

National Research Council of Italy

LIP6 Seminar Paris, France September 24, 2018 Two ways you did not

know mobile networks could be useful

Marco Fiore

Sorbonne Université

http://perso.citi.insa-lyon.fr/mfiore/marco.fiore@ieiit.cnr.it

What's a mobile network?

A telecommunication system where the last link is wireless

What's a mobile network for?

Evolution through generations

1G	1980	TACS		Analog voice			1000 M
2G	1991	GSM GPRS EDGE	9.6 kbps 20-50 kbps 100-130 kbps	Digital voice, te	xt m	essages, minimum data	
3G	2001	UMTS HSPA HSPA+	384-400 kbps 2-3 Mbps 5-8 Mbps	Web browsing, audio streaming	socia g	al media, navigation,	
4G	2010	LTE LTE-A	10-20 Mbps 20-40 Mbps	Video streaming	g, ma	achine-type communication	
5G	2020			Internet of thing enhanced mobi	gs, ai le br	utomated vehicles, oadband, augmented reality	
3G 4G 5G	2001 2010 2020	EDGE UMTS HSPA HSPA+ LTE LTE-A	384-400 kbps 2-3 Mbps 5-8 Mbps 10-20 Mbps 20-40 Mbps	Web browsing, audio streaming Video streaming Internet of thing enhanced mobi	socia g, ma gs, ai le br	al media, navigation,	

- Can we go beyond communication-based services?
 - A pervasive individual-level *remote sensing platform*

Land use Context and mapmaking

M. Fiore – Two ways you did not know mobile networks could be useful

Land use

The total of arrangements, activities, and inputs that people undertake in a certain land cover type

Urban land use

City land use has extensive applications

 Urban planning, zoning, metropolitan transport system planning, demographics, social segregation, etc.

~

Land use mapmaking

Traditional approaches

- Census data, surveys, satellite imagery processing
- An active research field in *geoinformatics*

• Current techniques have significant drawbacks

- Time-consuming, *easily outdated*, expensive, incomplete

Using mobile network traffic to detect land use A simple hierarchical classification approach

M. Fiore – Two ways you did not know mobile networks could be useful

One-slide methodology

• Intuition – different land uses entail diverse traffic dynamics

[1] R. Keralapura et al., ACM MobiCom 2010; [2] M.Z. Shafiq et al., ACM SIGMETRICS 2011

M. Fiore - Two ways you did not know mobile networks could be useful

Case study

Real-world mobile network traffic datasets

- Orange 2014-15 [6 main cities in France, 4 months, antenna cells]
- TIM BDC 2013-15 [4 main cities in Italy, 2 months, grid]

Sep 24, 2018

CIAP

M. Fiore – Two ways you did not know mobile networks could be useful

Validation

Ground truth land use

- Provided by the *municipalities of Milan and Turin, Italy*
- Comparative evaluation ^[3,4,5]

- A relevant *complement* to traditional land use mapmaking

[3] V. Soto et al., ACM HotPlanet 2011; [4] B. Cici et al., ACM MobiHoc 2015

[5] S. Grauwin et al., Geotechnologies and the Environment 2015

M. Fiore – Two ways you did not know mobile networks could be useful

Business
 University

An alternative approach Exploratory Factor Analysis

Methodology

• Exploratory Factor Analysis (EFA)

- EFA solution
 - By analyzing variable observations from a set of samples,
 EFA identifies common/unique factors, and loadings^[6]

[6] S.A. Mulaik, Foundations of Factor Analysis, CRC Press, 2009

Methodology

M. Fiore – Two ways you did not know mobile networks could be useful

Sep 24, 2018 「

6

mixed land use detection

- 14 factors versus *hundreds of clusters*
 - multiple signature clusters just capture
 different intensities of a same land use
 - many clusters are unique factors
 - traffic demands are in fact a *mixture* of actual common factors

Population density Context and dynamic estimation

M. Fiore – Two ways you did not know mobile networks could be useful

Population density

A measurement of population per unit area or unit volume, frequently applied to humans

M. Fiore - Two ways you did not know mobile networks could be useful

Urban population density

- Urban population density has extensive applications
 - Urban *planning*, transportations, *economics*, health, innovation, psychology, *geography*, sustainability

Sep 24, 2018

Population density estimation

• Traditional and advanced approaches

- National censuses, population registers, local surveys
 - often outdated, unreliable, unavailable
- An active research field in *geoinformatics*
 - recent breakthrough from *neural networks* applied to high-definition satellite imagery

23 countries fully mapped [Facebook]

Using mobile network traffic to estimate population density A regression model for static populations

[7] Deville et al., PNAS, 2014; [8] Douglass et al., EPJ Data Science, 2015

M. Fiore – Two ways you did not know mobile networks could be useful

De-noising the correlation

in rea

10

Sep 24, 2018

M. Fiore - Two ways you did not know mobile networks could be useful

2

A glance at results

[8] Douglass et al., EPJ Data Science, 2015

M. Fiore - Two ways you did not know mobile networks could be useful

Sep 24, 2018 🖊

11.33 Towards dynamic urban population densities A multivariate model

Dynamic population density

- Population density is a time-varying phenomenon
 - Current estimations capture *long-timescale* dynamics

- What about short-timescale fluctuations?
 - People distributions in urban areas vary within minutes

Sep 24, 2018

Mobile network metadata has *suitable granularity*

Estimating dynamic populations

0.65

presence

to census correlation

- 0.85 • Major problem: no ground truth 0.75
 - *Cannot train* a regression model
 - *Cannot trust* a model trained on nighttime
- A multivariate relationship
 - $-\alpha$ and β can be written as functions of the *activity level* λ

Another glance at results

- Validation
 - Sports events attendance
 - Ground truth by organizers

- Model exploitation
 - Morning/afternoon commuting

M. Fiore – Two ways you did not know mobile networks could be useful

- Emergence of *social events*

[9] Xu et al., ACM UbiComp, 2015

10% error versus

25% of state of art^[9]

Outlook And perspectives

M. Fiore – Two ways you did not know mobile networks could be useful

Sep 24, 2018 🔀 🚺

Outlook

Summary

- Mobile network data analysis can complement existing land use mapmaking, especially for *up-to-date mixed land use*
- Mobile network metadata analysis complements static and enables *dynamic population density* estimation

Only two examples

Takeaway message

There is more to mobile networks than "plain" communication-based services

- Mobile network unique features
 - (i) pervasiveness, (iI) very low (additional) costs, (iii) active/passive individual monitoring, (iv) decent level of spatiotemporal detail

Outlook

• What is happening now

- A growing multidisciplinary research effort [10,11]
 - also fueled by open data challenges (e.g., D4D^[12] and BDC^[13])
- Operators start understanding this *added value*
 - increased **CAPEX** on monitoring/sensing facilities
 - development of dedicated solutions (e.g., Telefónica 4th platform ^[14])
 - provisioning of data-driven services (e.g., Orange Flux Vision [15])
- Unison with *pure networking* goals
 - consistency with a *cognitive network management* vision [16]

[10] D. Naboulsi et al., IEEE Communications Surveys and Tutorials, 2016
[11] V. Blondel et al., EPJ Data Science, 2015; [12] V. Blondel et al., arXiv:1210.0137 [cs.CY]
[13] Telecom Italia Big Data Challenge, http://www.telecomitalia.com/bigdatachallenge
[14] Telefonica Smart Steps, http://dynamicinsights.telefonica.com/smart-steps/
[15] Orange Flux Vision, http://www.orange- business.com/fr/produits/flux-vision
[16] 5GPPP, https://5g-ppp.eu/cognative-network-management-for-5g/

Sep 24, 2018

Perspectives

- What will (possibly) happen next
 - There is much *unexploited (meta)data* in 3G/4G networks
 - e.g., rich *per-mobile service* and *per-user* information

- An opportunity for 5G and beyond-5G architectures to be *"general-purpose systems"* rather than just "networks"
 - fine-grained *localization* (e.g., via mmWave), high-frequency *tracking* (e.g., via edge passive probes), *near-real-time* provisioning

Thanks! http://perso.citi.insa-lyon.fr/mfiore/ ieiit.cnr.it ≥ marco.fiore@ieiit.cnr.it ♥ @marc0_fi0re

References

• Survey

 D. Naboulsi, M. Fiore, R. Stanica, S. Ribot, "Large-scale Mobile Traffic Analysis: a Survey," IEEE Communications Surveys and Tutorials, 18(1), 2016

Land use mapmaking

[http://mobile-traffic-analysis.project.citi-lab.fr/]

- A. Furno, R. Stanica, M. Fiore, "Comparative Evaluation of Urban Fabric Detection Techniques Based on Mobile Traffic Data," ACM/IEEE ASONAM, Paris, France, 2015
- A. Furno, M. Fiore, R. Stanica, "Joint Spatial and Temporal Classification of Mobile Traffic Demands", IEEE INFOCOM, Atlanta, GA, USA, 2017
- A. Furno, M. Fiore, R. Stanica, C. Ziemlicki, Z. Smoreda, "A Tale of Ten Cities: Characterizing Signatures of Mobile Traffic in Urban Areas", IEEE Transactions on Mobile Computing, 16(10), 2017

Population density estimation

[https://doi.org/10.5281/zenodo.1012194]

 G. Khodabandelou, V. Gauthier, M. Fiore, M. El-Yacoubi, "Estimation of Static and Dynamic Urban Populations with Mobile Network Metadata," IEEE Transactions on Mobile Computing, pre-print

