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Abstract—Bicycle-Sharing Systems (BSS) are growing quickly
in popularity all over the world. In this article, we propose a
method based on Nonnegative Matrix Factorization to study the
typical temporal patterns of usage of the BSS of Lyon, France,
by studying logs of rentals. First, we show how this approach
allows us to understand the spatial and temporal usage of the
system. Second, we show how we can track the evolution of these
temporal patterns over several years, and how this information
can be used to better understand the BSS, but also changes in
the city itself, by considering the stations as social sensors.

I. INTRODUCTION

Bike Sharing Systems (BSS) are now ubiquitous in many
cities all over the world. They offer a new type of public
transportation system, often considered complementary with
more traditional Public Transport. Because most of BSS
systems are composed of fully automated electronic docking
stations, large datasets describing the usage of the system are
usually accessible.

Velo’v, the BSS system installed in Lyon in 2005, is one of
the oldest. We obtained the usage dataset for the last 5 years
(2011-2015).

In this article, we propose to use Nonnegative Matrix Factor-
ization (NMF) to find the stations’ typical spatio-temporal pat-
terns of usage. We propose a method to identify automatically
the stations whose patterns of usage have changed, revealing
modifications in their neighborhood.

In section 2, we show how to use NMF to uncover weekly
temporal patterns of usage (TPU) and the associated spatial
usage. In section 3, we present a method for uncovering the
evolution of the prevalence of these TPU. In section 4, we
apply the proposed method on Lyon’s BSS, and show how
it can be used to better understand both the system and the
changes in the city.

II. USAGE PATTERN DETECTION

A. Nonnegative Matrix Factorization
Nonnegative Matrix Factorization (NMF) has been used in

a wide variety of applications since the seminal paper of Lee

et al. [1]. Famous applications include facial recognition [2],
document clustering [3] and overlapping community detection
[4].

NMF can also be used to uncover temporal features in
networks [5], such as transportation networks [6].

NMF has already been used to study mobility patterns,
for example on taxi trips [7]. In that case, three temporal
features are enough to explain the traffic during week days. In
[8], the authors use a locality preservation constraints based
NMF (LPNMF) to obtain a low-dimension representation of
network-level traffic states. They show through experiments
on realistic simulated traffic data how this information can be
used to predict long-term spatial patterns of traffic flow. In
these two articles, the NMF is computed a single time for the
whole studied dataset. Here, we use sliding windows to study
the evolution of temporal patterns found by the NMF.

Nonnegative Matrix Factorization (NMF) [1] can be written
as the following problem: given a nonnegative matrix V of
dimension E × T , find a factorization V ≈ WH where
W and H are two nonnegative matrices of dimensions
respectively E×Q and Q×T , with Q the number of features
(usually small). W is described as the features matrix and H
the corresponding levels of activation over time. Formally the
NMF problem comes down to solve:

(Ŵ , Ĥ) = argmin
W,H

E−1∑
e=0

T−1∑
t=0

d(Vet|[WH]et) (1)

with Vet the value at row e and column t of the original matrix
V , [WH]et the same element of the reconstructed matrix,
and d(x|y) a scalar cost function (several cost functions have
been proposed in the literature), that is often a parameter of
the method. To simplify the notation, in the rest of the paper,
we will note Ŵ as W and Ĥ as H .

Several methods have been proposed to solve this problem,
using different cost functions and heuristics [9]. Here we use
a public implementation in the scikit-learn library [10], using



the method described in [11] and the cost function d(x|y) =
|x − y|. Note that the solution is not necessarily unique (the
problem to solve is not convex) and that the solution found is
an approximation. It is therefore important to pay attention to
the stability of the result. In this article, we show that on our
BSS dataset, results are stable not only for multiple runs on
a same dataset, but also on several runs on different sliding
windows of the same dataset.

B. Constitution of the action matrix

Let’s define an action a as a couple associating an entity e
and an instant in time t. Entities, in this study, will be BSS
stations, but we could use the same method to find Temporal
Patterns of Usage of users, or TPUs of particular trips between
pairs of stations. Actions, in this study, will be arrivals of
bicycles at stations.

Let’s represent each action by a couple (e, t), with e ∈ E,
the set of all stations in the system.

A is the log of all occurring actions:

A = [(e1, t1), ...(en, tn)] (2)

It corresponds to the list of all arrivals of bicycle in all stations.
We first need to create a matrix of actions V of size E×T ,

in which T depends on the chosen temporal granularity. The
temporal granularity is defined by two factors: the temporal
unit and a typical pattern period.

Temporal Unit: because we need to discretize time to create
a matrix, we need to choose a minimal temporal unit to be
considered. In this article, we use a Temporal Unit of 1h,
meaning that all events occurring during the same hour will
be binned together. A 1h period seems to be a good trade-
off between the need of having many events in each bin, and
having a fine temporal granularity. Previous works have shown
that similar Temporal units such as 30 minutes or 2 hours do
not affect qualitatively the results [6].

Typical pattern period: In order to get interpretable results,
we must also choose a typical pattern period, which corre-
sponds to the duration of the typical TPU we are searching
for. In this article, we use a period of one week, typically used
when searching for patters of usage [12], [13]. One could
also consider only two different types of days, week-days
and week-end days. However, one advantage of the NMF is
precisely not to have to make such a priori decision. As a
matter of fact, we do observe relevant differences between
days of the same category for some patterns, such as a
strong difference between Saturdays and Sundays in activity
in commercial areas, or differences between week-days nights
in late-evening activities.

Now we can define T as the number of temporal units
contained in the typical pattern period, i.e with Temporal Unit
= 1h and Typical pattern period = 1 week, T = 24×7 = 168.

As a consequence, Vet corresponds to the number of actions
accomplished by entity e during the tth hour of a typical week.
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Fig. 1: Temporal Pattern of Usage (TPU) found for Lyon’s
BSS

C. Computation of Pattern Impact Matrices
To interpret the results, we generate three complementary

matrices from the decomposition matrices W of dimension



E ×Q and H of dimension Q× T , as explained in Formula
(1). As a reminder, E is the number of entities, Q the number
of desired features and T the number of temporal units.
W̃ represents the profiles of each entity over the features,

i.e. its number of actions for each feature :

W̃eq =
∑
t

WeqHqt (3)

H̃ represents the entities’ profiles over the time steps :

H̃qt =
∑
e

WeqHqt (4)

F gives, for each feature, the total number of actions:

Fq =
∑
e

∑
t

WeqHqt (5)

III. TEMPORAL EVOLUTION OF PATTERNS OF USAGE

Modern cities are changing at a fast pace, and we can expect
usages of BSS installed in these cities to change accordingly.
The questions we want to answer are, first, if there are changes
at the system scale, i.e if the patterns of usage of the system
change along time, while users get used to the system and learn
how it can be used, and, second, how we can track punctual
changes, such as differences in the pattern of usages of stations
affected by city modifications.

A. Computing the evolution of usage patterns

NMF is typically used to uncover Temporal Patterns of
Usage (TPU) in an time-aggregated dataset. For instance, to
study the TPUs of stations in a BSS, one will count the number
of arrivals per hour for each station in the whole dataset. The
rows of the matrix to be decomposed therefore correspond to
the stations of the BSS.

In the method we propose, we use overlapping sliding
windows to create smaller instances of the dataset, and, for
each of these windows, we compute, for each station, the
number of arrivals per hour. We later aggregate all these
profiles in a single matrix to decompose. A row of this matrix
corresponds to the activity of one station in one time-window.

More formally, we consider that in our original dataset, we
have a list of timestamped actions, where an action is, for
instance, a user taking a bicycle from a given station. There
are E stations, the entities whose activity we want to study.
The method we propose can be described as follows:

1) Extract part of the data using a sliding window (SW)
of aggregation. We will obtain a list of i SW, each SW
being a list of actions, a subset of the original dataset

2) Compute the action matrices corresponding to each
window as explained before. We obtain i matrices V i

of size E × T
3) Stack all matrices column-wise into a single matrix V =

[V i1 , ..., V in ]
4) Decompose this matrix using the NMF as described in

sections II-B and II-C, and Formula (1).
The result of this procedure is:

• The TPU matrix H̃ , corresponding to patterns that are
relevant over all sliding windows

• The pattern impact matrix W̃ , which gives the im-
portance of each pattern for each entity for each time
window.

We can use this information to study how usage patterns
have evolved for each entity, and for the system as a whole.

At this point, it might be necessary to clarify the different
periods of time we use :
• The temporal unit (1 hour), is used to count the number

of actions per temporal unit
• Typical pattern period (Week), the length of our TPUs,

which means that we are searching for weekly temporal
patters

• Length of the sliding window (1 Year)
• Shift between windows, or size of the sliding window (1

month)

B. Detection of changes in usage patterns

BSS stations are located at fixed points in a city. Previous
works have considered that the activity of a station is mostly
affected by a buffer zone of around 300 meters around each
station [14]. We can therefore expect that changes occurring
in this buffer zone affect the activity of a station. Detecting
these changes might be interesting at several levels:
• It can alert the BSS operator on the necessity of upgrading

the station capacity (for instance if there is a rise in rush-
hour usage)

• It can help the BSS operator to update its balancing
strategy for the affected stations

• Through the ”social sensor” perspective [15], it can
allow city planners to detect either progressive, unplanned
changes (loss in commercial attractiveness, increase in
late-night activities, etc.), or to observe the effect of an
urban development project (opening of a Public Transport
station, a park, etc.)

To compare the TPU of a same station in different windows,
we first compute a normalized temporal profile for each station
in each window, as:

NTP (e, w) = f(e, q, w), q ∈ [1..k] (6)

with e a station, k the number of temporal patterns, q the
index of a temporal pattern, w the index of a time window,
and f(e, q, w) is computed as:

f(e, q, w) =
W̃w

eq∑
r∈[1..k] W̃

w
er

(7)

where W̃w
eq is the number of actions occurring for entity e,

for temporal pattern q during window w.
For each station, we compute its mean NTP, mNTP, such

as:

mNTP (e) = { 1

max(w)

∑
w

f(e, q, w), q ∈ [1..k]} (8)

where max(w) corresponds to the number of windows.



We then define the difference between two NTP by using
the Kullback-Leibler divergence [16], also called Information
divergence, which computes the difference between an ob-
served probability distribution P and a reference probability
distribution Q such as:

DKL(P ||Q) =
∑
i

log
P (i)

Q(i)
(9)

The average KL divergence of a station informs us on how
much the temporal patterns are unstable along time. High
values correspond to stations that are continually changing,
for which there is no typical distribution conserved during the
studied period. The average KL divergence of a station e is
defined as:

mDKL(e) = {
1

max(w)

∑
w

DKL(NTP (e, w)||mNTP (e))}

(10)
The highest this value, the more the temporal patterns of

this station have changed along time.

IV. APPLICATION ON LYON’S BSS

A. Description of the dataset

Lyon’s bicycle-sharing system has been already studied in
previous papers. A more in-depth presentation of the system
can be found in [17]. The dataset we are using in this article
spans 5 years, from 2011 to 2015, and contains all trips
done during this period, including station of origin, station of
destination, time of arrivals and time of departure. Lyon’s BSS
stations have stayed mostly identical during the studied period,
with 345 stations being active at least a year. The number of
trips slowly increased, with an average of around 6 Million
per year. The parameters we use to compute the TPUs and
their evolution are the following:
• Entity: Bicycle sharing station
• Action: a bicycle arrives at a station
• Temporal Unit: hour
• Typical pattern period: Week
• Windows size: 1 year
• Shift between windows: 1 month
We adopt a 1-year window size to smooth out seasonal pat-

terns. We label each time window by the last month included
in this time-window. For instance, the time window labeled
as July 2013 corresponds to trips done between August 2012
and July 2013. For each time window, we keep only stations
for which we observe at least one activity for every month
spanned by the time window, therefore removing stations that
were temporally inactive.

B. Usage Patterns description

In this section, we present the Temporal Patterns of Usage
(TPU) obtained by NMF. The NMF takes an argument, the
number of features (TPU) wanted, k. There is no obvious
method to choose k, as increasing k will shrink the recon-
struction error, but at the cost of a higher complexity, making
results less interpretable. We choose arbitrarily k = 6, meaning

that we are searching for the 6 most relevant temporal patterns.
We experimented with slightly different values, and observed
that picking a lower k leads to merging most similar temporal
patterns, while a greater value leads to some temporal patterns
being split, but the main features remain consistent.

These patterns are presented in Fig. 1, and Fig. 2 show the
corresponding strengths of each station (through their mNTP
values). We can note that despite the NMF process having
no prior information about the location of stations, stations
that are spatially close often have similar NMF profiles. This
method can be seen as an alternative to methods already
proposed to discover clusters of stations with similar patterns
of activity (as the Poisson mixture model [18] or the Bayesian
network approach [19]). While these clustering approaches
associate only one cluster to each station, all stations belonging
to a same cluster therefore being considered identical, the
NMF approach considers that the activity at each station is a
combination of several possible typical activities. For instance,
in previous clustering approaches, a station has either a usage
pattern typical of train stations, or a usage pattern typical of
a commercial district, but not both. As can be seen in Fig.
2, in Lyon, the main shopping mall is located next to the
west side of the main train station. As a consequence, BSS
stations on the west of the train station have strong values
both for TPU1 (commercial activity) and TPU4 (train station
commuters activity), while BSS stations on the east of the train
station have high values for TPU4 but not for TPU1.

Below, we propose to associate to each temporal profile a
name, based on the shape of the temporal profile itself, and
the stations associated with it. We must point at that these
names have been chosen manually, and their accuracy could
be discussed. They can, however, help us to interpret the kind
of activity associated with each station.
• TPU1: commercial activity. Activity during typical open-

ing hours of shops, museum and public places, but not on
Sunday, during which most shops are closed in France.
On the map, largest dots surround the main city mall and
the main shopping street.

• TPU2: Leisure activity. Activity mostly on week-ends
during afternoons, and after working hours during the
week. This correlates spatially with public parks and
banks of rivers.

• TPU3: Residential, restaurants, bars. Activity mostly dur-
ing the evenings (people leaving their office and either
coming back home, or going out), and around midnight
on the days people tend to go out in France (Thursday,
Friday, Saturday).

• TPU4: train stations. This activity is mostly present
around the main train station of the city. Temporally, it
is consistent with a commuting activity of people leaving
the city before and after working hours.

• TPU5: Universities. Activity mostly during the morn-
ing rush hour and noon, but also around midnight on
Thursday, Friday and Saturday, which corresponds to
students coming back to dormitories in campuses. These
patterns of activity spatially correlate with the main



universities and with other locations that correspond to
student activity (neighborhoods with restaurants and bars
. . . ). Unlike TP3, there is no after work commuting
activity, as students usually do not have imperative to
come back to their dormitories just after class.

• TPU6: Business district. Temporally, the activity mostly
corresponds to the morning rush hours. Spatially, it cor-
relates with the city center, where most of the economic
activity concentrates.

C. Global evolution of the prevalence of Temporal Usage
Patterns. We can observe that their proportions are mostly
stable.

A first aspect that we can study is the global evolution of
the temporal patterns, all stations taken together. In Fig. 3,
we represent the proportion of trips corresponding to each
TPU, for each time window. Because activities observed for
stations in different time windows are merged together in a
single matrix without explicit temporal information, and the
NMF procedure has only this matrix as input, there is no
technical reason for different time windows to have similar
profiles. However the TPU prevalence stays remarkably stable
across time windows, revealing that the way people used the
BSS system did not change in the course of the five years
spanned by the dataset. The only observable variable that
could be considered significant is the fluctuations of TPU2
(activity correlated with leisure activities): decreasing during
2012, then increasing from Mid-2013 to early 2015. Several
explanations could be proposed to this temporary change, such
as a meteorological origin, an effect of city planning, or a
change in pricing policy. For instance, new bicycle paths were
created along the banks of Lyon’s rivers in 2013, while the
price of the yearly subscription raised from 15 to 25 euros in
May 2012. Although this global analysis is not sufficient to
understand in detail the evolution of the BSS, it can give us
some insights, and reveal some broad behavioral changes that
could later be studied more in-depth.

D. Analysis of mean-KL-Divergence

Fig. 4 is the distribution of the mDKL values. The mode
is reached at 0.005, the mean value is 0.001 and the standard
deviation 0.0011. A few stations appear clearly as outliers,
in particular values above 0.032, at more than 2 standard
deviations from the mean. In Fig. 5, we present the evolution
of TPU for 5 stations: the 3 stations of highest mDKL, (7052,
9042, 7013), the stations of lowest mDKL (7056), and a
station taken among the ones with mDKL = 0.005 (7033),
i.e with the most common mean divergence.

To explain the observed changes of the highest mDKL sta-
tions, one has to look at the history of their surroundings. For
stations 7052 and 9042, we observe a gap in the data, meaning
that the station was inactive during a period. After being active
anew, the patterns have completely changed. By searching
information regarding these stations, we finally found that both
stations had been moved from one block to another, while
staying in the same arrondissement (the city of Lyon is split

in 9 administrative divisions called arrondissement). The dates
of these changes perfectly match the observe discontinuity in
the data. As we had no information about these changes in
our dataset, we can see the method proposed as a good means
to detect such irregularities in a collected dataset.

The case of station 7013 is different. For this station, there is
no gap in the data, but we can observe large variations, that are
correlated with changes occurring near the station: In January
2014, a new bridge was built just in front of the station and
a streetcar line started to operate. In December 2014, a major
new museum was opened to the public at a walkable distance.
The important variations of TPU1 and TPU5 can reasonably
be linked to these changes in the station surroundings.

E. Observing impacts of the city’s change on BSS activity

In the previous section, we have used an indicator to
automatically detect the most important modifications in BSS
usage in the city. We can also reverse the process, and check
the impact of some known changes in the city or the BSS
system on the way people use it.

A first case study corresponds to a small change in the
position of a BSS station. We found that in May 2013, a station
(2004) was moved for technical reasons, without interruption
of service, from the west side of a public square to its east side,
some 200 meters away. The same public square has another
station (2022). In Fig. 6, we show how this modification
affected the activity of these stations. Surprisingly, moving
the station by less than a hundred meters on the same public
space had a strong effect on the TPUs of the moved station,
in particular a strong decrease in TPU4 (this public square is
located in front of the second most important train station of
the city). But this change also had a noticeable effect on the
neighboring station, in particular an increase in TPU4, starting
at the same period. We can assume that this change is due to
a report of users arriving at the train station.

A second case study is the impact of the opening a large
city mall, the second most important in the city, in April 2012.
A new station was created in front of the mall, and opened
simultaneously. We observe the evolution of the two closest
stations, located respectively at 300 meters (station 2007) and
600 meters (station 2028), together with the station created in
front of the mall (2005), in Fig. 7 Because the 2005 station
was created simultaneously with the mall, we do not observe a
rise in TPU typical of commercial activity (TPU1), but instead
a rise in TPU3. This can be linked to the development of
bars and restaurants in the surroundings of the mall. On the
neighbouring stations however, we can clearly observe a rise
in TPU1, which is likely to be a consequence of the opening of
the mall. The station closest to the Mall is the most affected.

V. CONCLUSION

In this article, we have presented a new method for studying
the evolution of the prevalence of Temporal Patterns of Usage
in Bicycle Sharing Systems, using Nonnegative Matrix Factor-
ization. We have shown how we can follow the usage evolution
of the system as a whole. While we observed a remarkable
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Fig. 2: Maps of the mean Normalized Temporal Profiles (mNTP) of each station for each TPU.
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stability for the city of Lyon, it would be interesting to apply
the same process to different cities, and in particular to the first
years following the opening of a new system, to see if users
take some time to adapt to the system. It is also interesting
to observe that an important increase in price did not deeply
impact usage. This observation is complementary to a previous
observation that the overall number of trips was not notably
impacted by this change.

We have also shown how to detect important changes for
some stations, by studying variations of their NTP . As we
discussed, we could imagine to use this information for two
usages: monitoring the BSS system, or monitoring changes in
the city itself, following the principle of ”social sensors”.

One could for instance use such a tool to monitor, nearly
in real time, if some activity becomes more or less important
in a given neighborhood, using the station activity as a proxy.

This work could be extended in several directions. In this
article, we have only studied the possibilities of analysis at the
level of entities.. It is also possible to study how many users
are active in each TPU, how the motions done in a given TPU
are distributed among stations, or the frequency of entities
being active in different TPUs, to give a few examples. In
datasets for which metadata are available for entities, it would
be possible to correlate these metadata with the profiles of
entities. For instance, one could correlate socio-economical

information of buffer zones, such as employment, resident
population, presence of universities, park visitors, presence of
bike lines, etc. with the TPU profiles of stations. We could later
imagine using these correlations to predict the activity that a
station would have if it were located in a given neighborhood.

Finally, improvements of this method could be investigated.
Currently, we only investigate stable TPUs, that are relevant
when considering all windows together. In the future, it could
be relevant to develop a method able to identify TPUs relevant
for some sliding windows only. In this dataset, we have
only considered annual aggregation, because this allows us to
ignore seasonal variations. But if we were doing the same type
of analysis using monthly aggregation windows, it is likely that
usages would change during holiday periods, compared with
working weeks. However, because we are searching for TPUs
that are relevant globally, and that holidays represent only
short periods, such TPU would currently not be discovered
by the method.
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mobility pattern from taxi trips in urban area,” PloS one, vol. 7, no. 4,
p. e34487, 2012.

[8] Y. Han and F. Moutarde, “Analysis of network-level traffic states using
locality preservative non-negative matrix factorization,” in 2011 14th
International IEEE Conference on Intelligent Transportation Systems
(ITSC). IEEE, 2011, pp. 501–506.

[9] C. Févotte and J. Idier, “Algorithms for nonnegative matrix factorization
with the β-divergence,” Neural Computation, vol. 23, no. 9, pp. 2421–
2456, 2011.

[10] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[11] C.-J. Lin, “Projected gradient methods for nonnegative matrix factoriza-
tion,” Neural computation, vol. 19, no. 10, pp. 2756–2779, 2007.



0

0,1

0,2

0,3

0,4

0,5

0,6

Fr
ac
tio
n	
of
	tr
ip
s

UTP1 UTP2 UTP3 UTP4 UTP5 UTP6

(a) 7052

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

Fr
ac
tio
n	
of
	tr
ip
s

UTP1 UTP2 UTP3 UTP4 UTP5 UTP6

(b) 9042

0

0,1

0,2

0,3

0,4

0,5

0,6

Fr
ac
tio
n	
of
	tr
ip
s

UTP1 UTP2 UTP3 UTP4 UTP5 UTP6

(c) 7013

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

Fr
ac
tio
n	
of
	tr
ip
s

UTP1 UTP2 UTP3 UTP4 UTP5 UTP6

(d) 7056

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

Fr
ac
tio
n	
of
	tr
ip
s

UTP1 UTP2 UTP3 UTP4 UTP5 UTP6

(e) 7033

Fig. 5: Evolution of TPUs for 5 characteristic stations

[12] L. Guo, E. Tan, S. Chen, X. Zhang, and Y. E. Zhao, “Analyzing patterns
of user content generation in online social networks,” in Proceedings
of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2009, pp. 369–378.

[13] S. A. Golder, D. M. Wilkinson, and B. A. Huberman, “Rhythms of
social interaction: Messaging within a massive online network,” in
Communities and technologies 2007. Springer, 2007, pp. 41–66.

[14] T. D. Tran, N. Ovtracht, and B. F. dArcier, “Modeling bike sharing
system using built environment factors,” Procedia CIRP, vol. 30, pp.
293–298, 2015.

[15] G. Sagl, B. Resch, B. Hawelka, and E. Beinat, “From social sensor
data to collective human behaviour patterns: Analysing and visualising
spatio-temporal dynamics in urban environments,” in Proceedings of the
GI-Forum, 2012, pp. 54–63.

[16] S. Kullback and R. A. Leibler, “On information and sufficiency,” The
annals of mathematical statistics, vol. 22, no. 1, pp. 79–86, 1951.

[17] M. Vogel, R. Hamon, G. Lozenguez, L. Merchez, P. Abry, J. Barnier,
P. Borgnat, P. Flandrin, I. Mallon, and C. Robardet, “From bicycle

sharing system movements to users: a typology of vélo’v cyclists in
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Fig. 6: Evolution of TPUs for neighboring stations 2022 and 2004. We can observe the impact of the relocation of station
2004 in May 2003
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Fig. 7: Evolution of TPUs for stations affected by the opening of a large shopping mall in April 2012


