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News Reading: Feed Stream
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Event: something revolve around one or a group of specific persons (or 
entities) and happen at certain place during specific time . 
Examples: Trump becomes a candidate, The first game between Kejie and 
AlphaGo 

Story: multiple events that interdependent and evolve by time form a 
story. 
Examples: 2016 U.S. Presidential Election, Kejie VS AlphaGo

How We Remember Information
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The smallest granularity of memory: event
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Tesla: The most conscientious 
pricing of imported brands 

turned out to be it？

Title translation

# Category tags 
# Automotive Technology

7.5% articles with event 
tags account for 40% of 
the user traffic

Tags we don’t have

Tags we have

# Entity tags 
# Tesla

# Event tags 
# Tesla launches new model X



How Human Brain Organizes Information
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Detect events automatically  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Preprocessing

1. Document filtering
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3. Keyword extraction

w
w

w

w

w

w

w

w

Community 1 Community 2
Event 2Event 1

w

d

e

s

Keyword

Document

Event

Story

d
dd d

d

Tree 1

s

e

e

Tree 2

s

e e

Tree 2

s

e

e

e

e

e
Time

Keyword Graph

1. Construct keyword
    graph
2. Community
    detection
3. Filtering out small
    sub-graphs

Cluster Events

1. Cluster by keyword
    sub-graphs
2. Doc-pair relation
    classification
3. Cluster by
    document graphs

Cluster Stories

1. Find the story to
    which each event
    belongs
2. Add events to
    existing stories, or
    create new stories

Grow Story Forest

1. Merge same events
2. Update story tree
    structure with new
    events

e
e

e

e eStory 1

Story 2

Bang Liu, Di Niu, Kunfeng Lai, Linglong Kong, Yu Xu. “Growing Story Forest 
Online from Massive Breaking News,” in CIKM 2017.



Preprocessing

13

Input 
Features

Gradient Boosting
Decision Tree

Logistic
Regression Yes/No

Preprocessing

1. Document filtering
2. Word segmentation
3. Keyword extraction

Time



Keyword Graph
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Figure from: Yukio Ohsawa, Nels E Benson, and Masahiko Yachida. 1998.  
KeyGraph: Automatic indexing by co-occurrence graph based on building construction  
metaphor. In Research and Technology Advances in Digital Libraries, 1998. ADL 98.  
Proceedings. IEEE International Forum on. IEEE, 12–18.
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Cluster by Keyword Graph.

Extract doc-pair features: title 
similarity measures, content 
similarity measures, news 
category, …

Train an SVM classifier: input 
two documents features, output if 
they belong to same event or not.

Community detection on 
Document Graph

Cluster Events
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Matching Natural Language Sentences
with Hierarchical Sentence Factorization Conference’17, July 2017, Washington, DC, USA

Sentence A: The little Jerry is being chased by Tom in the big yard.

Sentence B: The blue cat is catching the brown mouse in the forecourt.
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Figure 1: An example to show the sentence factorization process.

(o  /  observe-01
    :ARG0  (i  /  i)
    :ARG1  (m  /  move-01
                                    :ARG0  (a  /  army)
                                    :manner  (q  /  quick))

I observed that the army moved quickly.

0.0 0 0.1.0 0.1 0.1.1

Figure 2: An example of a sentence and its AbstractMeaning
Representation (AMR), as well as the alignment between the
words in the sentence and the nodes in AMR.

as perform AMR-Sentence alignment to align the concepts in AMR
with the tokens in the original sentence.

Semantic parsing [2, 4, 6, 11, 18] can be performed to generate a
formal semantic representation of a sentence. Abstract Meaning
Representation (AMR) [4] is a semantic parsing language that rep-
resents a sentence by a directed acyclic graph (DAG) with edge and
leaf labels. Each AMR graph can be converted into an AMR tree by
duplicating the nodes that have more than one parent.

Fig. 2 shows the AMR of the sentence “I observed that the army
moved quickly.” In an AMR graph, leaves are labeled with con-
cepts, which represent either English words (e.g., “army”), Prop-
Bank framesets (e.g., “observe-01”) [18], or special keywords (e.g.,
dates, quantities, world regions, etc.). For example, “(a / army)”

refers to an instance of the concept army, where “a” is the variable
name of army (each entity in AMR has a variable name). “ARG0”,
“ARG1”, “:manner” are di�erent kinds of relations de�ned in AMR.
Relations are used to link entities. For example, “:manner” links “m
/ move-01” and “q / quick”, which means “move in a quick manner”.
Similarly, “:ARG0” links “m / move-01” and “a / army”, which means
that “army” is the �rst argument of “move”.

Each leaf in AMR is a concept rather than the original token in
a sentence. �e alignment between a sentence and its AMR graph
is not given in the AMR annotation. �erefore, AMR alignment
[30] needs to be performed to link the leaf nodes in the AMR to
tokens in the original sentence. Fig. 2 shows the alignment between
sentence tokens and AMR concepts by the alignment indexes. �e
alignment index 0 is for the root node, 0.0 for the �rst child of the
root node, 0.1 for the second child of the root node, and so forth. For
example, in Fig. 2, the word “army” in sentence is linked with index
“0.1.0”, which represents the concept node “a / army” in its AMR.
We refer interested readers to [3, 4] for more detailed description
about AMR.

Various parsers have been proposed for AMR parsing and align-
ment [13, 39]. We choose the JAMR parser [13] in our algorithm
implementation.

AMR puri�cation. Unfortunately, the AMR itself cannot be
used to form the desired factorization tree. First, it is likely that mul-
tiple concepts in AMR may link to the same token in the sentence.
For example, Fig. 3 shows AMR and its alignment for the sentence

Bang Liu, Ting Zhang, Fred X. Han, 
Di Niu, Kunfeng Lai and Yu Xu. 
“Matching Natural Language 
Sentences with 
Hierarchical Sentence 
Factorization,” 
in WWW 2018.
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Sentence A Sentence B

Context Layer Contex Layer

Aggregation Layer

Prediction Layer Prediction Layer

(a) Siamese Architecture for Sentence Matching (b) Siamese Architecture with Factorized Multi-scale Sentence Representation 

Depth 0 Depth 1 Depth 2

Output Output

Figure 5: Extend the Siamese network architecture for sentence matching by feeding into the multi-scale representations of
sentence pairs.

• MSRvid: the Microso� Research Video Description Cor-
pus contains 1500 sentences that are concise summaries
about the content of a video. Each pair of sentences is also
assigned a semantic similarity score between 0.0 and 5.0.

• MSRP[31]: the Microso� Research Paraphrase Corpus is
a set of 5800 sentence pairs collected from news articles
on the Internet. Each sentence pair is manually labeled a
label of 0 or 1, with 1 indicating that the two sentences are
paraphrases of each other.

Table 1 shows a detailed breakdown of the datasets used in evalu-
ation. For STSbenchmark dataset we use the provided train/dev/test
split. �e SICK dataset does not provide development set out of
the box, so we extracted 500 instances from the training set as
the development set. For MSRP and MSRvid, since their sizes are
relatively small to begin with, we did not create any development
set for them.

One metric we used to evaluate the performance of our proposed
models on the task of semantic textual similarity estimation is the
Pearson Correlation coe�cient, commonly denoted by r . Pearson
Correlation is de�ned as:

r = co� (X ,Y )/(�X�Y ), (10)

where co� (X ,Y ) is the co-variance between distributions X and Y,
and �X , �Y are the standard deviations of X and Y. �e Pearson
Correlation coe�cient can be thought as a measure of howwell two
sets of distributions �t on a straight line. Its value has range [-1, 1],
where a value of 1 indicates that data points from two distribution
lie on the same line with a positive slope.

Another metric we utilized is the Spearman’s Rank Correlation
coe�cient. Commonly denoted by rs , the Spearman’s Rank Corre-
lation coe�cient shares a similar mathematical expression with the
Pearson Correlation coe�cient, but it’s applied to ranked variables.
Formally it’s de�ned as [42]:

� = co� (r�X , r�Y )/(�r�X �r�Y ), (11)

where r�X , r�Y denotes the ranked variables derived from X and
Y . co� (r�X , r�Y ), �r�X , �r�Y corresponds to the co-variance and
standard deviations of the rank variables. �e term ranked simply
means that each instance in X is ranked higher or lower against
every other instances in X and the same for Y. We then compare
the rank values of X and Y with 11. Like the Pearson Correlation

coe�cient, the Spearman’s Rank Correlation coe�cient has an out-
put range of [-1, 1], and it measures the monotonic relationship
between X and Y. A Spearman’s Rank Correlation value of 1 im-
plies that as X increases, Y is guaranteed to increase as well. �e
Spearman’s Rank Correlation is also less sensitive to noise created
by outliers compared to the Pearson Correlation.

For the task of paraphrase identi�cation, the classi�cation accu-
racy of label 1 and the F1 scores are used as metrics.

In the supervised learning portion, we conduct the experiments
on the aforementioned four datasets. We use training sets to train
the models, development set to tune the hyper-parameters and
each test set is only used once in the �nal evaluation. For datasets
without any development set, we will use cross-validation in the
training process to prevent over��ing, that is, use 10% of the train-
ing data for validation and the rest is used in training. For each
model, we carry out training for 10 epochs. We then choose the
model with the best validation performance to be evaluated on the
test set.

5.2 Unsupervised Matching with OWMD
To evaluate the e�ectiveness of our Ordered Word Mover’s Dis-
tance metric, we �rst take an unsupervised approach towards the
similarity estimation task on the STSbenchmark, SICK and MSRvid
datasets. Using the distance metrics listed in Table 2 and 3, we �rst
computed the distance between two sentences, then calculated the
Pearson Correlation coe�cients and the Spearman’s Rank Correla-
tion coe�cients between all pair’s distances and their labeled scores.
We did not use the MSRP dataset since it’s a binary classi�cation
problem.

In our proposed OrderedWordMover’s Distance metric, distance
between two sentences is calculated using an order preservingWord
Mover’s Distance algorithm. For all three datasets, we performed
hyper-parameter tuning using the training set and calculated the
Pearson Correlation coe�cients on the test and development set.
We found that for the STSbenchmark dataset, se�ing �1 = 10,
�2 = 0.03 produces the most optimal result. For the SICK dataset,
a combination of �1 = 3.5, �2 = 0.015 gives the best result. And
for the MSRvid dataset, the highest Pearson Correlation is a�ained
when �1 = 0.01, �2 = 0.02. We maintain a max iteration of 20 since
in our experiments we found that it’s su�cient for the correlation

Bang Liu, Ting Zhang, Fred X. Han, Di Niu, Kunfeng Lai and Yu Xu. 
“Matching Natural Language Sentences with Hierarchical Sentence Factorization,” in WWW 2018.

Open Source: https://github.com/BangLiu/SentenceMatching 

https://github.com/BangLiu/SentenceMatching
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architectures with Graph Convolutional Network (GCN) [5, 11], an
emerging variant of CNN that directly operate on graphs. Specif-
ically, we combine the Concept Interaction Graphs of a pair of
documents into one uni�ed graph, by including all vertices, and for
each vertex in the uni�ed graph, grouping the features from the two
graphs, representing a concatenation of sentence subsets related to
this concept from both documents. We introduce a Siamese archi-
tecture to encode the concatenated features on each vertex into a
match vector. The uni�ed graph obtained this way is subsequently
passed through multiple layers of GCN to yield a �nal matching
score. This way, our model factorizes the matching process between
two pieces of text into the sub-problems of matching corresponding
semantic unit pairs in the two documents.

We performed extensive evaluation on two large datasets of long
Chinese news article pairs that were collected from major Internet
news providers in China, including Tencent, Sina, WeChat, Sohu,
etc., in a two-month period from October 1, 2016 to November
30, 2016, covering diverse topics in the open domain. The datasets
also contain ground truth labels that indicate whether a pair of
news articles talk about the same event and whether they belong
to the same story (a notion larger than events). They are created
by the editors and product managers at Tencent for algorithm
evaluation purposes.1 Compared with a wide range of state-of-the-
art shallow and deep text matching algorithms that do not take the
structural interactions of semantic units into account, our proposed
algorithms achieve signi�cant improvements through the use of a
graphical representation of documents.

To the best of our knowledge, this is not only the �rst work that
provides a graphical approach to long text document matching, but
also the �rst work that novelly adapts the GCN structure to identify
the relationship between a pair of graphs, whereas previously,
di�erent GCNs have been mainly used for completing missing
attributes/links [5, 11] or for node clustering/classi�cation [7], but
all within a single graph, e.g., a knowledge graph, citation network
or social network.

The remainder of this paper is organized as follows. Sec. 2
presents our proposed Concept Interaction Graph for document rep-
resentation. Sec. 3 presents our propoesd Siamese Encoded Graph
Convolutional Network for text pair matching based on the derived
graphical representation. In Sec. 4, we conduct extensive perfor-
mance evaluations of the proposed models and algorithms based
on two large datasets created at Tencent for its intelligent news
products. We review the related literature in Sec. 5 and conclude
the paper in Sec. 6.

2 CONCEPT INTERACTION GRAPH
In this section, we present our Concept Interaction Graph (CIG)
to represent a document as a weighted undirected graph, which
decomposes a document into subsets of sentences, focusing on
di�erent sub-topics or concepts. Such a graph representation proves
to be e�ective at uncovering the underlying attention structure of
a long text document such as a news article, which will help with
text matching.

1As long text document matching is a relatively new problem and the related datasets
are lacking, we are currently under the process of publishing these news article datasets
to the public for research purposes.

Text: Concept Interaction Graph:
[1] Rick asks Morty to travel with him
      in the universe.
[2] Morty doesn't want to go as Rick always
      brings him dangerous experiences.
[3] However, the destination of this journey
      is the Candy Planet, which is an fascinating
      place that attracts Morty.
[4] The planet is full of delicious candies.
[5] Summer wishes to travel with Rick.
[6] However, Rick doesn't like to travel
      with Summer.

Rick
Morty Rick

Summer

Morty
Candy 
Planet

[1, 2] [5, 6]

[3, 4]

Figure 1: An example to show a piece of text and its corre-
sponding Concept Interaction Graph representation.

We �rst describe our desired structure for a concept interaction
graph before presenting the detailed steps to derive it. Given a
document D, our objective is to obtain a graph representationGD
of D. Each vertex in GD is called a concept, which is a community
of highly correlated keywords in documentD. Each sentence in D
will be assigned onto one concept vertex that is the most related to
the sentence. We link two vertices by an edge if the similarity (e.g.,
TF-IDF similarity) of the sentence sets attached to the two vertices,
respectively, is above a threshold.

As a toy example, Fig. 1 illustrates how we convert a document
into a Concept Interaction Graph. We can extract keywords Rick,
Morty, Summer, and Candy Planet from the document using stan-
dard keyword extraction algorithms [15]. These keywords are fur-
ther clustered into three concepts, where each concept is a subset of
keywords that are highly correlated with each other. After grouping
keywords into concepts, we assign each sentence in the document
to its most related concept vertex. For example, in Fig. 1, sentences
1 and 2 are mainly talking about the relationship between Rick and
Morty, and are thus assigned to the concept (Rick, Morty). Other
sentences are assigned to sentences in a similar way. The assign-
ment of sentences to concepts naturally leads to multiple sentence
subsets. We then connect the concept vertices by weighted edges,
where the weight of the edge between a pair of concepts denotes
how much the two are related to each other. The edge weights can
be determined in various ways, which we will discuss later. This
way, we have re-structured the original document into a graph of
di�erent focal points, as well as the interaction topology among
them.

2.1 Construct Concept Interaction Graphs
We now introduce our detailed procedure to transform a document
into a desired CIG as described above. The process consists of �ve
steps: 1) document preprocessing, 2) keyword co-occurrence graph
construction, 3) concept detection, 4) vertex construction, and 5)
edge construction. The entire procedure is shown in Fig. 2.

Document Preprocessing Given an input document D, our
�rst step is to preprocess the document to acquire its keywords.
First, for Chinese text data (whichwill be used in our evaluation), we
need to perform word segmentation using o�-the-shelf tools such
as Stanford CoreNLP [14]. For English text data, word segmentation
is not necessary. Second, we extract named entities from the docu-
ment. For documents, especially news articles, the named entities
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Figure 3: An overview of the proposed Siamese Encoded Graph Convolutional Network (SE-GCN) for matching a pair of long
text documents. a) The architecture of the Siamese Text Pair Encoder on each vertex of the joint concept interaction graph
(CIG) of the two documents, for vertex feature generation. b) The GCN layers to map the initial vertex features in the joint
CIG into a �nal matching score.
each �i from the Siamese encoder will serve as the feature vector
for vertex �i in GCN.

Now let us brie�y describe the GCN propagation layers, as shown
in Fig. 3 (b). Interested readers are referred to [11] for details. Denote
the weighted adjacency matrix of the graph as A 2 RN⇥N where
Ai j = wi j . Let D be a diagonal matrix such that Dii =

P
j Ai j .

We will utilize a multi-layer GCN with the following layer-wise
propagation rule [11]:

H (l+1) = � (D̃�
1
2 ÃD̃�

1
2H (l )W (l ) ), (2)

where Ã = A + IN and D̃ is a diagonal matrix such that D̃ii =P
j Ãi j are the adjacency matrix and the degree matrix of graph G,

respectively, with added self-connections, and IN is the identity
matrix.

The input layer to GCN is H (0) = X , which contains original
vertex features, and H (l ) 2 RN⇥Ml is the matrix of activation, con-
taining hidden vectors of the vertices in the l th layer.W (l ) is the
trainable weight matrix in the l th layer. � (·) denotes an activation
function such as Sigmoid or ReLU. Such a form of propagation rules
is motivated by a �rst-order approximation of localized spectral
�lters on graphs, and can be considered as di�erentiable general-
ization of the Weisfeiler-Lehman algorithm, as described in [11].

In summary, as shown in Fig. 3, the combination of a Siamese
encoder applied to each vertex and multiple layers of GCN leads to
the proposed Siamese Encoded GCN (SE-GCN), which takes a joint
CIG representationGAB of a pair of documents DA and DB as the
input, pass the original sentences {SA (� ),SB (� )} associated with
each vertex� into the same Siamese encoder in a distributed fashion
to get thematch vectormAB (� ). Next, the concept interaction graph
GAB , together with the match vectors mAB (� ) serving as vertex
features, are fed into multiple layers of GCNs. Finally, the hidden
vectors in the last GCN layer is merged into a single vector of a
�xed length. Note that these hidden vectors of vertices preserve the
structural properties of the entire Concept Interaction Graph with
minimum information loss. We use the mean of the hidden vectors
of all vertices in the last layer as the merged representation, based
on which the �nal matching score is computed. All the components
in the entire proposed SE-GCN model can be jointly trained in an
end-to-end manner with back-propagation.

Discussion. To further improve the performance of our model,
we can also manually construct a feature vector for the pair of
documents in question, and concatenate the �nal mean vector rep-
resentation from the GCN with the manual feature vector for classi-
�cation. In our experiment, we pass such a concatenated vector to a
regression layer, such as a multi-layer feed forward neural network,
to get the �nal matching result.

We can see that SE-GCN solves the problem of long text docu-
ment matching in a “divide-and-conquer” manner. The matching
of two documents is divided into the matching of pairs of text snip-
pets (sentence subsets) on each vertex of the constructed Concept
Interaction Graph. Then, the distributed vertex matching results
are aggregated and merged through graph convolutional network
layers. SE-GCN overcomes the limitation of previous text matching
algorithms, by extending text representation from a sequential or
grid point of view to graphs, and can therefore better capture the
rich intrinsic semantic structures in long text objects.

Finally, it is worth noting that our proposed SE-GCN is highly
�exible. Di�erent components in the architecture may be replaced
by di�erent neural network modules. Besides, it is not limited to
text matching problems and can be applied to a variety of natural
language processing tasks, especially those related to the modelling
of long text objects, such as document classi�cation, sentiment
analysis and so on.

4 EVALUATION
In this section, we evaluate the performance of our proposed SE-
GCN model on the document pair matching task. We will �rst
describe the task of semantic relationship classi�cation for news
articles, and then introduce two Chinese news datasets we collected
speci�cally for this task at Tencent. After that, to evaluate our
model’s e�ciency, we will compare our model with a wide variety
of existing text matching approaches.

4.1 Description of Tasks and Datasets
Most of existing research work on text matching mainly focuses
on short text pairs. And there are few research work and publicly
available datasets for long document pair matching tasks. However,
the problem of matching two documents, such as news articles,
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Table 2: Accuracy and F1-score results of di�erent algo-
rithms on CNSE dataset.

Algorithm Dev Test
Accuracy F1-score Accuracy F1-score

ARC-I 0.5308 0.4898 0.5384 0.4868
ARC-II 0.5488 0.3833 0.5437 0.3677
DUET 0.5625 0.5237 0.5563 0.5194
DSSM 0.5837 0.6457 0.5808 0.6468
C-DSSM 0.5895 0.4741 0.6017 0.4857

MatchPyramid 0.6560 0.5299 0.6636 0.5401
SVM 0.7566 0.7299 0.7581 0.7361

SE-GCN 0.7800 0.7785 0.7901 0.7893

documents, the TF-IDF cosine similarity and the TF similar-
ity between the �rst sentence of two documents, the topic
categories of the two documents, and the absolute gap value
of the publication time of the two documents.
• Deep Structured Semantic Models (DSSM) [9]: it utilizes
a deep neural network (DNN) to map high-dimensional
sparse features into low-dimensional dense features, and
calculates the semantic similarity of the text pair.
• Convolutional Deep Structured Semantic Models (C-
DSSM) [29]: learning low-dimensional semantic vectors for
input text by convolutional neural network (CNN).
• Multiple Positional SemanticMatching (MV-LSTM) [30]:
matching two text with multiple positional text representa-
tions, and aggregating interactions between di�erent posi-
tional representations to give a matching score.
• Match byLocal andDistributedRepresentations (DUET)
[17]: matching two text using both a local representation
and learned distributed representations.
• ConvolutionalMatchingArchitecture-I (ARC-I) [8]: en-
coding text pairs by CNN, and comparing the encoded repre-
sentations of each text with a multi-layer perceptron (MLP).
• Convolutional Matching Architecture-II (ARC-II) [8]:
built directly on the interaction space between two text, and
model all the possible combinations of them with 1-D and
2-D convolution.
• MatchPyramid [20]: calculating pairwise word matching
matrix, and modeling text matching as image recognition,
by taking the matching matrix as an image.
• K-NRM [31]: using a translation matrix to model word-level
similarities and a new kernel-pooling technique to extract
multi-level match features, and a learning-to-rank layer that
combines those features into the �nal ranking score.

We utilize the implementation ofMatchZoo [6] for the evaluation
of above deep text matching models.

4.3 Performance Analysis
Table 2 and Table 3 compare the performance of di�erent models
in terms of classi�cation accuracy and F1 score, based on the Chi-
nese News Same Event dataset and the Chinese News Same Story
dataset. We can see that the results of our Siamese Encoded Graph
Convolutional Network achieves the best performance on both two
datasets in terms of accuracy and F1 score. This can be attributed

Table 3: Accuracy and F1-score results of di�erent algo-
rithms on CNSS dataset.

Algorithm Dev Test
Accuracy F1-score Accuracy F1-score

ARC-I 0.5267 0.5979 0.5010 0.6658
ARC-II 0.4946 0.5144 0.5200 0.5383
K-NRM 0.4952 0.6609 0.5021 0.6642

MV-LSTM 0.4954 0.6574 0.5021 0.6642
DUET 0.5307 0.6125 0.5233 0.6067
DSSM 0.6063 0.7015 0.6109 0.7058
C-DSSM 0.5368 0.5747 0.5296 0.5675

MatchPyramid 0.6213 0.6479 0.6252 0.6456
SVM 0.7715 0.7531 0.7672 0.7484

SE-GCN 0.8138 0.8203 0.8060 0.8122

to the two characteristics of our model. First, the input of long
document pairs are re-organized into Concept Interaction Graphs.
Therefore, corresponding semantic units in the two documents will
be roughly aligned. Second, our model learns the match vector of
each aligned semantic unit through a siamese encoder network,
and aggregate the match vectors of all units, or concept vertices,
via Graph Convolutional Network to take semantic topology struc-
ture of two documents into consideration. Therefore, it solves the
problem of matching documents in a “divide-and-conquer” manner
to cope with the long length of documents, and fully utilize the
connections between semantic units to give an overall matching
score or label.

Table 2 and Table 3 indicate that the deep text matching models
in Matchzoo lead to bad performance in the long document text
matching. The main reasons are the following. First, existing deep
text matching models are hard to capture meaningful semantic
relations between the long document pair. When the input text
pairs are long, it is hard to get an appropriate context vector repre-
sentation to match text pairs. For interaction-focused models, most
of the interactions between words in two long documents will be
meaningless, therefore it is not easy to extract useful interaction
features for further matching steps. Our model e�ectively solves
the above challenges by representing documents as Concept In-
teraction Graphs to split and align long text pairs, and utilize the
semantic structure of long documents through Graph Convolution
Network for semantic matching.

Moreover, Fig. 5(a) and Fig. 5(b) show that our SE-GCN performs
better than SVM according to ROC and AUC, indicating the higher
precision of our model. We also notice that the performance given
by the classical “Manual features + SVM” model is relatively not
bad compared to other models. Actually that is reasonable, as the
extracted features such as the publication time of news articles,
topic categories of news articles and so on are quite critical to judge
whether two news articles are talking about the same event or
story. However, our model provides a method to match a pair of
long documents without manually designed features and achieves
signi�cant improvement compared to existing deep text match-
ing models. Besides, we can easily incorporate manually designed
features into our model by concatenating them with our learned
matching vector for two documents.
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Story: multiple events that are 
interdependent and evolve over 
time form a story.

Cluster Stories

1. Find the story to
    which each event
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2. Add events to
    existing stories, or
    create new stories
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Choose the best position in the tree 
to insert a new event node
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LDA+Affinity Propagation: 
extract 1000 dimensional LDA 
feature, clustering by Affinity 
Propagation.

KeyGraph: the original 
KeyGraph algorithm proposed in 
[1], which doesn’t include the 
second step in our approach.

StoryForest: our approach.

Clustering Performance
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Bang Liu, Di Niu, Kunfeng Lai, Linglong Kong, 
Yu Xu. “Growing Story Forest Online from 
Massive Breaking News,” in CIKM 2017.
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Flat Cluster: cluster by stories, no 
structure.

Story Timeline: organizes events 
linearly by time.

Story Graph: calculates a 
connection strength for each pair 
of events and connect the pair if 
the score exceeds a threshold.

Event Threading: appends each 
event to its most similar earlier 
event. Similarity measured by TF-
IDF.

(d) Tree structure(b) Timeline structure
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(from the CIKM 2017 paper)
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