for each slot of 1 minute. Besides,
when such a peer is detected, one can track how many
channels it is involved in.

Figure B.3 presents the inverse cumulative distribution
of the average number of channels on which a peer is si-
multaneously present; for all the peers (plain circles) and
for active peers (cross dots). In both cases, there is a large
amount of peers involved in 1 channel only, then the value
decreases smoothly between 1 and 2. However, when it
comes to values higher than 2, active peers (cross dots) are
no longer present. While in case of all peers (plain cir-
cles), a few peers are close to 4 or 5 channels in average.
Finally, it is remarkable that some peers appear in almost
all the channels (especially when computing the average
value) when using such a short-time window. This indi-
cates an unusual behavior and it is reasonable to consider
such peers as super-peers, i.e. usually servers active the
whole time whose purpose is to maintain the efficiency



Appendix B. P2PTV Multi-channel Peers Analysis 149

Figure B.4: Average multi-channel
presence v.s. maximal payload size

of the infrastructure (see Section B.3).

B.5.2 Different super-peers behavior

The detection of video injectors raises the question of the
role of super-peers present on several channels in the in-
frastructure. In particular, do they all participate actively
to the diffusion of video content or do they also regulate
and control the traffic over the P2P infrastructure?

In order to have a better understanding of this question,
we compare in Figure B.4 the average number of channels
in which a peer is simultaneously present to the maximal
size of a payload it sent/received. Each dot standing for a
different peer, one clearly finds the super-peers detected
previously but we can now refine their role: obviously,
most of them only support control traffic since all the pack-
ets they exchange have a very low size. Thus, these super-
peers are present only for administration and surveillance
purposes, while the video injectors are clearly present in the
top left part of the figure mixed with regular users. While
the three super-peers in the top left who seem to produce
video traffic, were only doing so in only 2 channels.

B.6 Extending the analyses

In order to strengthen the results presented so far, we present
in this section different analyses that allow to sustain our
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Figure B.5: Inverse CDF of the average
multi-channel presence for different
time windows.

former claims. In particular, we show that the size of the
time window has little impact on the former conclusions
(Section B.6.1). We also compare the results obtained on
the 2015 dataset to the ones obtained on the 2013 dataset
(Section B.6.2). This allows to give insights on how diffu-
sion through P2PTV has evolved.

B.6.1 Impact of the size of the window

All the results presented in Section B.5 are strongly related
to our choice of using a 1 minute time window. Although
we claim that this choice is reasonable regarding our main
objective (tracking multi-channel peer), one might won-
der whether another value would have altered our conclu-
sions. We therefore present in Figure B.5 a figure similar
to Figure B.3 but for different time windows (1, 5, 10, 30
and 60 minutes). The figure shows that the main effect
of increasing the size of the time window is to increase
the number multi-channel peers. This is completely ex-
pected since more times gives more opportunity to switch
between channels. But if the size of the window impacts
quantitatively the results, the overall observations remain
qualitatively valid. In particular, all curves present a sharp
breach around the value of 2 and another one after 3. It
is worth noticing that increasing the size of the time win-
dow also reveals that some super-peers cover all of the ten
channels. Thus, this confirms our assumption that they do
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Figure B.6: Inverse CDF of the average
multi-channel presence (2013 dataset).

not correspond to regular peers.

B.6.2 Comparisons of the datasets

We turn now to the comparison between the two datasets.
Using the same exact method explained in Section B.5.1),
Figure B.6 presents the inverse cumulative distribution of
the average number of channels on which a peer is simul-
taneously present. Unlike Figure B.3, the breach between
values 2 and 4 is more prominent. More interesting is that
we can see that super-peers are also present on the active
peer curve (cross dot). Thus, we can deduce that between
2013 and 2015 the roles of super-peers have changed. In
2013, a super-peer could have been responsible for inject-
ing video contents as well as administrating the infrastruc-
ture. In contrast, in 2015 each of these two roles seems to
be taken in charge by a specific super-peer.

Finally, Figure B.7 compares the average number of chan-
nels to the maximal payload size it has sent/received. We
compare the figure with the one obtained on the 2015 dataset.
Like in dataset 2015, the majority of super peers involved
in several channels support only control traffic. However,
in the 2013 dataset several super peers also support video
traffic, which is in sharp contrast with what can be ob-
served in the 2015 dataset. This is another indication of
the important modification that took place between the two
measurement campaigns.
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Figure B.7: Average multi-channel
presence v.s. maximal payload (2013

dataset).

B.7 Conclusion

In this paper, we used two datasets obtained by two mea-
surement campaigns relying on respectively 10 and 12 points
of measure associated to 10 and 12 channels on a P2PTV
system. We investigated how much information we can
retrieve on multi-channel peers and showed that although
the obtained view is partial, such a non-invasive measure-
ment approach yet enables to detect peers present in sev-
eral channels. Indeed, we were able to detect that re-
spectively 8% and 16% of the total number of peers were
present on more than one channels during the measure-
ment campaign. This number drops to 2% and 3% if we
restrain to active peers, i.e. peers involved in video con-
tent traffic. In addition, conducting an analysis based on
sliding time windows led to precisely track peers switch-
ing from one channel to another one as well as to identify
super-peers and to qualify their role in the infrastructure.

These results are interesting to characterize the behav-
ior of peers and extrapolate the behavior of users. This is
important for content providers to adapt the video supply,
and for network operators to optimize their infrastructure.

These results also allow to envision promising lines of
research. Since the measurement approach is light and
does not require to have privilege access to the applica-
tion itself or its infrastructure, we intend to conduct several
measurement campaign targeting both different P2PTV sys-
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tems and different measurement points to detect more char-
acteristics related to the applications or to the users behav-
ior.
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