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Introduction

Interactions are everywhere: in the contexts of face-
to-face contacts, emails, phone calls, IP traffic, online pur-
chases, running code, and many others. Interactions may
be directed, weighted, enriched with supplementary infor-
mation, yet the baseline remains: in all cases, an interaction
means that two entities u and v interact together from time
b to time e: for instance, two individuals u and v meet from
time b to time e, two machines on a network start an IP ses-
sion from time b to time e 1, two persons u and v phone 1. Or exchange a packet at time b = e.

each other from time b to time e, and so on.
Sequences of interactions have strong temporal and

structural features, and have been widely studied in the
past years. The current approach mostly consists in fo-
cusing on their structural 2 or temporal properties 3, but 2. Which entities interact with each

other.
3. When and how frequently do
interactions occur.

combining both aspects remains challenging.
If one wants to focus on the structure of interactions,

graph theory is the natural framework to do so; it provides
notions such as node degree (their number of links), den-
sity (the extent at which all nodes are connected together),
paths (series of links going from a node to another one),
etc. This language forms the basis of network science.

If one wants to focus on the dynamics of interactions,
signal processing captures time features perfectly well; one
typically computes properties that may be quantified in
consecutive time windows, such as the number of interac-
tions that occur every day, the number of involved nodes,
the duration of interactions, etc.

These approaches give much insight on the considered
objects, and have a key advantage: graph theory and sig-
nal processing offer a huge number of advanced tools; yet,
they do not capture the both structural and temporal na-
ture of interactions over time, and induce important infor-
mation losses.

Much effort has therefore been devoted to upgrade these
approaches; however, these extensions are often intricate,
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address only one aspect of the question, still induce impor-
tant losses of information.

In this thesis, we explore a new approach consisting in
modelling interactions directly as link streams, i.e. series
of quadruplets (b, e, u, v) meaning that u and v interacted
from time b to time e. We will develop the basis of the
corresponding formalism in Part 1.

In order to guide and assess this fundamental work,
we focus on the analysis of IP traffic. It is particularly
important to us that we make both fundamental and ap-
plied progress: application cases should feed our theoreti-
cal thoughts, and formal tools are designed to have mean-
ing on application cases in the most general way.

Attacks against online services, networks, information
systems, as well as identity thefts, have annual costs es-
timated in billions of euros. These attacks also have dra-
matic consequences on user trust and the reliability of ser-
vices. The techniques developed in the context of these ma-
licious activities are of ever-growing complexity, and fre-
quently rely on subtle malware (viruses or worms). Given
this context, there is a critical need of methods and tools to
fight against attacks and malware diffusion, and to give an
appropriate answer to the major societal questions raised.

IP traffic is typically collected at one or many intermedi-
ary points in the network. A router is set up for capture,
and will keep a record of all packets going through it. One
obtains a sequence of packets, each of these packets mean-
ing that machines u and v interacted through the router at
a time t.

In Part 2 we apply our framework to the analysis of
IP traffic, with the aim of assessing the relevance of link
streams for describing IP traffic as well as finding events
inside the traffic. We devise a method to identify events
at different scales, and apply it to a trace of traffic from
the MAWI dataset. The high volume of traffic 4, even over 4. Many thousands of packets each

second.short periods of time, also makes it an ideal case of appli-
cation to test the scalability of our approach.

The work presented in this manuscript opens numerous
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perspectives; we summarize our contributions and present
some perspectives for future work in Part 3.





Part I

A basic language for link
streams
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Introduction

We model sequences of interactions as sequences of
quadruplets (b, e, u, v), meaning that entities u and v have
interacted from time b to time e.

To study such interactions, one typically studies the
properties of graphs Gt..t+∆ for a given ∆ and for t =

0, ∆, 2∆, etc. In other words, one splits time into con-
secutive slices of duration ∆ and then studies the sequence
of graphs obtained for each time slice. This leads to stud-
ies of how graph properties evolve with time. Others study
the sequence of graphs G0..t for t = ∆, 2∆, . . . for a given
∆. Such studies explore how graph properties evolve when
the observation duration grows.

However, sequences of interactions are fundamentally
different from dynamic graphs: if one were to stop time
right now, some data retain meaning: for instance, the Web
graph 5 can be frozen and studied at a given time t. In the 5. A graph where nodes are web pages

and one places a link between two
pages if one cites the other.case of interactions, there are typically few interactions at

a given time 6, making the analysis irrelevant. 6. The graph induced by individuals
sending an email exactly at time t is
likely to have limited interest.Many works propose to model interactions over time.

Time-Varying Graphs are model-oriented: they aim at pro-
viding a model to unify these different approaches. Oth-
ers, like temporal networks, study the interactions with a
data-oriented point of view: they aim at answering to pre-
cise questions on datasets. Those approaches bring much
progress on both fundamental and applied aspects, and
we briefly review the main works in the field in Chapter 1.
Progress in the area however remains limited and there is
still no consensus on an appropriate approach to handle
interactions over time.

Our goal in this part of the thesis is language-oriented:
we aim at defining a language to deal directly with link
streams, in a way similar to what graph theory does for
networks, or to what signal processing does for time series;
we present this framework in Chapters 2 to 6. A key goal
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is to make our framework as simple and intuitive as pos-
sible. We also meant it to be an extension of graph theory
and signal processing for the study of interactions: a link
stream that has no dynamics 7 should be exactly equivalent 7. i.e. where all links last all the time.

to a graph. Similarly, a link stream that has no structure 8
8. i.e. where there are only two nodes.

should be exactly equivalent to a time series.
Finally, it is of importance that we cover many case stud-

ies and incorporate the existing state of the art as much as
possible.



C
h

a
p

t
e

r

1
Context

The goal of this chapter is to briefly review the main works
modelling and studying interactions over time. We first
quickly review methods with loss of information, and then
methods that induce no loss of information.

1.1 Models inducing information loss

The simplest and most appealing way to model a sequence
of interactions in order to study their structure is to re-
sort to a graph where the nodes are the entities, and one
puts a link between two nodes if they have interacted to-
gether, regardless of the number of interactions. For exam-
ple, [Strogatz, 2001] explores the different ways to model
complex networks of dynamical entities.

However, we focus in this short review of the literature
on the ways of extending graph theory to handle interac-
tions over time, and will not develop the rich body of work
devoted to the study of interactions as static complex net-
works.

Given the descriptive power of graph theory, it is tempt-
ing to model sequences of interactions as sequences of
graphs over time. Much work has been done in this di-
rection, and we review the main works in this section.

It is common to study the graph Gt..t+∆ from time α, for
a given ∆ and for t = α, α + ∆, α + 2∆, etc. One then



18 modelling of interactions over time and application to the analysis of ip traffic

ends up with a sequence of graphs {Gi}i=1..k, also called
snapshots depending on the context. Each element Gi con-
tains all interactions that happened between time α+ i and
time α + i + ∆. In those cases, one is typically interested
in the statistics on a given snapshot Gi, or in comparing
snapshots Gi and Gi+1. See Figure 1.1 for an illustration.

a a a a

b b b b

cccc

d d d d

eeee

f f f f

T=[15,20)T=[10,15)T=[5,10)T=[0,5)

Figure 1.1: A sequence of graphs
{Gt..t+∆}t=0, 5, 10, 15 for ∆ = 5. The first
graph of the sequence is the graph of
all interactions that happened between
time 0 and time 5; the second graph
of the sequence is the graph of all
interactions between time 5 and time
10, and so on.

Other works study the graph Gα..t at a given starting
time α, for t = α + ∆, α + 2∆, . . . for a given ∆. In other
words, it is the aggregated graph of all interactions that
happened over time. See Figure 1.2 for an example.

a a a a

b b b b

cccc

d d d d

eeee

f f f f

T=[0,5) T=[0,10) T=[0,20)T=[0,15)

Figure 1.2: Study of the aggregated
graph G0..t for t = 5, 10, 15, 20.
The first graph of the sequence, G0..5,
contains all interactions between time
0 and time 5, the second graph of the
sequence, G0..10 contains all interactions
between time 0 and time 10, and so on.

Notice that since a graph can be represented by an ad-
jacency matrix, one can also study a sequence of matrices
{A(t)}t, and study this sequence. This approach, called
3D tensors, is used by [Gauvin et al., 2014] to track groups
of nodes over time.

Sequences of graphs have been much stud-
ied: [Tang et al., 2010] extend concepts of distance and
paths in sequences of graphs, and end with the con-
clusion that the small-world effect known for graphs
also applies in time to sequences of graphs. Before
them, [Leskovec et al., 2005] had studied the densification
and shrinking over time in sequences of graphs.
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Obviously, a key problem with these approaches is that
one must choose appropriate values for ∆: too small ones
lead to trivial snapshots, while too large ones lead to im-
portant losses of information about the dynamics. As a
consequence, much work has been done to design meth-
ods for choosing and assessing choices in the value of ∆.

[Sulo et al., 2010] observe the evolution with ∆ of com-
mon graph statistics such as the diameter or the den-
sity, and use time series tools to identify relevant time
scales. [Benamara and Magnien, 2010a] produce a general
methodology to assess whether a time window is large
enough to characterize a given property.

In the context of mining high speed data
streams, [Hulten et al., 2001a] point out the fact that
the law governing the properties of data might change
over time, especially over long durations. They propose a
method for choosing a time window at a size where it is
possible to detect such changes for given properties.

Recent work by [Léo et al., 2015] study the impact of a
given time window on the resulting sequence of graphs,
and show the existence of a saturation scale, a value of ∆
such that for all ∆′ < ∆, the dynamics are mostly pre-
served, and for all ∆′′ > ∆, the properties are altered. They
design an automatic method to find the saturation scale in
real-world datasets.

However, in all cases, the authors merge all interactions
occurring in the same slice. [Lee and Maggioni, 2011] in-
stead consider that there is not one scale that is adapted
to study a sequence of graphs, but many. They devise a
framework to study a sequence of graphs at many differ-
ent scales simultaneously.

Independently from the choice of appropriate values of
∆, the sequence of graphs itself is a complex object that is
hard to manipulate.
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1.2 Models inducing no information loss

We now turn our attention to the transformations and
models of sequences of interaction that induce no loss of
information.

1.2.1 Static graphs from sequences of interactions

In order to benefit from the tools of graph theory when
studying interaction sequences, one can build a graph
where the edges are labeled with their time of exis-
tence. The first work on the subject appears to be
by [Berman, 1996], and [Kempe et al., 2000] are responsi-
ble for coining the term temporal networks. However, while
this representation induces no information loss, the object
itself is complicated to manipulate, and extending defini-
tions to such labelled graphs is hard.

Instead of resorting to sequences of
graphs, [Kostakos, 2009] propose to create a graph
where each entity at each time is a node, and one puts a
link between two nodes if they are linked in the graph,
or is they are contiguous in time. See Figure 1.3 for an
illustration. The links in the graph are of two natures:
some of them are temporal links, and some of them are
structural links. This approach, however, assumes that
structural and temporal links carry similar meaning.

There are other variants, such as the one
by [Queyroi, 2014], where having two nodes (u, t) and
(u, t′), t′ > t, means that t′ − t ≥ ∆, for a given ∆.

(u,1) (u,4)(u,2)

(v,1)

(x,3) (x,4)

(v,2)
(v,3)

Figure 1.3: A temporal graph
G = (V, E), with V =
{(u, 1), (u, 2), (v, 3), . . . }, and
E = {((u, 1), (u, 2)), ((u, 1), (v, 1)), . . . }).
((u, 1), (u, 2)) is a temporal edge, and
((u, 4), (x, 4)) is a structural edge. An
interaction in this graph is a link at time
i between two nodes (u, i) and (v, i).
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1.2.2 Temporal networks

A temporal network is simply a sequence of interactions.
Originally defined by [Holme and Saramäki, 2012], a va-
riety of works fall under this denomination, and we sum-
marize the main ones below. See Figure 1.4 for an example.

The definition itself of a temporal network is not for-
malized [Holme and Saramäki, 2012], and is simply a se-
quence of interactions. A consequence of this is the multi-
plication of works under other names, such as time varying
networks, etc.

B

A

C

D

0 5 10 15

Figure 1.4: Representa-
tion of a temporal network,
from [Holme and Saramäki, 2012].
Nodes (A,B,C,D) are represented hor-
izontally with their names on the left
of the diagram, and a link between two
nodes A and B at abscissa 1 means that
A and B interacted together at time 1.

The community of researchers working on temporal net-
works has mainly focused on questions related to paths in
temporal networks: diffusion, reachability, and so on.

Paths in temporal networks have been extensively stud-
ied by [Pan and Saramäki, 2011]. The authors define dif-
ferent notions of paths that have no counterpart in graphs,
and study the correlations between temporal paths and
paths in the static graph induced by the temporal network;
finally, they define an extension of closeness centrality to
temporal networks.

Working upon these definitions, [Nicosia et al., 2013]
proposes extensions of connectivity, closeness, between-
ness, and spectral centrality, as well as studying temporal
motifs.

Random walks are extended to temporal networks
by [Starnini et al., 2012]; the same authors present different
randomizing strategies, allowing one to single out the role
of different temporal properties on empirical networks.
More recently, [Saramäki and Holme, 2015] investigate the
correlations between link activations in temporal networks
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with greedy walks.
Diffusion has been thoroughly studied on temporal net-

works. [Redmond and Cunningham, 2016] formulates the
problem of identifying sequences of link activations that
lead to the spread of a disease in terms of a time-respecting
subgraph isomorphism problem.

Identifying the epidemic threshold 1 has attracted a 1. According to the World Health
Organization, the epidemic threshold
is "the critical number or density
of susceptible hosts required for an
epidemic to occur".

lot of attention. [Valdano et al., 2015] analytically compute
the epidemic threshold on temporal networks, and re-
cent work by [Vestergaard et al., 2016] studies the mini-
mum number of sensors that should be distributed in a
population of n people to minimize the epidemic risk. Re-
cently, [Holme, 2016] released a preprint studying disease
spreading on 8 datasets of human contacts.

[Takaguchi et al., 2012] focuses on the identification of
interactions in time that ease diffusion, and that are of im-
portance to other nodes than just the two nodes involved
by an interaction. They assess the importance of such in-
teractions in temporal networks, and come to the conclu-
sion that the diffusion of information is eased in real-world
temporal networks by the bursty nature of their interac-
tions.

Temporal networks had no formal basis until the recent
work of [Batagelj and Praprotnik, 2016]. The authors pro-
vide algebraic definitions of temporal networks. The au-
thors define notions of neighborhood, degree, and spectral
centralities as algebraic operations on a semiring.

A recent review of the main works in the field of tempo-
ral networks has been published by [Holme, 2015].

1.2.3 Time-Varying Graphs

Time-Varying Graphs model evolving graphs, graphs
where links and nodes can appear and disappear at ar-
bitrary instances of time, see Figure 1.5 for an example.

[Casteigts et al., 2012] associate functions of presence
ρ(u, v) to edges: ρ 7→ {0, 1} indicates whether a given
link is available at a given time t, which corresponds
to labelling links with their presence times. The au-
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[1,5)

[1,3)

[0,4)

[2,4)   [6,8)
U

[0,8)

[2,3)

[1,2)

[8,12)
b

c d

a

g

f

e Figure 1.5: A Time-Varying Graph.
Each link of the graph is labelled with
the intervals where it is available: [x, y)
means that edge (u, v) is available from
time x (included) to time y (excluded).
For instance, the link (a, b) is available
from time 1 to time 5; the link (c, d)
is available from time 2 to time 4, and
then from time 6 to time 8.

thors then formally define concepts of subgraphs, of
journeys 2, and finally define a hierarchy of classes of 2. A journey is a time-respecting path.

Time-Varying Graphs based on their temporal properties.
In [Casteigts et al., 2015], the authors define the language
of feasible journeys given waiting time constraints, and
study the expressivity of these languages.

[Santoro et al., 2011] study the evolution of temporal
and atemporal 3 statistics over time. This is interesting to 3. Defined on a Time-Varying Graph

versus defined on a sequence of static
graphs.study the convergence in time of statistics, for instance in

a distributed system.
More recently, [Braud-Santoni et al., 2016] has published

proofs of impossibility results, to prove for instance the
convergence of deterministic algorithms on Time-Varying
Graphs.

[Wehmuth et al., 2015b] aim at proposing a unique
framework to unify evolving graphs representations. They
rely on a reduction of the Multi-Aspect Graph model in-
troduced by [Wehmuth et al., 2015a], which is a general
model for representing multilayer graphs 4 varying over 4. In a multiplex graph, nodes are

distributed in layers, and links can exist
between two nodes of the same layer or
two nodes of different layers.

time.

1.3 Conclusion

We briefly presented the existing works aiming at describ-
ing interactions over time. We have structured this pre-
sentation in two parts: on the one hand, representations
that induce a loss of information, and on the other hand,
representations that do not induce such loss.

Since no information is lost for the models presented in
Section 1.2, these models are equivalent for representing a
given data: given a representation of a finite sequence of
interactions as a Time-Varying Graph, for instance, one can
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readily define the associated temporal graph, or temporal
network.

However, the different representations of each of these
models is a good illustration of the fact that they corre-
spond to different perspectives of the same underlying ob-
ject: while in (evolving) graphs, focus is set on the graph
structure at each instant, in the case of temporal networks,
nodes are represented as horizontal lines, and focus is set
on the activations of links through time.

In the link stream framework, we set focus on the fact
that links arrive as a stream, like in temporal networks;
however, unlike temporal networks, our goal is to define
a comprehensive and consistent language to describe se-
quences of interactions.
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2
Basics

The goal of this chapter is to lay the foundations of our
framework for describing sequences of interactions. In
each section, we first recall the definition of the corre-
sponding concept in graph theory, and then extend it to
link streams.

2.1 Link streams

In a graph G = (V, E), V is the set of nodes and E ⊆ V×V
is the set of links.

A link (u, v) in E means that the two nodes u and v are
in relation. In the example of Figure 2.1, nodes g and e are
in relation. Links are undirected: no distinction is made
between (u, v) and (v, u).

We say that G is simple if for all (u, v) in E, u 6= v, and
there are no multiple links between two nodes u and v.

a b c

d
e

f

g
h

i
j

k

l m n

Figure 2.1: A graph G = (V, E),
with V = {a, b, c, . . . , m} and E =
{(a, b), (b, e), (c, f ) . . . }. G has n = 14
nodes and m = 22 links.

In a link stream L = (T, V, E), T = [α, ω] is the time span
of the stream, V is the set of nodes, and E ⊆ T× T×V×V
is the set of links. We call |V| the order of L and we denote
it by n; we call |E| its size and we denote it by |L| = m;
we call |T| = ω − α its duration and denote it by L. In the
example of Figure 2.2, the link stream has order n = 4, size
m = 9 and duration |T| = 20 units of time.

A link l = (b, e, u, v) in E means that nodes u and v
interacted from time b to time e, and so e ≥ b. We call



26 modelling of interactions over time and application to the analysis of ip traffic

e − b the duration of l and we denote it by l. Links are
undirected: we make no distinction between (b, e, u, v) and
(b, e, v, u). In the example of Figure 2.2, nodes b and c
interact from time 1 to time 7, nodes a and b interact from
time 2 to time 9, and so on.

We say that L is simple if for all l = (b, e, u, v) in E we
have u 6= v and e > b, and for all l = (b, e, u, v) and l′ =
(b′, e′, u, v) we have [b, e] ∩ [b′, e′] = ∅. In the remainder of
this thesis, all link streams are considered to be simple if
not stated otherwise.

For any u, v in V and t in T, we say that u and v interact
at time t in L if there is a link (b, e, u, v) in E with t ∈ [b, e].
We denote by τ(u, v) = ∪(b,e,u,v)∈E[b, e] the set of times at
which u and v interact.

time16102

a

b

c

d

Figure 2.2: An example of link
stream: L = (T, V, E) with
T = [0, 20], V = {a, b, c, d}, and E =
{(1, 7, b, c), (2, 9, a, b), (5, 10, a, c), . . . }.
Each node is represented as a dotted
horizontal line. Each link is represented
by a line between the two horizontal
lines representing involved nodes with
dots at its extremities. The horizontal
line attached to the link represents its
duration.

2.2 Sub-links and sub-streams

Given two graphs G = (V, E) and G′ = (V′, E′), G′ is a
subgraph of G if V′ ⊆ V and E′ ⊆ E. This is denoted by
G′ ⊆ G. If G′ ⊆ G and G ⊆ G′ then G = G′.

Given a graph G = (V, E) and a set of nodes S ⊆ V,
the sub-graph induced by S is G(S) = (S, {(u, v) ∈ E :
u ∈ S, v ∈ S}). Given a set of links S ⊆ E, the sub-graph
induced by S is G(S) = ({u : (u, v) ∈ S}, S). See Figure 2.3
for an example.

a b c

d
e

f

g
h

i
j

k

l m n

Figure 2.3: The two graphs in solid lines
G = ({g, i, j, l, m}, {(g, i), (l, j), . . . }) and
G′ = ({a, b, e}, {(a, b), (b, e)}) are two
subgraphs of the graph of Figure 2.1.
G is the sub-graph induced by the
set of nodes {g, i, j, l, m} and G′ is the
sub-graph induced by the set of links
{(a, b), (b, e)}.

The null graph G∅ = (∅, ∅) is the graph with no nodes
and no edges, and the edgeless graph of order n, G6E =

(V, ∅) with |V| = n is the graph with n nodes and no
edges.
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The intersection of two graphs G and G′ is their largest
common sub-graph, and is denoted by G ∩ G′.

The union of two graphs G = (V, E) and G′ = (V′, E′) is
the graph (V ∪V′, E ∪ E′), and is denoted by G ∪ G′.

Given two link streams L = (T, V, E) and L′ =

(T′, V′, E′), we say that L′ is a substream of L if V′ ⊆ V,
T′ ⊆ T, and for all u, v in V′ and t in T′, if u and v interact
at time t in L′ then they also interact at time t in L 1. We 1. Notice however that E′ is not

included in E.denote this by L′ ⊆ L. If L′ ⊆ L and L ⊆ L′ then L′ = L.
Given a link l = (b, e, u, v), we say that l′ = (b′, e′, u′, v′)

is a sub-link of l if u′ = u, v′ = v, and [b′, e′] ⊆ [b, e]; we
denote this by l′ ⊆ l. Notice that, if L = (T, V, E) and
L′ = (T′, V′, E′) are simple link streams, then L′ ⊆ L if and
only if for all l′ in E′ there is a l in E such that l′ ⊆ l. In
Figure 2.2, L′ = ([0, 10], {a, b, c}, {(2, 5, b, c), (2, 7, a, b)}) is
a sub-stream of L. See Figure 2.4 for an example.

Given a link stream L = (T, V, E) and a set of pairs
of nodes S ⊆ V × V, let us denote by V(S) the set of
nodes involved in S: V(S) = {v ∈ V : ∃(v, u) ∈ S},
and let us denote by E(S) the set of links involved in S:
E(S) = {(b, e, u, v) ∈ E : (u, v) ∈ S}. We define the
sub-stream of L induced by S as L(S) = (T, V(S), E(S)).
By extension, if S is a set of nodes then we define the
sub-stream of L induced by S as L(S) = L(S × S). We
denote by L(u, v) the sub-stream L({(u, v)}) and by L(v)
the sub-stream L({v} × V). In the example of Figure 2.2,
the sub-stream of L induced by nodes a, b is L({a, b}) =

(T, {a, b}, {(2, 9, a, b), (15, 20, a, b)}), and the sub-stream
induced by the pair of nodes (c, d) is L({(c, d)}) =

(T, {c, d}, {(9, 11, c, d), (14, 15, c, d), (18, 19, c, d)}).
Given a time interval T′ = [α′, ω′] ⊆ T, let us denote

by ET′ = Eα′..ω′ the set of quadruplets (b′, e′, u, v) such that
there exists (b, e, u, v) in E with [b′, e′] = [b, e] ∩ T′. We
define the sub-stream LT′ = Lα′..ω′ of L induced by T′ as
(T′, V, ET′). By extension, we denote by Lt the sub-stream
Lt..t of duration 0.

The null link stream L∅ = (∅, ∅, ∅) is the stream with
no time, no nodes and no links. For any T ⊆ R, the order
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a

b

c

d

Figure 2.4: The two
streams in solid lines L =
([0, 20], {a, b}, {(2, 9, a, b), (15, 20, a, b)})
and L′ =
([0, 20], {c, d}, {(9, 11, c, d), (14, 15, c, d), . . . })
are two substreams of the stream of
Figure 2.2. L is the substream induced
by the set of nodes {a, b} and L′ is the
substream induced by the pair of nodes
(c, d).

0 stream, i.e. the stream with no nodes and no edges, is
L 6V, 6E = (T, ∅, ∅). For any T ⊆ R and for any n ∈ N, the
edgeless stream of order n is the stream with n nodes and
no edges, i.e. L 6E = (T, V, ∅) with |V| = n.

We define the intersection of two link streams L and L′

as their largest common sub-stream, and we denote it by
L ∩ L′.

We define the union of two link streams L = (T, V, E)
and L′ = (T′, V′, E′) as the stream (T′′, V ∪ V′, E ∪ E′),
where T′′ is the smallest interval such that T ⊆ T′′ and
T′ ⊆ T′′. We denote it by L ∪ L′. Notice that even if L and
L′ are simple, L ∪ L′ is not necessarily simple.

Finally, we define σ(L) the simplification of L as the
smallest sub-stream of L (in terms of number of links) such
that σ(L) = L and for all (b, e, u, v) in σ(L), e ≥ b. This nec-
essarily is a simple link stream.

2.3 Line stream

The line graph Ĝ of G = (V, E) is the graph Ĝ = (E, Ê) in
which each node is a link of G and two nodes are linked if
they have an extremity in common: ((u, v), (x, y)) is in Ê if
{u, v} ∩ {x, y} 6= ∅.

a

b

c

d

e

(a,b)

(a,d)

(c,e)(c,d)

(b,c) (b,d)

Figure 2.5: A graph G = (V, E) and
its line graph Ĝ. In the line graph,
there is a link between (a, b) and (b, d)
because these two edges have node b in
common.

The line stream L̂ of L = (T, V, E) is the link stream
L̂ = (T, V̂, Ê), with V̂ = {(u, v) : ∃(b, e, u, v) ∈ E} and two
nodes are linked if they share a node and are linked at the
same time: (b, e, (u, v), (x, y)) is in Ê if {u, v} ∩ {x, y} 6= ∅
and there exists two links (b′, e′, u, v) and (b′′, e′′, x, y) in
E such that [b′, e′] ∩ [b′′, e′′] = [b, e]. See Figure 2.6 for an
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illustration.

102 time 102 time

(a,b)

(b,c)

(a,c)

a

b

c

Figure 2.6: A link stream L =
([0, 10], {a, b, c}, {(1, 8, a, b), (3, 4, b, c), (5, 9, a, c)}
and its corresponding line stream
L̂ = ([0, 10], {(a, b), (b, c), (a, c)}, Ê),
with Ê =
{((3, 4, (a, b), (b, c)) , ((5, 8, (a, b), (a, c))}.
There is no link between (b, c) and (a, c)
because these two pairs of nodes do not
have links at the same time in L.

Just like for graphs, the line stream of the line stream, ˆ̂L,
is not equal to L.

2.4 Induced graphs

Given a link stream L = (T, V, E), we define its induced
graph G(L) = (V, E′) where (u, v) ∈ E′ if and only if there
exist b and e such that (b, e, u, v) ∈ E. In other words, it
is the graph in which there is a link between two nodes if
they interacted at least once in L. One may in addition as-
sociate to each link (u, v) in E′ a weight w(u, v) = |L(u, v)|
capturing the number of interactions, w(u, v) = ∑l∈L(u,v) l
capturing their total duration, or other quantities of inter-
est.

a

b c

d

a

b c

Figure 2.7: The graph G =
({a, b, c, d}, {(a, b), (a, c), (b, c), (c, d)})
induced by the link stream
L of Figure 2.2 (left), and the
graph G12..20({a, b, c}) =
({a, b, c}, {(a, b), (a, c)}) induced
by the sub-stream of L induced by
nodes a, b and c over interval [12, 20],
L12..20({a, b, c}).

Given L, we denote by Gt..t′ the graph G(Lt..t′), by Gt

the graph G(Lt) = Gt..t, and by G(S) the graph G(L(S)).
Figure 2.7 displays G(L) for the example of Figure 2.2, and
for the graph induced by nodes a, b and c from time 12 to
time 20, G12..20({a, b, c}).

2.5 Conclusion

We presented in this first chapter the basis of our formal-
ism. We defined link streams and substreams, line streams,
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and graphs induced by streams. We focused on simple,
undirected and unweighted streams.

Adapting these definitions to directed link streams is
just a matter of making a difference between (b, e, u, v)
and (b, e, v, u), and defining notions of substreams, line
streams and so on subsequently. Similarly, loops can be
taken into account by authorizing links (b, e, u, v) in E such
that u = v.

Using these definitions, one could easily define a
weighted link stream as L = (T, V, E), where E ⊆ T ×
T×V ×V ×R. Elements of E would then be (b, e, u, v, w),
where w is the weight associated to the link.



C
h

a
p

t
e

r

3

Density-based notions

After having defined the very basis of our formalism, we
move on to define more subtle notions. Since our goal is to
make a language for link streams similar to how graph the-
ory describes networks, we first focus on one of the most
fundamental notion in graph theory: density. The concept
of density leads to the ones of neighborhood and degrees
of the graph.

In graph theory, density-based notions are of paramount
importance to study the structure of the network; dense
groups are typical indicators of groups of friends in social
networks, or botnets in IP traffic, for instance. The degree
distribution of a graph has a strong descriptive power, and
studying it is classical to gain insight on a graph.

3.1 Density, neighborhood and degree

a

f

b

e

d

c

Figure 3.1: A graph G with 6 nodes and
12 links. Its density δ(G) is 2·12

6·5 = 0.8.
The neighborhood of node b, N(b), is
the set {a, c, d, e}, and its degree d(b) is
4.

In a simple graph G = (V, E), the density is the probability
when one takes two random nodes u and v that there is a
link (u, v) in E: δ(G) = 2m

n(n−1) where n = |V| denotes the
number of nodes and m = |E| the number of links. The
neighborhood N(v) of v ∈ V is the set of nodes linked to v:
N(v) = {u ∈ V, ∃(u, v) ∈ E}. The degree d(v) of v is the
size of its neighborhood: d(v) = |N(v)| and the average
degree in G is d(G) = ∑v∈V d(v)

n . Figure 3.1 illustrates these
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notions. Notice that the following relation between density
and average degree holds: δ(G) = d(G)

n−1 .

The goal of this section is to extend these notions to a
simple link stream L = (T, V, E) with n = |V| nodes, m =

|E| links, and T = [α, ω].

Density

We define the density δ(L) of L as the probability when
one takes two random nodes u and v and a random time
instant t that they are in interaction (i.e. there is a link
(b, e, u, v) in E such that t ∈ [b, e]):

δ(L) =
2 ∑l∈E l

n(n− 1)(ω− α)
(3.1)

where n = |V| denotes the number of nodes. The density
is defined only for link streams such that for all n ≥ 2 and
ω > α 1. See Figure 3.2 for an illustration, and Figure 3.3

1. By convention, if the duration of the
stream is 0 then its density is nothing
but the density of its induced graph.

for a more complex example.

a

b

c

82 time

Figure 3.2: A link stream L, with
|V| = 3 and |T| = 10 units of time. Link
(0, 10, a, b) accounts for 10 units of time
in the numerator, and link (5, 10, b, c)
for 5 units of time. The density of L is
δ(L) = 2·(10+5)

3·2·10 = 0.5.

time16102
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Figure 3.3: A link stream L, with
|V| = 4 and |T| = 20 units of time. Its
density is δ(L) = 2·45

4·3·20 = 0.375.

Notice that when n = 2, i.e. V = {u, v}, the density is
nothing but the frequency of occurrences of (u, v). If all
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links have duration ω − α then the density of L is nothing
but the density of its induced graph G(L). Therefore, den-
sity of link streams generalize both frequency and graph
density, by combining their temporal and structural na-
tures into a same notion.

The density of L is also the average density of G(Lt), the
graph induced by L at time t, for all t in T:

δ(L) =
1

ω− α

∫ ω

α
δ(G(Lt))dt.

Neighborhood and degree

The neighborhood Nx..y(v) of node v ∈ V from time x ∈ T
to time y ∈ T, y > x is the set of pairs (u, t) such that
u ∈ V is linked to v at time t ∈ [x, y]: Nx..y(v) = {(u, t) :
∃(b, e, u, v) ∈ E, t ∈ [b, e] ∩ [x, y]}.

We define the degree of v from x to y as:

dx..y(v) = ∑
(b,e,u,v)∈E

|[b, e] ∩ [x, y]|
y− x

= ∑
l∈Lx..y(v)

l
y− x

In this way, the contribution of each neighbor u to the de-
gree of v is weighted by the duration of its links with v:
dx..y(v) = ∑u∈Nx..y(v) ∑(b,e,u,v)∈E

|[b,e]∩[x,y]|
y−x .

Notice also that dx..y(v) is the expected degree dt(v) at
time t when t is chosen randomly in [x, y]. The neighbor-
hood Nt(v) of node v ∈ V at time t ∈ T is the set of nodes
linked to v at time t: Nt(v) = {u ∈ V, ∃(b, e, u, v) ∈ E, t ∈
[b, e]}. The degree dt(v) of v at time t is the size of its
neighborhood: dt(v) = |Nt(v)|.

By extension, we define the degree of v in L as d(v) =

dα..ω(v):

d(v) = ∑
l∈L(v)

l
ω− α

(3.2)

and the average degree in L is d(L) = ∑v∈V d(v)
n . Just like for

density, the degree of v in L is the average value of dt(v)
for all t ∈ T. Degrees in the link stream are illustrated in
Figure 3.4.
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time16102

a

b

c

d

Figure 3.4: Illustration of neighbor-
hoods and degrees in link streams.
The neighborhood of node b is de-
picted in blue. Node b has node a in
its neighborhood from time 1 to time
7 and from time 8 to time 13, node c
from time 3 to time 10 and node d from
time 14 to time 20. The degree of b is
d(b) = 23

20 = 1.15. The average degree of

L is d(L) =
11
20 +

23
20 +

9
20 +

8
20

4 = 0.6375.

Like in graphs, the following relation holds between the
density and average degree of a link stream:

δ(L) =
2 ∑l∈E l

n(n− 1)(ω− α)
=

2 ·∑l∈E
l

ω−α

n(n− 1)

=
2 · 1

2 ·∑v∈V ∑l∈L(v)
l

ω−α

n(n− 1)
=

∑v∈V d(v)
n(n− 1)

=
d(L)
n− 1

.

3.2 Node clusters

In a graph G = (V, E), a node cluster is a subset C of V.
We denote by E(C) = E ∩ (C× C) the set of links between
nodes in C, by nC = |C| the number of nodes in C, by
mC = |E(C)| the number of links involved in C, and by
G(C) = (C, E(C)) the subgraph of G induced by C.

Given two node clusters C and C′ of G, their inter-cluster
density is defined as:

δ(C, C′) =
|E ∩ (C× C′)|

|C \ C′| · |C′|+ |C′ \ C| · |C ∩ C′|+ |C∩C′|·(|C∩C′|−1)
2

(3.3)
It is the number of links between a node in C and a
node in C′ divided by the number of possible such links:
|C \ C′| · |C′| is the number of links (u, v) such that u ∈ C
and v ∈ C′, |C′ \ C| · |C ∩ C′| is the number of links (u, v)
such that u ∈ C ∩ C′ and v ∈ C′, and |C∩C′|·(|C∩C′|−1)

2 is
the number of links (u, v) such that u, v ∈ C ∩ C′. For
any node cluster C, the internal density of C is defined as
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δ(C, C); it is nothing but the density of G(C), which we
denote by δ(C). The external density of C is defined as
δ(C, C), denoted by δ(C); it is nothing but the density of
the subgraph induced by pairs of nodes (u, v) where u ∈ C
and v 6∈ C. See Figure 3.5. The internal degree of a node
v in C is d(v, C) = |{(u, v) ∈ E : u ∈ C}|, and its external
degree d(v, C) = |{(u, v) ∈ E : u 6∈ C}|. The internal aver-
age degree of a node cluster C is d(C) = 1

|C| ∑v∈C d(v, C),
and the external average degree of a node cluster C is
d(C) = 1

|C| ∑v∈C d(v, C) 2. 2. Notice that, for all v ∈ V, d(v, C) +
d(v, C) = d(v).

For any given set S, a family P = {Si}i=1..k is a partition
of S if

⋃
i Si = S, and for all i, j in 1..k, i 6= j, Si ∩ Sj = ∅.

For any interval T = [x, y] ⊆ R, a partition of T is a finite
sequence x = (xi)i=1..k of real numbers such that x = x0 <

x1 < x2 < ... < xk = y.
A partition of G in clusters is a family C = {Ci}i=1..k

partitioning V into k groups of nodes: for all i 6= j, Ci ∩
Cj = ∅ and ∪iCi = V. The intra-cluster density of P is the
average internal density of all clusters Ci, weighted by the
number of nodes in Ci. The inter-cluster density of P is the
average external density of all clusters Ci, weighted by the
number of nodes in Ci.

a

b

c

d

e

f g

h

i

j

Figure 3.5: A graph G with two node
clusters C = {a, c, d, e, f } and C′ =
{g, h, i, j}.

In a link stream, a node cluster is a subset C of V × T,
and (v, t) ∈ C means that v belongs to C at time t. We
denote by V(C) the set of nodes involved in C: V(C) =

{v : ∃(v, t) ∈ C}. We denote by T(C) the time inter-
val over which nodes are involved in C: T(C) = [min(t :
∃(v, t) ∈ C), max(t : ∃(v, t) ∈ C)]. Finally, we denote by
N(C) the neighborhood of cluster C: N(C) = {(v, t) ∈ C :
∃(b, e, u, v) ∈ E, t ∈ [b, e], u ∈ V(C), v 6∈ V(C)}.

For all v ∈ V, we denote by C(v) = {t : ∃(v, t) ∈ C} the
set of time instants at which v is involved in C, and by C(v)
the set of all bounds of all maximal intervals included in
C(v). We denote by C(u, v) the set C(u) ∩ C(v) ∩ τ(u, v),
and by E(C) the set of all (b, e, u, v) such that [b, e] is a
maximal interval in C(u, v). In other words, C(u, v) is the
set of times such that u and v are in C and are interacting
together.
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Figure 3.6: A link stream L =
([0, 10], {a, b, c}, {. . . }) and three node
clusters involving a, b and c, indicated
in blue. A blue line from time x to time
y over a node means that this node is
in the node cluster from time x to time
y. Left: a is in the node cluster from
time 0 to time 7 (C(a) = [0, 7]), b is in
the cluster from time 2 to time 5, and c
is in the cluster from time 4 to time 9.
Middle: a uniform node cluster; C(a) =
C(b) = C(c) = [1, 3] ∪ [4, 7] ∪ [8, 9].
Right: a compact node cluster;
C(a) = C(b) = C(c) = [2, 7].

Finally, we define L(C) = (T(C), V(C), E(C)), the sub-
stream of L induced by C..

Notice that, if for all u and v in V(C), C(v) = C(u), we
say that C is uniform. In the special case where C(v) =

T(C) for all v involved in C, then C is fully defined by
V(C) and T(C), and we have L(C) = LT(C)(V(C)). We
then say that C is a compact cluster. See Figure 3.6 for an
illustration of node clusters.

A partition of L into node clusters is a partition of V× T,
i.e. a family P = {C1, C2, . . . , Ck} of k node clusters such
that for all v in V, the union of all Ci(v) is a partition of T.
See Figure 3.7.

time
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Figure 3.7: A partition in three node
clusters C1 (blue), C2 (green), C3 (red).
C1 involves a from time 0 to time 7, b
from time 2 to time 5, and c from time
4 to time 9. C2 involves b over times
[0, 2] and [5, 6] and c from time 0 to
time 4. C3 involves a from 7 to 10, b
from 6 to 10, and c from 9 to 10. For
any node u and any time t, there exists
a single i ∈ 1, 2, 3 such that node u is
involved at time t in Ci . Notice that
∪iCi(b) = [0, 10].

We define the number of nodes n(C) and links m(C) in
cluster C as follows:

n(C) = ∑
v∈V

|C(v)|
ω− α

and m(C) =
1
2 ∑

u∈V
∑

v∈V

|C(u, v)|
ω− α

In other words, each node v accounts for n(v, C) = |C(v)|
ω−α

nodes in C and each pair of nodes u, v accounts for
m(u, v, C) = |C(u,v)|

ω−α links in C.
If P is a partition of L into node clusters then for all v,

∑C n(v, C) = 1 and for all u, v, ∑C m(u, v, C) = |τ(u,v)|
ω−α . As
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a consequence, ∑C n(C) = n.
We define the internal and external degree of node v in

cluster C as follows:

d(C, v) = ∑
u∈V

|C(v, u)|
ω− α

and d(C, v) = ∑
u∈V

|C(v, u)|
ω− α

where C(v, u) denotes C(u) ∩ C(v) ∩ τ(u, v).
For all v, we have ∑C d(C, v) + d(C, v) = d(v):

∑
C

d(C, v) + d(C, v) = ∑
C

∑
u

|C(v, u)|+ |C(v, u)|
ω− α

= ∑
u

∑
C

|C(v, u) ∪ C(v, u)|
ω− α ∑

u
∑
C

|τ(u, v) ∩ C(v) ∩ (C(u) ∪ C(u))|
ω− α

= ∑
u

∑
C

|C(v) ∩ τ(u, v)|
ω− α

= ∑
u

|τ(u, v)|
ω− α

= d(v)

We define the internal and external degree of a cluster
C:

d(C) =
1

n(C) ∑
v∈V

|C(v)|
ω− α

d(C, v) = ∑v∈V |C(v)|d(C, v)
∑v∈V |C(v)|

(3.4)
and

d(C) =
1

n(C) ∑
v∈V

|C(v)|
ω− α

d(C, v) = ∑v∈V |C(v)|d(C, v)
∑v∈V |C(v)|

(3.5)
If C is a compact cluster, then d(C) = |T(C)|

ω−α d(L(C)). In-
deed, for all v ∈ V, C(v) = T(C):

d(C) = ∑v∈V |C(v)|d(C, v)
∑v∈V |C(v)|

=
∑v∈V |C(v)|∑u∈V

|C(u,v)|
ω−α

∑v∈V |C(v)|

=
∑v∈V |T(C)|∑u∈V

|T(C)∩τ(u,v)|
ω−α

∑v∈V(C) |T(C)|

=
∑v∈V ∑u∈V

|T(C)∩τ(u,v)|
ω−α

|V(C)|

=
∑u,v∈V |T(C) ∩ τ(u, v)|
|V(C)|(ω− α)
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and

d(L(C)) =
1

|V(C)| ∑
v∈V(C)

∑u |τ(u, v) ∩ T(C)|
|T(C)|

=
1

|V(C)| · |T(C)| ∑
v∈V(C)

∑
u
|τ(u, v) ∩ T(C)|

In the case of a link stream L = (T, V, E) and a node
cluster C that contains all L, i.e. for all u ∈ V and for all
t ∈ T, (u, t) ∈ C, the internal density of C is the density
of L and the internal degree of C is the average degree
of L, since for all u ∈ V, C(u) = |T|, and for all u, v ∈
V ×V,C(u, v) = τ(u, v).

We now define the density between two clusters C and
C′ as the fraction of possible links between them that do
exist:

δ(C, C′) =
∑u∈V(C),v∈V(C′) |C(u) ∩ C′(v) ∩ τ(u, v)|

∑u∈V(C),v∈V(C′) |C(u) ∩ C′(v)|

=
∑u 6=v |C(u) ∩ C′(v) ∩ τ(u, v)|

∑u 6=v |C(u) ∩ C′(v)|

(3.6)

In other words, it is the probability when one takes a ran-
dom triplet u, v and t such that u is in C and v is in C′ at
time t, that there is a link between u and v at time t.

We obtain the internal and external densities of cluster
C:

δ(C) =
∑u,v |C(u, v)|

∑u,v |C(u) ∩ C(v)| = δ(C, C) (3.7)

and

δ(C) = ∑u ∑v |C(u, v)|
∑u,v |C(u) ∩ C(v)| = δ(C, C) (3.8)

The internal density of cluster C is the probability when
one takes a random triplet u, v and t such that u and v
are in C at time t, that there is a link between u and v at
time t. The external density of cluster C is the probability,
when one takes a random triplet u, v and t such that u is
in C at time t and v is not in C at time t, that there is a link
between u and v at time t. For a numerical illustration of
internal and external densities, see Figure 3.8.
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2 8

a
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time

Figure 3.8: The link stream L =
([0, 10], {a, b}, {(1, 3, a, b), (5, 10, a, b)}),
and a node cluster C involving
a from 1 to 9 and b from 4 to 10.
τ(a, b) = [1, 3] ∪ [5, 10]. The internal
density of C is δ(C) = |[5,9]|

|[4,9]| = 4
5 ,

and the external density of C is
δ(C) = |[1,3]|+|[9,10]|

|[1,4]|+|[9,10]| =
3
4 .

If C is a compact cluster, then δ(C) = δ(L(C)), and so
δ(C) = d(C)

|V(C)|−1
ω−α
|T(C)| .

Notice that there is no general relation between the in-
ternal density and the degree of a cluster, see Figure 3.9.
However, if C is uniform, then the following relation holds:
δ(C) = d(C)

|V(C)|−1
ω−α
|T(C)| .

C C’

a

b

2 8 time

a

b

2 8 time

c c

Figure 3.9: Example that there is no
general relation between the degree of
a node cluster C, d(C), and its density
δ(C). The two clusters have 2 nodes
and 1 link. Left: The node cluster C
has density δ(C) = 0.5+0+0.5

0.5+0+0.5 = 1
and degree d(C) = 0.25+1+0.25

2 = 3
4 .

Right: The node cluster C′ has density
δ(C′) = 1+1

1+1 = 1 = δ(C) and degree
d(C′) = 1+1

1+1 6= d(C).

Notice also that in the general case, the internal den-
sity of a cluster C is not the average density of the graph
induced by C at time t for all t ∈ T(C), i.e. δ(C) 6=∫

T(C) δ(Gt(C))dt. See Figure 3.10 for an example.

c

b

a

2 8

Figure 3.10: The link stream
L = ([0, 10], {a, b, c}, {(0, 5, b, c)},
and node cluster C where a and b are
in C over [0, 10], and c is in C over
[0, 5]. The internal density of C is
δ(C) = 5

20 = 1
4 , while the average

density for all t ∈ [0, 10] of the graph Gt

is 1
10

∫ 10
0 δ(Gt)dt = 5

3·2·10 = 1
12 .

Given a partition P of link stream L into node clusters,
we define the intra-cluster and inter-cluster densities of P
as:

δ(P) =
∑C∈P ∑u,v∈V,u 6=v |C(u, v)|

∑C∈P ∑u,v∈V,u 6=v |C(u) ∩ C(v)| (3.9)
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and

δ(P) =
∑C∈P ∑u,v∈V,u 6=v |C(u, v)|

∑C∈P ∑u,v∈V,u 6=v |C(u) ∩ C(v)| (3.10)

In other words, δ(P) is the probability when one takes a
random triplet u, v and t such that u and v are in the same
cluster at time t, that there is a link between u and v at
time t. Likewise, δ(P) is the probability when one takes a
random triplet u, v and t such that u and v are in distinct
clusters at time t, that there is a link between u and v at
time t.

Finally, notice that the neighborhood N(u) of a node u ∈
V defined in Section 3.1 can be seen as a node cluster, and
the size of this cluster is nothing but the degree of v.

3.3 Cliques

In a simple graph G, a clique is a set C ⊆ V such that the
sub-graph of G induced by C has density 1. In other words,
for all u and v in C, the link (u, v) exists in E. Notice that if
a sub-graph G′ = (V′, E′) of G has density 1, then V′ nec-
essarily is a clique of G. Therefore we make no distinction
between a clique and the associated induced sub-graph. A
clique C is maximal if there is no other clique C′ such that
C ⊂ C′.

In a simple link stream, a clique is a set of nodes X ⊆ V
and an interval of time Y ⊆ T such that the sub-stream of
L induced by X over Y has density 1. In other words, for
all u and v in X, there is a link (b, e, u, v) in E such that
Y ⊆ [b, e]. Notice that if a sub-stream L′ = (T′, V′, E′) of
L has density 1, then (V′, T′) necessarily is a clique of L.
Therefore we make no distinction between a clique and the
associated induced sub-stream.

A clique C′ = (X′, Y′) is included in another clique C =

(X, Y) if X′ ⊆ X and Y′ ⊆ Y, i.e. the link stream induced
by C′ is included in the one induced by C. We denote this
by C′ ⊆ C. A clique C is maximal if there is no other clique
C′ such that C ⊂ C′.
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Figure 3.11: The link stream L and two
maximal cliques A = ({a, b, c}, [6, 10])
and B = ({b, c, d}, [13, 16]). Saying
that A is a clique means that from
time 7 to time 9, all links between
{a, b, c} × {a, b, c} exist, which is
equivalent to saying that the substream
of L induced by A, L7..9({a, b, c}), has
density 1.

3.4 Clustering coefficient and transitivity ratio

In a graph G = (V, E), the clustering coefficient of a
given node v is the internal density of its neighborhood:
cc(v) = δ(N(v)). In other words, cc(v) is the probability
that two randomly chosen neighbors of v are linked to-
gether in G. Notice that the clustering coefficient of nodes
of degree 1 is undefined. The clustering coefficient of G as
a whole is the average clustering coefficient of all nodes v
such that d(v) > 1: cc(G) = ∑v∈V cc(v)

n . See Figure 3.12 for
an example.

a
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Figure 3.12: The graph G =
({a, b, c, d}, {(a, b), (a, c), (a, d), (c, d)}.
The clustering coefficient of G is

cc(G) =
1
3 +1+1

1 ≈ 0.66, and the transi-
tivity ratio of G is tr(G) = 3

5 = 0.6.

The transitivity ratio of G is the probability when one
takes a random triplet of nodes u, v, w such that (v, u) ∈ E
and (v, w) ∈ E that (u, w) is in E too: tr(G) = #∆

#∨ where #∆
is the number of closed triplets (i.e.the triplets for which
(u, w) is in E), and #∨ is the number of connected triplets.

In a link stream L = (T, V, E), the clustering coefficient
of v is the internal density of the node cluster N>1(v) =

{(u, t) : ∃x ∈ V, ∃(b, e, u, v) ∈ E, ∃(b′, e′, x, v) ∈ E, t ∈
[b, e] ∩ [b′, e′]}:

cc(v) = δ(N>1(v))

where N>1(v) is the node cluster of the neighborhood of
v when v has more than 1 neighbor.

In other words, cc(v) is the probability when one takes
a random triplet t, u and w such that u and w are linked to
v at time t, that u is linked to w at time t.

Notice that if there is no t such that dt(v) = 1, i.e. node
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v has always more than 1 neighbor, then:

cc(v) = δ(N(v)),

the clustering coefficient of v is nothing but the internal
density of its neighborhood.

Notice that the clustering coefficient of v in Lt is nothing
but the clustering coefficient cct(v) of v in the graph Gt.
However, the average over time of cct(v) is the probability,
when one takes a random time instant t, that two random
neighbors u and w of v at t are linked together at time t.
Therefore, it is different from cc(v).

We define the clustering coefficient of L as a whole as the
average clustering coefficient of all the nodes when they
have a degree superior to 1: cc(L) = ∑v cc(v)

n .
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Figure 3.13: Two link streams L and L′,
where the neighborhoods of node b are
depicted in blue. In L, the clustering
coefficient of b is cc(b) = [2,7]∩[2,8]

[2,7] = 1,
since a and c always interact to-
gether when they interact with b. In
L′, cc(b) = [3,6]∩[8,9]

[3,6] = i|∅| = 0.

We define the transitivity ratio of L as the probability
when one takes a random quadruplet t, u, v, w such that u
and w are linked to v at t, that u and w are linked together
at t. Notice that, for a given time instant t, the transitivity
ratio of the stream induced by time t, tr(Lt), is equal to the
transitivity ratio of the graph induced by L at time t, tr(Gt).
However, tr(L) is not the average over all t of tr(Lt).

Table 3.1 summarizes the relations between the cluster-
ing coefficient and the transitivity ratio in link streams.

Given t Any t
Given v, any

(u, w)
cct(v) = cc(v) in Gt

cc(v) 6= average of
cct(v) over t

Any (v, u, w) tr(Lt) = tr(Gt)

tr(L) 6= average of
trt(Lt) over
t 6= cc(L)

Table 3.1: Relations between clustering
coefficient and transitivity ratio in
link streams. For example, if one
is given a time t ∈ T ("Given t")
and a node v ∈ V ("Given v"), one
still needs to choose two random
neighbors of v u and w ("any (u,w)").
This defines the clustering coefficient
of v at time t, cct(v), which is the
clustering coefficient of v in the induced
graph Gt (upper left cell).
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3.5 Conclusion

In this chapter, we generalized notions from graph theory
that stem from density. After extending density to link
streams, we extend notions of neighborhood, degree, node
clusters, cliques, clustering coefficient and transitivity ra-
tio. Many concepts defined in this chapter are non trivial
to compute. We illustrate this by studying in depth clique
computation in Chapter 6.

Notice that a link stream may be seen as a node cluster
where each node is in involved from α to ω. This paves the
way for a more general definition of link streams, where
nodes need not be present at all times in [α, ω]. This exten-
sion is more general than link streams, and is a promising
perspective. It leads to more complex definitions, though,
and do not allow the generalization of relations like the
one between degree and density.
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Paths-based notions

In many contexts, graphs are used to study diffusion be-
tween nodes: delivering a message, or a file; assessing
the resilience of a network to cable outages;predicting the
spreading of a disease; etc. In all those cases, the under-
lying concept is the one of path, which is fundamental for
defining notions of reachability and connectivity.

In many contexts, one is interested in assessing the im-
portance of individual nodes or links: to identify key ac-
tors in social networks, or to target the weakest points of a
network. Paths also lead to notions of centrality designed
to capture such behaviour.

We discuss in this chapter these notions, and extend
them to link streams.

4.1 Paths

In a simple graph G = (V, E), a path P from u ∈ V to
v ∈ V is a sequence (u0, v0), (u1, v1), . . . , (uk, vk) such that
u0 = u, vk = v, and for all i, vi−1 = ui and (ui, vi) is in
E. The integer k is the length of P. See Figure 4.1 for an
illustration.

x

y

zs

r

v

u

Figure 4.1: A graph G =
({u, x, y, . . . }, {(u, x), (s, y), . . . }) and a
path P of length 4 from node u to node
v; P = ((u, x), (x, y), (y, z), (z, v)).

In a simple link stream L = (T, V, E), a γ-path P from
node u ∈ V to node v ∈ V is a sequence l0 = (b0, e0, u0, v0),
l1 = (b1, e1, u1, v1), . . . , lk = (bk, ek, uk, vk) such that u0 = u,
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vk = v and for all i, li is a sub-link of a link in E, ui = vi−1,
bi ≥ ei−1, and ei = bi + γ 1. We call γ the delay of links. For 1. Notice that (t, t, u, v) is a valid

sub-link, if γ = 0.all i, we say that P involves ui and vi, and that it involves
them at all t in [bi, ei]. See Figures 4.2 and 4.3 for examples.

We say that path P starts at t0, arrives at tk, has duration
tk − t0 and length k. Given two nodes u and v, we say that
a path from u to v of minimal length is a shortest path,
that a path with minimal duration is a fastest path, and a
path with minimal arrival time is a foremost path 2. The 2. These properties can be cumulative:

the shortest fastest path is, among
all fastest paths, the shortest one; the
fastest foremost is, among all foremost
paths, the fastest one, and so on.

length d(u, v) of a shortest path from u to v is the distance
from u to v, and the duration `(u, v) of a fastest path is the
latency from u to v. We denote by Tt(u, v) the time needed
to reach v from u at time t, i.e. the difference between t and
the minimal arrival time of a path from u to v starting after
t. By extension, we denote by Tb..e(u, v) the time needed to
reach v from u at time t with a path starting between b and
e. In the remainder of this chapter, γ = 0 unless stated
otherwise.

Notice that these notions have previously been defined
by [Bui-Xuan et al., 2003], and we simply formulate them
in the link stream framework.

c

b

a

t
2 8 14

d

time

Figure 4.2: A link stream and 3 0-paths
(i.e. γ = 0) from a to d from time t.
Path ((1, 3, a, b), (4, 5, b, c), (5, 5, c, d))
(in red) arrives at time 5, has duration
and length 3; it is a foremost path. Path
((7, 8, a, b), (8, 9, b, c), (9, 9, c, d)) (in
blue) arrives at time 9 has duration 2
and length 3; it is a fastest path. Path
((15, 17, a, c), (18, 18, c, d)) (in green)
arrives at time 16, has duration 3 and
length 2; it is a shortest path.

If γ = 0 then bi = ei in the definition above, and a 0-path
is equivalent to a sequence of triplets (t0, u0, v0), (t1, u1, v1),
. . . , (tk, uk, vk) such that u0 = u, vk = v, and for all i ∈ [1, k],
vi−1 = ui, ti ≥ ti−1 and there is a link (bi, ei, ui, vi) in E such
that ti ∈ [bi, ei].

Several variants of this notion of path in link streams
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a

b

d

c

Figure 4.3: A link stream and a γ-path
from a to b, with γ = 1 unit of time.

make sense. For instance, one may capture the fact that
each node cannot forward information immediately after
receiving it by adding the constraint ti+1 ≥ ti + γ′ in the
definition, for a given γ′. Notice that this is not equivalent
to γ + γ′-paths. One may also impose an overlap between
successive links involved in a path: conditions above then
become bi+1 ≤ ei.

Similarly, one may want to impose non-null delays on
links and/or nodes but without bounds on these delays.
Conditions above then become ei > bi and ti+1 > ti, re-
spectively.

4.2 Connectivity

In a graph G = (V, E), we say that node v is reachable
from u if there is a path from u to v. Notice that, if G
is undirected, reachability is symmetric: if u is reachable
from v, then the reverse is true. If, for all u, v ∈ V, u is
reachable from v, then G is connected. The largest subsets
V′ ⊆ V such that the subgraph induced by V′ is connected
are called the connected components of G.

In link streams, we say that u is reachable from v if there
is a path from v to u. Notice that reachability is not sym-
metric: u may be reachable from v while v is not reachable
from u, see Figure 4.4. If for all u and v in V node u is
reachable from node v then we say that L is connected.

Given X ⊆ V and [b, e] ⊆ T, we say that C = (X, b, e)
is a connected component if the substream Lb..e(X) is con-
nected. In other words, for any two nodes u and v in X
there is a path from u to v starting at b or later, arriving at
e or earlier, and involving only nodes in X.
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x

v

u

time62 time62

x

v

u Figure 4.4: Two streams L and L′. In L,
v is reachable from u, but the reverse is
not true: there is no path from v to u.
In L′, u and v are both reachable from
each other: v can reach u through the
link (7, 10, v, u).

Notice that, if C = (X, b, e) is a connected component
then C′ = (X, b′, e′) also is a connected component if b′ ≤ b
and e′ ≥ e. As a consequence, if (X, b, e) is a connected
component then (X, α, ω) also is a connected component,
and so maximal connected components are characterized
by their set of nodes only. Conversely, we say that a con-
nected component C is a connecting component if X is
maximal and [b, e] is minimal. See Figure 4.5 for an il-
lustration.

b

c

a

2 8 time

b e Figure 4.5: ({a, b, c}, 0, 8) is a connected
component: from time 0 to time 8,
the three nodes are all reachable from
each other. This is not true for any
time e′ < 6, as there is no path from
c to a. We say that if the set of nodes
is maximal and the time interval is
minimal, the connected component is a
connecting component: this is the case
for ({a, b, c}, 6, 6).

A connected part of L is a triplet (X, b, e) such that for
any two nodes u and v in X there is a path from u to v
starting at b or later and arriving at e or earlier in L. No-
tice that a connected component necessarily is a connected
part. On the contrary, the paths between nodes in X may
involve nodes outside X and so connected parts are not
necessarily connected components, see Figure 4.6.

4.3 Centralities

It is usual to measure the importance of nodes and links
in graphs using metrics called centralities. As there may
be various criteria for this importance, several notions of
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2 8 time

d

c

a

b

Figure 4.6: A = ({a, b, c}, 0, 10) is
a connected part: all nodes in A are
reachable from each other. However,
B = ({a, b, c, d}, 0, 10) is not a connected
part, since there is no path from d to
b. Yet, if one considers the substream
L({a, b, c}), A is not a connected part. d
is a connecting node.

centralities coexist. The most widely used ones probably
are closeness and betweenness centralities. The closeness
of a node v measures its proximity to other nodes: C(v) =
∑u 6=v

1
d(v,u) , where d(v, u) is the distance from v to u, i.e.

the length of the shortest path from v to u. If there is
no path from u to v, then the two nodes are infinitely far,
and d(u, v) = ∞. The betweenness of a node v measures
the number of shortest paths in the graph that involve v:
B(v) = ∑x 6=y 6=v

σ(x,y,v)
σ(x,y) where σ(x, y, v) is the number of

shortest paths from x to y involving v and σ(x, y) is the
total number of shortest paths from x to y. Notice that
the betweenness centrality is only defined for connected
graphs. See Figure 4.7 for an illustration.

k

l m

e

j i

h

gfa

b
d

c

Figure 4.7: In this toy graph; nodes k,
l and m have similar values of close-
ness centrality: they are the closest
to every node in the graph. k has a
high betweenness centrality: it is on all
shortest paths between {a, b, c, d} and
{e, f , g, h, i, j}, whereas l and m have a
low betweenness centrality.

4.3.1 Closeness centrality

In a link stream, we want the closeness of a node to capture
how fast it may reach other nodes. We therefore define the
closeness of node v at time t, for all γ > 0, as:

Ct(v) = ∑
u 6=v

1
Tt(v, u)

and the closeness of node v in L as its average closeness
over all the duration of L:

C(v) = 1
ω− α

∫ ω

α
Ct(v)dt

In other words, the closeness of v is the average of the
inverse of the time needed to reach a randomly chosen
node from v at a randomly chosen instant. See Figure 4.8.
If there is no path from u to v in the stream, then the two
nodes are infinitely far, and Tt(u, v) = ∞.
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By convention, we consider that 1
∞ = 0. If there is a link

at time t between u and v, then Tt(u, v) = γ.
By extension, we define the closeness of v in an interval

[b, e] ⊂ [α, ω]:

Cb..e(v) =
1

e− b

∫ e

b
Ct(v)dt

a

b

c

time2 8

t t’ t’’ Figure 4.8: A link stream L =
([0, 10], {a, b, c}, {(2, 7, a, b), (3, 8, b, c)}).
From time t = 1, node a reaches node
b at time 2, and node c at time 3. The
closeness centrality of node a at time
1 is then Ct(a) = 1

2 + 1
3 = 1

6 . At time
t′ = 5, there is a path from a to b and
from a to c, and Ct′ (a) = 2. At time
t′′ = 9, there is no path from a to b
nor from a to c, hence Ct′′ (a) = 0, by
convention.

4.3.2 Betweenness centrality

We then define the betweenness of node v in L as:

B(v) = ∑
x 6=y 6=v

ϕ(x, y, v)
ϕ(x, y)

(4.1)

where ϕ(x, y, v) is the number of shortest fastest paths
from x to y involving v.

We define the betweenness of node v from time b to time
e as: Bb..e(v) = ∑x 6=y 6=v

ϕb..e(x,y,v)
ϕ(x,y) where ϕb..e(x, y, v) is the

number of shortest fastest paths from x to y involving v
starting at b or before and arriving at e or later. Notice that
B(v) = Bα..ω(v).

Then, the betweenness of node v at time t is the fraction
of shortest fastest paths between any two pairs of nodes
involving v at time t :

Bt(v) = ∑
x 6=y 6=v

ϕt(x, y, v)
ϕ(x, y)

where ϕt(x, y, v) is the number of shortest fastest paths
from x to y involving v at time t and ϕ(x, y) is the total
number of shortest fastest paths from x to y in L.
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b

a

c

2 8 timet

Figure 4.9: A link stream L. The num-
ber of shortest fastest paths from a to
c from time t is depicted in red: it is
all the paths ((x, 4, a, b), (4, 4, b, c)) for
x ∈ [1, 4]. We say that there are 3 units
of time paths.

d

a

b

c

82 time

Figure 4.10: A link stream L. The num-
ber of shortest fastest paths from a to
c involving b is depicted in green, and
represents 2 units of time (from time
4 to time 6. The number of shortest
fastest paths from a to c also contains
the paths depicted in red, representing
2 units of time (from time 1 to time 3).
Hence, ϕt(a,c,b)

ϕt(a,c) = 1
2 .

When all links have duration ω − α, the betweenness in
the link stream is equal to the betweenness in the induced
graph.

Notice that B(v) is not the average value of Bt(v) over
[α, ω]: we do not take into account the time during which
v is involved in considered paths. Indeed, we are interested
in measuring the number of paths involving v; measuring
this number weighted by the duration of the involvement
of v may be done by computing 1

ω−α

∫ ω
α Bt(v)dt.

The betweenness centrality we just defined evaluates the
importance of nodes and time periods in function of very
global objects: shortest fastest paths in the global stream,
and the number of such paths in the whole stream. One
may obtain a much more local view by studying between-
ness in a substream Lb..e of L. In between, one may study
the fraction of all shortest fastest paths that begin and/or
end between b and e, which is different from studying the
substream Lb..e, see Figure 4.11.

b

a

c

eb

time82

Figure 4.11: The fraction of all shortest
fastest paths that begin and/or end
between b and e is different from
studying the substream L2..6: indeed,
((5, 6, a, b), (7, 7, b, c)) is a shortest
fastest path from a to c starting before
b, but is not contained in L2..6.
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4.4 k-closure

Given two nodes u, v ∈ V and a time t ∈ T, we define
the k-closure of (u, v) at time t, as the difference between
the maximum time t′ < t such that there exists a path
P = ((ti, ui, vi))i=0..n of length n ≤ k with t0 ≥ t′, u0 = u
and vn = v and tn ≤ t. We denote it by ⊥k(u, v, t) = t−
t′ 3. In other words, the k-closure of (u, v) is the minimum 3. Notice that ⊥k(u, v, t) 6= ⊥k(v, u, t).

time one has to go in the past before t to find a path of
length at most k from u to v in the stream. See example in
Figure 4.12.

t tt’ t’

c

b

a

2 8

c

b

a

2 8

Figure 4.12: Two streams L and L′. In
L, the 2-closure of (a, c) at time t is at
time t′ = 3: indeed, there is a path
of length 2 from a to c at t′. In L′, one
finds t′ = 8, since there is a path of
length 1 from a to c at time 8.

4.5 Conclusion

In this chapter, we define notions of paths in link streams.
Unlike graphs, where one is typically interested in shortest
paths, we describe three types of interesting paths between
two nodes: the foremost path, which is the first to arrive
from a given time t, the fastest, which is the one that has
the smallest duration, and the shortest, which minimizes
the number of hops.

We define notions of reachability and connectivity, as
well as metrics of centrality to assess the importance of
nodes in the stream.

As we saw in Chapter 1, many works study path-related
concepts in the literature. Studying how these notions
can be unified with the ones presented in this chapter is
a prospective work.

A particularly interesting future work is to generalize
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more complex notions of graph theory based on paths: for
example cycles, trees (and spanning trees), as well as ran-
dom walks, greedy walks or traversals of the link stream.
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∆-analysis of link streams

In many contexts, the data is a sequence of instanta-
neous contacts (t, u, v) rather than of contacts with dura-
tion (b, e, u, v). This is the case, for example, of face-to-face
contacts captured by sensors, or IP traffic studied as a se-
quence of packets.

However, the notions we have defined in Chapter 3 do
not take into account such instantaneous links. The den-
sity, for instance, sums the durations of links: if links have
duration 0, they account for nothing in the density. To
avoid this, one generally considers a time scale ∆ and de-
fines ∆-related notions like the ∆-density, the ∆-degree,
and so on. In this chapter, we define a transformation of
a link stream to study it at a given scale ∆, and show the
notions defined in Chapter 3 are equivalent to ∆-related
notions.

5.1 ∆-analysis and instantaneous links

When studying a link stream L, one often wants to con-
sider a time scale ∆ coarser than the exact times of links in
L. For instance, if L represents contacts between individu-
als, one may be interested in knowing if these individuals
generally meet every day, every week or every year.

In particular, some data are typically in the form of
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instantaneous links, for example IP traffic: a packet ex-
changed between two machines u and v occurs exactly at
a given time t.

One may see the parameter ∆ as capturing the follow-
ing intuition: if a link exists between two nodes within a
time interval of duration at most ∆ then one considers that
the two nodes are continuously linked together during this
time interval.

Given a link stream L = (T, V, E) and a value ∆ ∈ [0, ω−
α], we define L∆ = (T∆, V, E∆) as the link stream such that
T∆ = [α + ∆

2 , ω− ∆
2 ] and E∆ = ({(b′, e′, u, v) : ∃(b, e, u, v) ∈

E, [b′, e′] = [b− ∆
2 , e + ∆

2 ] ∩ T∆}). In other words, any two
nodes are linked together at time t in L∆ if and only if they
are linked together in L at a time t′ such that t ∈ [t′ −
∆
2 , t′ + ∆

2 ] ∩ T∆. This operation is depicted in Figure 5.1.

102 time

∆

2 8

L
∆

time

L

a

b

c c

b

a

Figure 5.1: ∆-transformation
of the link stream L =
([0, 10], {a, b, c}, {(1, 2, a, b), (3, 4, b, c), . . . }
for ∆ = 2. L∆ =
([1, 9], {a, b, c}, {(1, 3, a, b), (2, 5, b, c), . . . }).

5.2 Density

[Viard and Latapy, 2014a] define δ∆(L) as the probability,
when one takes a random time interval of size ∆ in T and
two random nodes u and v in V that these two nodes
are linked at some time during this time interval. This
is equivalent to the probability, when one takes a random
time instant t in [α + ∆

2 , ω − ∆
2 ], that the two nodes are

linked at some time in [t− ∆
2 , t + ∆

2 ] in L. By definition of
L∆, this is equivalent to the probability, when one takes a
time t in T∆, that the two nodes are linked at time t in L∆: if
the nodes are linked together at some time in [t− ∆

2 , t + ∆
2 ]

in L then they are linked together at time instant t in L∆,
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and conversely. The probability that this occurs is nothing
but the density of L∆. Then, we have δ∆(L) = δ(L∆).

5.3 Degree

We define the ∆-degree of a stream d∆(L) as the number
of expected neighbors of a node u chosen at random when
one takes a random interval of size ∆ in T.

We then have the following relation between ∆-degree
and ∆-density: δ∆(L) = d∆(L)

n−1 . As we have shown in Chap-

ter 3, for any link stream L′, δ(L′) = d(L′)
n−1 . Since the

order of L is equal to the order of L∆, we conclude that
d∆(L) = d(L∆).

5.4 Clusters

One can associate to any cluster C a cluster C∆, which is
the result of the same operation as the one transforming a
stream L into L∆. However, by doing so the clusters of L∆
do not form a partition of the stream, even if they formed
a partition of L, and density and degree are not equivalent
to the ∆-density and the ∆-degree.

To circumvent this, one can define ∆-clusters: C is a ∆-
cluster if, for all u ∈ V(C), and for all maximal intervals
[b, e] of C(u), there is no (x, y, u, v) in E such that b ≤ x < ∆

2
or e ≥ y > e− ∆

2 .
In other words, for each node in the cluster, there is at

least ∆
2 time between two implications of the node in two

different clusters.
In the case of ∆-clusters, density and degree are respec-

tively equivalent to ∆-density and ∆-degree.

5.5 Conclusion

In this chapter, we show that our formalism makes it pos-
sible to study link streams at a given scale ∆; we define a
transformation of a link stream, and show that the notions
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of density, degree and clusters defined in Chapter 3 remain
relevant on the transformed stream.

In our definition, ∆ is a constant for all links in L, but the
way we transform the stream is flexible: it is possible to
set a value of ∆ that is different for each (u, v), at different
times, or that is a fraction of the duration of the link, for
instance; ∆ can also be fixed for each link (b, e, u, v) using
external knowledge.
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6
Computing cliques in link streams

Enumerating maximal cliques of a graph is one
of the most fundamental problems in computer sci-
ence, and it has many applications [Rowe et al., 2007,
Samudrala and Moult, 1998].

In Chapter 3, we have extended density and cliques to
link streams. Enumerating the maximal cliques of a link
stream raises algorithmic challenges.

As we have seen in Chapter 5, in many contexts, inter-
actions are captured as sequences of (t, u, v). However, in
this case, one needs to resort to a parameter ∆ to study
such interactions.

In this chapter, we present an algorithm to enumerate
all maximal ∆-cliques of a link stream, implement it and
apply it to a real-world contact trace.

6.1 Definitions

Let us consider a (simple) link stream L = (T, V, E) with
T = [α, ω] and E ⊆ T×V×V: l = (t, u, v) in E means that
an interaction occurred between u ∈ V and v ∈ V at time
t ∈ T.

For a given duration ∆, a ∆-clique C of L is a pair C =

(X, [b, e]) with X ⊆ V and [b, e] ⊆ T such that |X| ≥ 2, and
for all {u, v} ⊆ X and τ ∈ [b, max(e− ∆, b)] there is a link
(t, u, v) in E with t ∈ [τ, min(τ + ∆, e)] 1. 1. Notice that ∆-cliques necessarily

have at least two nodes.
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More intuitively, (X, [b, e]) is a ∆-clique if all nodes in X
interact at least once with all others at least every ∆ from
time b to time e. ∆-clique C is maximal if it is included
in no other ∆-clique, (i.e. there exists no ∆-clique C′ =
(X′, [b′, e′]) such that C′ 6= C, X ⊆ X′ and [b, e] ⊆ [b′, e′]).
See Figure 6.1 for an example.

0 8642 0 8642

0 86420 8642

∆ = 3
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b
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b

c
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Figure 6.1: Examples of ∆-cliques.
We consider the link stream
L = ([0, 9], {a, b, c}, E) with
E = {(3, a, b), (4, b, c), (5, a, c), (6, a, b)}
and ∆ = 3. There are four maximal
3-cliques in L: ({a, b}, [0, 9]) (top left),
({a, b, c}, [2, 7]) (top right), ({b, c}, [1, 7])
(bottom left), and ({a, c}, [2, 8]) (bottom
right). Notice that ({a, b, c}, [1, 7]) is not
a ∆-clique since during time interval
[1, 4] of duration ∆ = 3 there is no
interaction between a and c. Notice also
that ({a, b}, [1, 9]), for instance, is not
maximal: it is included in ({a, b}, [0, 9]).

In real-world situations like the ones cited above, ∆-
cliques are signatures of meetings, discussions, or dis-
tributed applications for instance. Moreover, just like
cliques in a graph correspond to its subgraphs of density 1,
∆-cliques in a link stream correspond to its substreams of
∆-density 1, as defined in Chapter 5. Therefore, ∆-cliques
in link streams are natural generalizations of cliques in
graphs.

We propose an algorithm for listing all maximal ∆-
cliques of a given link stream. We illustrate the relevance
of the concept and algorithm by computing maximal ∆-
cliques of a real-world dataset.

We define the first occurrence time of (u, v) after b as the
smallest time t ≥ b such that (t, u, v) ∈ E, and we denote
it by fbuv. Conversely we denote the last occurrence time
of (u, v) before e by leuv. We say that a link (t, u, v) is in
C = (X, [b, e]) if u ∈ X, v ∈ X and t ∈ [b, e].

6.2 Algorithm

6.2.1 Description of the algorithm

One may trivially enumerate all maximal cliques in a
graph as follows. One maintains a set M of previously
found cliques (maximal or not), as well as a set S of can-
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didate cliques. Then for each clique C in S, one removes
C from S and searches for nodes outside C connected to
all nodes in clique C, thus obtaining new cliques (one for
each such node) larger than C. If one finds no such node,
then clique C is maximal and it is part of the output. Oth-
erwise, if the newly found cliques have not already been
found (i.e., they do not belong to M), then one adds them
to S and M. The set S is initialized with the trivial cliques
containing only one node, and all maximal cliques have
been found when S is empty. The set M is used for mem-
orization, and ensures that one does not examine the same
clique more than once. In [Johnson et al., 1988] the authors
use this framework to enumerate all maximal cliques of a
graph in lexicographic order.

Our algorithm for finding ∆-cliques in a link stream
L = (T, V, E) (Algorithm 1) relies on the same scheme. We
initialize the set S of candidate ∆-cliques and the set M of
all found ∆-cliques with the trivial ∆-cliques ({a, b}, [t, t])
for all (t, a, b) in E (Line 2). Then, until S is empty (while
loop of Lines 3 to 24), we pick an element (X, [b, e]) in
S (Line 4) and search for nodes v outside X such that
(X ∪ {v}, [b, e]) is a ∆-clique (Lines 6 to 10). We also look
for a value b′ < b such that (X, [b′, e]) is a ∆-clique (Lines 11

to 16), and likewise a value e′ > e such that (X, [b, e′]) is a
∆-clique (Lines 17 to 22). If we find such a node, such a b′

or such an e′, then ∆-clique C is not maximal and we add
to S and M the new ∆-cliques larger than C we just found
(Lines 10, 16 and 22), on the condition that they had not al-
ready been seen (i.e., they do not belong to M). Otherwise,
C is maximal and is part of the output (Line 24).

Let us explain the choice of b′ (Lines 11 to 16) in details,
the choice of e′ (Lines 19 to 22) being symmetrical. For a
given ∆-clique (X, [b, e]), we set b′ to f − ∆, which is the
smallest time such that we are sure that (X, [b′, e]) is a ∆-
clique without inspecting any link outside of (X, [b, e]). In-
deed, all links in X× X appear at least once in the interval
[ f − ∆, f ]: f is the latest of the first occurrence times of all
links in this ∆-clique, and so all links appear at least once
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Algorithm 1: Maximal ∆-cliques of a link
streaminput: a link stream L = (T, V, E) and a duration ∆

output: the set of all maximal ∆-cliques in L

1: S← ∅, R← ∅, M← ∅
2: for (t, u, v) ∈ E: add ({u, v}, [t, t]) to S and to M
3: while S 6= ∅ do
4: take and remove (X, [b, e]) from S
5: set isMax to True
6: for v in V \ X do
7: if (X ∪ {v}, [b, e]) is a ∆-clique then
8: set isMax to False
9: if (X ∪ {v}, [b, e]) not in M then

10: add (X ∪ {v}, [b, e]) to S and M
11: f ← maxu,v∈X fbuv . latest first occurrence time of a link in (X, [b, e])

12: set b′ to f − ∆
13: if b 6= b′ then
14: set isMax to False
15: if (X, [b′, e]) not in M then
16: add (X, [b′, e]) to S and M
17: l ← minu,v∈X leuv . earliest last occurrence time of a link in (X, [b, e])

18: set e′ to l + ∆
19: if e 6= e′ then
20: set isMax to False
21: if (X, [b, e′]) not in M then
22: add (X, [b, e′]) to S and M
23: if isMax then
24: add (X, [b, e]) to R

25: return R
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in [b, f ] ⊆ [ f − ∆, f ]. If b′ 6= b, then the ∆-clique (X, [b′, e])
is added to S (Line 13).

We display in Figure 6.2 an example of a sequence of
such operations from an initial trivial ∆-clique to a maxi-
mal ∆-clique in an illustrative link stream. The algorithm
builds this way a set of ∆-cliques of L, which we call the
configuration space; we display the configuration space for
this simple example in Figure 6.3 together with the rela-
tions induced by the algorithm between these ∆-cliques.
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Figure 6.2: A sequence of ∆-cliques
built by our algorithm to find a max-
imal ∆-clique (bottom-right) from an
initial trivial ∆-clique (top-left) in the
link stream of Figure 6.1 when ∆ = 3.
From left to right and top to bottom:
the algorithm starts with ({a, b}, [6, 6]),
and finds ({a, b}, [3, 6]) thanks to
Lines 11 to 16 of the algorithm. It
then finds ({a, b, c}, [3, 6]) thanks to
Lines 6 to 10. It finds ({a, b, c}, [3, 7])
from Lines 17 to 22, and finally
({a, b, c}, [2, 7]) from Lines 11 to 16.

6.2.2 Proof of correctness

To prove the validity of Algorithm 1, we must show that
all the elements it outputs are ∆-cliques, that they are max-
imal, and that all maximal ∆-cliques are in its output.

Lemma 1. In Algorithm 1, all elements of S are ∆-cliques of L.

Proof. We prove the claim by induction on the iterations of
the while loop (Lines 3 to 24).

Initially, all elements of S are ∆-cliques (Line 2). Let us
assume that all the elements of S are ∆-cliques at the i-th
iteration of the loop (induction hypothesis). The loop may
add new elements to S at Lines 10, 16 and 22. In all cases,
the added element is built from an element C = (X, [b, e])
of S (Line 4), which is a ∆-clique by induction hypothesis.

It is trivial (from the test at Line 7) that Line 10 only adds
∆-cliques.

Let us show that (X, [b, l + ∆]), where l is computed in
Line 17, necessarily is a ∆-clique. As (X, [b, e]) is a ∆-clique
all links in X × X appear at least once every ∆ from b to
l ≤ e. Moreover, since l is the earliest last occurrence time
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Figure 6.3: The configuration space
built by our algorithm from the link
stream of Figures 6.1 and 6.2 when
∆ = 3. Each element is a ∆-clique
and it is linked to the ∆-cliques the
algorithm builds from it (links are
implicitly directed from top to bottom).
Plain links indicate ∆-cliques discovered
by Lines 11 to 16 or Lines 17 to 22

of the algorithm, which change the
time span of the clique. Dotted links
indicate ∆-cliques discovered by Lines 6

to 10, which change the set of nodes
involved in the clique. The bold path is
the one detailed in Figure 6.2. Colors
correspond to the maximal ∆-cliques
displayed in Figure 6.1.

of a link in C, for all u and v in X there is necessarily a
link (t, u, v) in E with l ≤ t ≤ e. Notice also that l ≥ e− ∆,
otherwise (X, [b, e]) would not be a ∆-clique. Therefore a
link between u and v occurs at least once between l and
l + ∆ for all u and v in X. Finally, (X, [b, l + ∆]) is a ∆-
clique.

The same arguments hold for Line 11.
Finally, at the end of the (i + 1)-th iteration of the loop,

all the elements of S are ∆-cliques, which ends the proof.

Lemma 2. All the elements of the set returned by Algorithm 1
are maximal ∆-cliques of L.

Proof. Let C = (X, [b, e]) be an element of R returned by the
algorithm. Only elements of S are added to R (at Line 24),
and so according to Lemma 1 C is a ∆-clique. Assume it
is not maximal; then we are in one of the three following
situations.

There exists v in V \ X such that (X ∪ {v}, [b, e]) is a ∆-
clique. Then v is found at Lines 6–7, and Line 8 sets the
boolean isMax to false. Therefore, Line 23 ensures that C =

(X, [b, e]) is not added to R, and we reach a contradiction.
There exists e′ > e such that (X, [b, e′]) is a ∆-clique and

we assume without loss of generality that there is no link
between nodes in X from e to e′. Then, let us consider



computing cliques in link streams 65

l ∈ [b, e], computed in Line 17, which is the earliest last
occurrence time of a link in C. We necessarily have l ≥
e′ − ∆ because (X, [b, e′]) is a ∆-clique. Since e′ > e, this
implies l > e − ∆. As a consequence, the test in Line 19

of the algorithm is satisfied, and Line 20 sets the boolean
isMax to false. Like above, we reach a contradiction.

If there exists b′ < b such that (X, [b′, e]) is a ∆-clique,
then similarly to the previous case we reach a contradic-
tion.

Finally, C necessarily is maximal, which proves the
claim.

Before proving our main result, which is that all maxi-
mal ∆-cliques are returned by the algorithm, we need the
following two intermediate results.

Lemma 3. Let C = (X, [b, e]) be a maximal ∆-clique of L, and
let s be the earliest occurrence time of a link in C. Then e ≥
s + ∆.

Proof. Since C is a ∆-clique and by definition of s, for all
u, v in X there exists at least one link (t, u, v) such that
s ≤ t ≤ e. Assume e < s + ∆; then for all u, v in X there
also exists a link (t, u, v) such that s ≤ t ≤ e < s + ∆.
Therefore (X, [b, s + ∆]) is a ∆-clique and C is included
in it, which means that C is not maximal and we reach
a contradiction.

Lemma 4. Let C = (X, [b, e]) be a maximal ∆-clique of L and let
s be the earliest occurrence time of a link in C. If (X, [s, s + ∆])
is in S at some stage of Algorithm 1, then C is in the set returned
by the algorithm.

Proof. Assume C0 = (X, [s, s + ∆]) is in S and consider the
longest sequence of steps of Algorithm 1 of the form: C0 →
C1 → · · · → Ck such that for all i Ci = (X, [s, ei]) with
ei+1 > ei. In other words, the algorithm builds Ci+1 from
Ci in Lines 17 to 22 (notice that e ≥ s + ∆ from Lemma 3

and so C0 is included in C).
We prove that Ck = (X, [s, e]) by contradiction. Assume

this is false, and so that ek 6= e. As C is maximal, we then
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necessarily have ek < e. In addition, ek = l + ∆ where l is
the earliest last occurrence time of a link in Ck−1 computed
at Line 17. Since Ck is the last ∆-clique in the sequence, l is
also the earliest last occurrence time of a link in Ck (other-
wise there would be a clique Ck+1 satisfying the constraints
of the sequence above). Therefore there exist u, v ∈ X such
that (l, u, v) ∈ E and such that there is no occurrence of
a link (u, v) between l and ek = l + ∆. This ensures that
there exists an ε such that l +∆+ ε < e and such that there
is no link between u and v from l + ε to l + ∆ + ε, which
contradicts the assumption that C is a ∆-clique.

We now show that the algorithm builds C from Ck to
end the proof. Since C is maximal, there exists u, v ∈ X
such that (b + ∆, u, v) ∈ E and such that there is no other
link between u and v from b to b + ∆. By definition of s,
b + ∆ ≥ s. Therefore the latest first occurrence time of a
link in Ck, f , is equal to b + ∆ and Lines 11 to 16 build C
from Ck.

Lemma 5. All maximal ∆-cliques of L are in the set returned by
Algorithm 1.

Proof. It is easy to check that if S contains a maximal ∆-
clique then it is added to the set R returned by the algo-
rithm, and only these ∆-cliques are added to R. We there-
fore show that all maximal ∆-cliques are in S at some stage.

Let C = (X, [b, e]) be a maximal ∆-clique of L, let s be
the earliest occurrence time of a link in C, and let u, v ∈ X
be two nodes such that there exists a link between them
at s (i.e., (s, u, v) ∈ E). We show that there is a sequence
of steps of the algorithm that builds C from ∆-clique C0 =

({u, v}, [s, s]) (which is placed in S at the beginning of the
algorithm, Line 2).

Lines 17 to 22 builds C1 = ({u, v}, [s, s + ∆]) from C0.
Notice that for all subset Y of X, (Y, [s, s + ∆]) is a ∆-

clique. Therefore the algorithm iteratively adds all el-
ements of X at Lines 6 to 10, finally obtaining C′ =

(X, [s, s + ∆]) from C1.
We finally apply Lemma 4 to conclude that the algorithm

builds C from C′.
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From these lemmas, we finally obtain the following re-
sult.

Theorem 1. Given a link stream L and a duration ∆, Algo-
rithm 1 computes the set of all maximal ∆-cliques of L.

6.2.3 Computational complexity

In order to investigate the complexity of our algorithm, let
us denote by n = |V| the number of nodes and m = |E| the
number of links in L. First notice that the number of ele-
ments in the configuration space built by the algorithm is
bounded by the number of subsets of V times the number
of sub-intervals of T.

Moreover, for all ∆-clique C = (X, [b, e]) in the configura-
tion space, there exists a link (b, u, v) or a link (b + ∆, u, v)
in E. Indeed, the initial trivial ∆-cliques are in the first
case, and all ∆-cliques obtained from them are also in this
case until Line 16 is applied. The ∆-cliques built after this
are in the second case. Likewise, there exists a link (e, u, v)
or a link (e− ∆, u, v) in E. Therefore, the number of pos-
sible values for b and e for any ∆-clique in the configura-
tion space is proportional to the number of time instants
at which a link occurs, which is bounded by the number
of links m. The number of sub-intervals of T correspond-
ing to a ∆-clique in the configuration space is therefore in
O(m2). This bound is reached in the worst case, for in-
stance if the stream is a sequence of links occurring once
every ∆ time interval.

The trivial bound O(2n) for the number of subsets of
V is also reached in the worst case, for instance if there
is a link between all pairs of nodes at the same time: the
algorithm will enumerate all subsets of V.

Therefore, the number of elements in the configuration
space is in O(2nm2). This leads to the space complexity
of our algorithm: it is proportional to the space needed to
store the configuration space, which is in O(2nnm2) since
each element may be stored in O(n) space.
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We estimate the time complexity by studying the com-
plexity of operations performed on each element of the
configuration space, (i.e., the complexity of each iteration
of the while loop at Lines 3 to 24). Let us consider a ∆-
clique C = (X, [b, e]) picked from S by the algorithm at
Line 4.

The while loop is composed of three blocks: (1) search-
ing for ∆-cliques of the form (X ∪ {v}, [b, e]) larger than
C (Lines 6 to 10); (2) searching for a ∆-clique (X, [b′, e])
larger than C (Lines 11 to 16); and (3) searching for a ∆-
clique (X, [b, e′]) larger than C (Lines 17 to 22). The third
block has the same complexity as the second one, so we
focus on the time complexity of the two first blocks.

Given a node v /∈ X, Line 7 tests whether for all nodes
u in X there is a link (t, v, u) ∈ E in each time interval of
duration ∆. This requires at most |X| · m tests, and so it
is in O(nm). Then, Line 9 searches for the found ∆-clique
in M, which has a size in O(2nm2). Since the comparison
between two ∆-cliques can be performed in O(n) time, this
search therefore is in O(n log(2nm2)) = O(n2 + n log m)

time. The algorithm repeats these operations for all nodes
v ∈ V \X, and thus less than n times, hence the complexity
of Lines 6 to 10 is in O(n(nm + n2 + n log m)) = O(n2m +

n3).
Computing f in Line 11 may clearly be done with at

most m tests. Lines 13 and 14 are all trivial computations.
Lines 15 and Line 16 are in O(n2 + n log m). The complex-
ity of Lines 11 to 16 is therefore in O(m + n2 + n log m).

Finally, each iteration of the while loop costs at most
O(n2m + n3 + m + n2 + n log m) = O(n2m + n3) time.
We bound the overall time complexity of the algorithm
by multiplying this by the number of iterations of the
while loop, which is the number of elements in the con-
figuration space. It is therefore in O(2nm2(n2m + n3)) =

O(2nn2m3 + 2nn3m2).
From this analysis, we obtain the following result:

Theorem 2. Let L = (T, V, E) be a link stream with |V| =
n and |E| = m, and let ∆ be a duration, then Algorithm 1
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computes the set of all maximal ∆-cliques of L in O(2nnm2)

space and O(2nn2m3 + 2nn3m2) time.

Notice that enumerating the maximal cliques in a graph
G = (V, E) is equivalent to enumerating the maximal ∆-
cliques in L = ([0, 0], V, E′) where (0, u, v) ∈ E′ if and
only if (u, v) ∈ E. The problem of enumerating maximal
∆-cliques in a link stream is therefore at least as difficult
as enumerating maximal cliques in a graph, which has
an exponential time complexity (in particular, there can
be an exponential number of maximal cliques). Therefore
any algorithm for enumerating maximal ∆-cliques in a link
stream is at least exponential in the number of nodes.

Notice also that several optimizations may speed up our
algorithm (without changing its worst-case complexity). In
particular, f and l, computed in Lines 11 and 17, are nec-
essarily in [b, min(e, b + ∆)] and [max(b, e− ∆), e], respec-
tively. One may therefore focus the search on these inter-
vals rather than [b, e]. Likewise, if V(C) is the set of nodes
satisfying condition of Line 7, then the set V(C′) of nodes
satisfying this condition for the ∆-cliques C′ added to S at
Lines 10, 16 and 22 is included in V(C). One may therefore
associate to each element of S a set of candidate nodes to
be considered at Line 6 in place of V \ X, thus drastically
reducing the number of iterations of this loop.

6.3 Experiments

We implemented Algorithm 1 with the optimizations dis-
cussed above in Python (2.7) and provide the source code
at [Viard and Latapy, 2014c]. We illustrate here its prac-
tical relevance by computing maximal ∆-cliques of a link
stream representing real-world contacts between individu-
als, captured with RFID sensors.

6.3.1 Dataset

The trace Thiers-Highschool was collected at a French
high school in 2012, see [Fournet and Barrat, 2014] for full
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details. It induces a link stream of 181 nodes and 45, 047
links, connecting 2, 220 distinct pairs of nodes over a pe-
riod of 729, 500 seconds (approximately 8 days). Each link
(t, u, v) means that the sensor carried by individual u or v
detected the sensor carried by the other individual at time
t, which means in turn that these two individuals were
close enough from each other at time t for the detection
to happen. We call this a contact between individuals u
and v. We also have the information of the class to which
students belong.

6.3.2 Impact of data structure

Notice that Algorithm 1 makes no assumption on the order
in which elements of S are processed, which corresponds
to the way we explore the configuration space. In par-
ticular, if S is a first-in-first-out structure (a queue), the
algorithm performs a BFS of the configuration space; if
it is a last-in-first-out structure (a stack) then it performs
a DFS. The execution time is essentially the same in all
cases. The size of S may vary, but the space complexity of
the algorithm is dominated by the size of M, that does not
change. Still, the data structure impacts the order in which
∆-cliques are found.
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Figure 6.4: Behavior of our algorithm
depending on the way it explores its
configuration space (DFS or BFS). Left:
number of maximal cliques discovered
as a function of the number of iterations
of the main loop of the algorithm.
Right: maximal size of discovered
cliques as a function of the number
of iterations of the main loop of the
algorithm. A clique size is estimated
here by its number of nodes times its
duration (in seconds).

We illustrate this in the practical case where ∆ = 3600

seconds (1 hour), see Figure 6.4. It shows that DFS rapidly
discovers many cliques, and that those cliques are non-
trivial cliques (cliques involving more than 2 nodes or last-
ing a substantial amount of time). In this case, using a
DFS is therefore more interesting than a BFS, as it outputs
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results and exhibits non-trivial ∆-cliques faster. However,
this behavior is dependent on the dataset, and deciding on
the most appropriate exploration strategy in a given case
remains an open question.

6.3.3 Examining ∆-cliques

We computed all maximal ∆-cliques for ∆ = 60 seconds,
∆ = 900 seconds (15 minutes), ∆ = 3, 600 seconds (1 hour),
and ∆ = 10, 800 seconds (3 hours). We handpicked these
values because of the rhythm of school day: on a typi-
cal day, courses usually last roughly two hours, with two
15 minutes breaks during the day, and a longer 1 hour
lunch break. Our Python implementation took an hour on
a standard server 2 to obtain the results. Although many 2. A Debian machine with a 2.9 GHz

CPU and 64 GB of RAM.discovered ∆-cliques are very small, we also found rather
large and long ones. See Table 6.1 for a summary of these
computations.

∆ (s) |R| Max
|X|

Max e− b
(s)

Running
time (s)

Memory
(MB)

60 14 664 5 6 820 150 537

900 8 214 7 17 420 555 4 755

3 600 7 170 7 36 340 1 080 23 186

10 800 7 416 7 59 560 3 100 30 453

Table 6.1: Experimental results for
computing all maximal ∆-cliques on
the Thiers-Highschool dataset. |R|
is the size of the set returned by our
algorithm, (i.e., the number of ∆-cliques
found). For information, storing the
dataset in RAM requires 51 MB.

We present in Figure 6.5, for each value of ∆, the com-
plementary cumulative distributions for the size |X| and
duration e− b of all maximal ∆-cliques (X, [b, e]). By defi-
nition, larger values of ∆ trivially induce larger and longer
∆-cliques. Indeed, if ∆′ > ∆ then every (maximal) ∆-clique
also is a ∆′-clique (not maximal in general). More intu-
itively, small values of ∆ detect local bursts, but are unable
to find periodic behaviors if the period is larger than ∆.
This is because for a larger value ∆′ > ∆, small ∆-cliques
tend to merge together into one larger ∆′-clique. Notice
that when ∆ grows the number of maximal ∆-cliques gen-
erally decreases, but this is not always true, as seen in Ta-
ble 6.1. For an example of how the impact of ∆ on the
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number of maximal ∆-cliques is not trivial, consider the
stream presented in Figure 6.1: it contains four maximal 1-
cliques, six maximal 2-cliques, and four maximal 3-cliques.
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Figure 6.5: Left: complementary cu-
mulative distribution of ∆-clique sizes
for different values of ∆. Right: com-
plementary cumulative distribution of
∆-clique durations for different values
of ∆. The sharp drop at 2 · ∆ is due to
∆-cliques involving only one link.

For every ∆, a sharp drop can be observed in the distri-
bution of the durations (Figure 6.4, right); this corresponds
to the value 2 · ∆. This behaviour is typical of ∆-cliques
involving only two nodes (|X| = 2). When ∆ is larger,
the proportion of such ∆-cliques drops, as there are less
∆-cliques of size 2, which is confirmed in Figure 6.5 (left).
Conversely, the tails of the distributions get longer, as there
are more larger and longer ∆-cliques.

Let us define the surrounding stream of a ∆-clique. For a
maximal ∆-clique (X, [b, e]) and a stream L = (T, V, E), the
surrounding stream is the substream L′ = (T, V, E′), with
E′ = {(t, u, v) ∈ E : t ∈ [b, e], u ∈ V, v ∈ V}. Intuitively,
the surrounding stream contains all the links (t, u, v) hav-
ing t ∈ [b, e]. We show in Figure 6.6 two typical ∆-cliques
found in the contact trace, along with their surrounding
stream. The tool for drawing link streams is available on-
line 3. It gives us an intuitive lookup onto the behaviours 3. http://github.com/TiphaineV/

LinkStreamVizof the nodes involved in the ∆-cliques we found.
The 60-clique exhibited in Figure 6.6 (left) is a clique be-

tween 5 students of different classrooms, the largest size
found for this ∆. The duration of this clique is very
small (~3 minutes), and converting the timestamps to dates
show these students were in contact during the lunch
break (from 12:47 to 12:50). It is likely to be a group of

http://github.com/TiphaineV/LinkStreamViz
http://github.com/TiphaineV/LinkStreamViz
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friends that gathered before the beginning of the afternoon
courses, or a meeting between the classroom’s representa-
tives.

The 60-clique shown in Figure 6.6 (right) is the longest
one found by our algorithm: it lasts for 1080 seconds (18
minutes), and, surprisingly, involves two students from
different classrooms. Considering the short range of the
sensors, it is unlikely that this contact is due to students be-
ing close to each other, but in different rooms. The times-
tamp of the 60-clique, around 10am, likely points to an
in-between courses discussion between two students.
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Figure 6.6: Two 60-cliques
(in red) in their surrounding
stream. Left: The 60-clique
({1144, 889, 660, 854, 690}, 1353325660, 1353325820).
For scale, the time between the two
first occurrences of the link
(1144, 690) corresponds to 20
seconds. Right: The 60-clique
({832, 692}, 1353920500, 1353921480).
For scale, the time between the two
first occurrences of the link (832, 692)
corresponds to 20 seconds.

We further investigate the descriptive role of ∆-cliques
as compared to cliques in the aggregated graph. For a link
stream L = (T, V, E), as defined in Section 6.1, we define
the aggregated graph G(L) = (V , E), with V = V and
E = {(u, v) : ∃(t, u, v) ∈ E}. Intuitively, this is the graph
obtained by putting a link between two nodes u and v if
and only if there is at least one contact between u and v in
the link stream.

The graph G(L) contains 1742 cliques, the largest one
involving 14 nodes.

Remember that in the aggregated graph, two nodes are
linked if there is at least one contact between these nodes,
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regardless of the time and frequency of their interaction.
As such, cliques in G(L) are typically linking students in
the same classroom. Most of the cliques (~70%) involve
students of the same class.

If (X, [b, e]) is a (maximal) ∆-clique of L, then by defini-
tion X is a clique of G(L) (in general not maximal). Con-
sidering ∆-cliques instead sheds light on different patterns.

6.4 Conclusion

We studied in this chapter the notion of ∆-clique in link
streams, and proposed a first algorithm to compute the
maximal such ∆-cliques. We have proved the correctness of
our algorithm, and estimated its computational complex-
ity: it runs in O(2nnm2) space and O(2nn2m3 + 2nn3m2)

time.
We implemented this algorithm, released the source

code online, and ran it on a real-world dataset of contacts
between individuals of hundreds of nodes and thousands
of links. The code runs in less than an hour, and detects
interesting ∆-cliques that shed light on patterns of interac-
tion between students, that cannot be found by studying
the cliques in the aggregated graph.

Our algorithm may be significantly improved. Adapting
the Bron-Kerbosch algorithm [Bron and Kerbosch, 1973]
and some of its variants [Tomita et al., 2006, Koch, 2001,
Cazals and Karande, 2008, Eppstein et al., 2013], the most
widely used algorithms for computing cliques in graphs,
is particularly appealing. Indeed, the configuration
spaces built by these algorithms are trees, which avoids
redundant computations. Notice that recent work
by [Himmel et al., 2016] has already adapted the Bron-
Kerbosch algorithm to link streams, significantly improv-
ing the performance clique computation.

Studying the influence of ∆ on maximal ∆-cliques is an
interesting perspective; given a link stream L and a clique
C = (X, [b, e]) of L, finding the range [∆min, ∆max] such that,
for all ∆ ∈ [∆min, ∆max], C is a maximal ∆-clique of L may
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give significant insight. For instance, if the range is small
then it means that the cliques quickly merge into larger
ones; on the contrary, if the range is large then it means
cliques tend to be stable over time.

We also consider the case of links with duration as a
promising perspective: each link (b, e, u, v) means that u
and v interact from time b to e. In this case there is no
need for a ∆ anymore, and our algorithm may be directly
adapted to compute cliques in duration link streams; how-
ever, the absence of ∆ might simplifies the problem, and
there may be a more straightforward algorithm.
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Conclusion and perspectives

In the first part of this thesis, we explored a new approach
to model interactions over time with link streams. We ex-
tended fundamental notions from graph theory, and we
devised a consistent framework, keeping the existing rela-
tions between notions. Our framework is distributed along
two axes: one defines the notions derived from density,
and another the notions derived from the notion of path.

Density is a fundamental notion in graph theory, that
we extended to link streams. We also extended notions of
neighborhood, degree, as well as clusters of nodes. These
definitions give strong insights to describe and understand
a link stream. Moreover, they lay foundations for defining
more subtle notions defined on complex networks, such
as communities, dense groups, and functions to evaluate
partitions of the stream.

Studying paths is a key concept to anyone studying the
connectivity of a link stream. Moreover, we defined no-
tions of centrality to assess the importance of nodes and
links at a given time in the link stream.

These new concepts raise rich algorithmic questions. We
focused on clique computation, and presented a greedy
algorithm that, given a duration ∆, finds all the maximal
∆-cliques in a link stream. We proved our algorithm’s cor-
rectness, and used it to find maximal ∆-cliques in a real-
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world trace of contacts between individuals.
Some of the notions presented in Chapters 2 to 5 al-

ready exist in the literature; this is the case for in-
stance of paths [Bui-Xuan et al., 2003], or closeness central-
ity [Pan and Saramäki, 2011]. Others, like density, or clus-
ters, are completely new. To the best of our knowledge,
however, it is the first time all these notions are embedded
into one comprehensive and consistent framework.

An interesting perspective is to study the distributions
of the notions we define on real-world link streams; this
may enable to derive general properties of real-world link
streams, and bring a better understanding of those objects.

A key goal of the link stream formalism is to extend both
graph theory and signal processing into a single frame-
work to describe sequences of interactions. In our work,
emphasis has been put on notions from graph theory, but
not from signal processing. An important perspective of
this work is to bring notions from signal processing, and
assess their meaning in link streams.

Fuzzy links, links that have a presence function over
[α, ω] are interesting from a theoretical point of view, yet
few data embed such information. A fuzzy link can ei-
ther be a tuple (b, e, u, v, x), where x ∈ (0, 1] represents the
presence of the link, of even a tuple (b, e, u, v, f ), where f
is a function of time.
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Introduction

Attacks against online services, networks, and information
systems, as well as identity thefts, have annual costs es-
timated in billions of euros. These attacks also have dra-
matic consequences on the reliability of services and user
trust. The techniques developed in the context of these ma-
licious activities are of ever-growing complexity, and fre-
quently rely on subtle malware (viruses or worms). Given
this context, there is a critical need of methods and tools to
fight against attacks and malware diffusion, and to give an
appropriate answer to the major societal questions raised.

In the case of network traffic analysis, the data available
is typically a capture of the traffic at one or many interme-
diary points in the network. A router is set up for capture,
and will keep a record of all packets going through it. One
obtains a stored sequence of packets, each indicating that
two machines u and v interacted through the router at a
time t. Typical captures of traffic also contain information
about the ports and protocol used, the physical addresses,
and so on.

Naturally, analysis of network traffic and more specifi-
cally event detection in such traffic has received a lot of
attention. Studying the structure of interactions may be
done through the lens of a graph, where one places a
link (weighted or not) between two nodes if they have ex-
changed a packet 1; another common approach consists in 1. The weight can then represent the

number, or the frequency of interac-
tions.computing statistics on consecutive time windows; for ex-

ample, the volume of traffic per second, or minute. From
here, it is possible to resort to the powerful set of tools
offered by signal processing. However, choosing an appro-
priate size for the time window is difficult, and the struc-
ture of interactions is completely lost.

As we have seen in Part 1, however, these two ap-
proaches lose part of the information encoded in the in-
teractions, and current approaches to extend them still call
for much improvement. In this part of the thesis, our pri-
mary goal is to study traces of IP traffic as a link stream,
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and to assess the relevance of this model to detect and ex-
plain events in the traffic.

Recently, a substantial amount of research has been fo-
cusing on the design and evaluation of features describing
the traffic, with the goal of providing these features to ma-
chine learning algorithms. The field calls for new features
able to describe both structural and temporal aspects of IP
traffic.

We briefly review the main works on the analysis of IP
traffic in Chapter 8.

Given the nature of the data, the rich body of work de-
veloped in the past years and the important challenges re-
maining, it seems particularly appealing to model IP traf-
fic as link streams. We discuss ways of modelling IP traffic
in Chapter 9. It is worth noticing that to the best of our
knowledge, this is the first work attempting to study IP
traffic directly as a sequence of interactions.

We devise a method to study IP traffic and apply it to a
trace of traffic in Chapter 10.
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Context

IP traffic has been widely studied from many different
fields of research, including graph theory, information the-
ory, signal processing, or, more recently, machine learning.
The goal of this chapter is to describe some well-known
sources of IP traffic, briefly review the main works in IP
traffic analysis, and finally describe in depth the dataset
we use in the remainder of this thesis.

8.1 Sources of data

8.1.1 CAIDA

The main goal of CAIDA [CAI, 2001] is to "investigate
practical and theoretical aspects of the Internet", in order
to provide insights on Internet infrastructures, behaviour,
usage and evolution.

CAIDA provides a variety of datasets, resulting from ac-
tive and passive measurement of the Internet. Available
traffic traces range from 2001 to 2014, and their duration
ranges from a few hours to a few days. While CAIDA pro-
vides unfiltered traffic, some traces focus on specific events
and are curated to keep only the interactions relevant to
this event 1. All traffic is anonymized. 1. For instance, a 3-day trace covers the

onset of the Confincker A infection.
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8.1.2 MAWI

The WIDE (Widely Integrated Distributed Environment)
project [wid, 1984] is one of the two main academic net-
works in Japan (with SciNet). It is responsible for the .jp
top level domain, hosts the M root DNS server, and aims
to integrate academia and industry into a single group.
One of the realizations of this project is a testbed spanning
across Japan.

It is a large network gathering thousands of users and a
diversity of behaviours. Its academic nature also explains
the presence of experimental technologies, such as IPv6 or
DiffServ in their time.

The MAWI group project (Measurement and Analysis
on the WIDE Internet) has been collecting traffic at 6 sam-
ple points since 1999. Everyday, 15 minutes of traffic are
collected, anonymized and made public. Some longer
traces (ranging from 24 hours to 83 hours) have also been
collected as part of a Day in the Life of the Internet project.

8.1.3 USC ANT

The ANT Lab [ANT, 2002] is a research group at the Uni-
versity of Southern California, aiming at understanding
the network topology and traffic, as well as its uses and
misuses.

The traffic data provided by the ANT Lab is of three
kinds: some traces are general traffic, collected at regional
network access links, some traffic traces specifically con-
tain known attacks on the network, and, finally, some traf-
fic traces contain artificial attacks over real background
traffic.

The ANT Lab offers traffic traces since 2002, and is still
actively capturing traffic today. The traffic data contains
packet headers, and IP addresses are anonymized. Dura-
tion of captures range from a few minutes to many years.
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8.1.4 KDD Cup

Since 1999, KDD’99 [kdd, 1999] has been the most widely
used dataset for evaluating anomaly detection methods.
This dataset was prepared by [Stolfo et al., 2000] and built
based on the data captured in DARPA’98 evaluation pro-
gram.

The data contains 7 weeks of traffic, and 2 of them make
up the test data. The remaining 5 weeks, used as training
data, is given with the result (e.g. scalars, or vectors) of
41 features computed on the traffic, and each connection
is labeled as "normal" or "attack". It is important to notice
that the test data is not from the same probability distri-
bution as the training data, and that specific attacks types
are included in the test data but not in the training data,
making the task more realistic.

The major drawback of this dataset is the fact that is is
now 16 years old; however, this claim can be mitigated by
knowing that some experts believe that most novel attacks
are variants of known attacks.

8.2 Analysis of IP traffic

We now present the main works studying IP traffic. We
breakdown the papers in three categories: papers studying
the traffic as a (dynamic) graph, papers resorting to signal
processing to analyze time series extracted from the traffic,
and finally machine learning approaches.

8.2.1 Graph-based

Given that the traffic encodes important structural infor-
mation, it is natural to model it as a graph, where the nodes
are typically IP addresses, or couples constituted of the IP
address and the port number. The general scheme is that
one places a link between two nodes if they have interacted
together at one point during the capture.

[Xu et al., 2014] model the traffic as a bipartite graph
and study the one-mode projection, and apply graph clus-
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tering methods to differentiate end-host (i.e. clients) from
application (i.e. server) behaviour. The core idea is that
one-mode projections reveal relationships between nodes
of the same vertex set.

[Iliofotou et al., 2007] have introduced Traffic Disper-
sion Graphs (TDGs) as a flexible graph model for IP traffic.
A TDG is a graph G = (V, E) where nodes u, v ∈ V are dis-
tinct IP addresses, and there is a link (u, v) ∈ E if the inter-
action between u and v match a given rule. The rule can be
as simple as "there is at least 1 packet between u and v", but
also more complex, "at least 3 TCP packets were exchanged
at port 53". In further work, [Iliofotou et al., 2009a] extend
TDGs to create sequences of TDGs snapshots in an attempt
to study the dynamics of the network.

Work by [Latapy et al., 2013] has applied statistical
anomaly detection methods to internet topology measure-
ments. The methodology is based on the assumption that
for some statistics computed on the data (for instance, the
number of distinct IP addresses present between t and
t + ∆), the distribution is either homogeneous (i.e. there
are no events), heterogeneous (i.e. the notion of event is ir-
relevant), or homogeneous with outliers. Though the data
is very different from IP traffic, the methodology designed
can be applied, which is why we cite it here.

8.2.2 Time-series analysis

A signal provides an coarse view of the traffic, by focusing
on the evolution over time of one of its characteristics.

Entropy is probably the most common metric in this re-
search domain, since it helps quantify how traffic is dis-
tributed in a specific feature space. For instance, entropy
can measure whether the traffic is concentrated on a sin-
gle IP address, or fairly distributed across the IP address-
ing space.The work by [Nychis et al., 2008] has studied
the entropy of a large number of traffic features, and as-
sessed their relevance for the analysis of the traffic. Using
information-theoretic techniques, [Xu et al., 2005] define a
methodology to extract relevant clusters of IP addresses
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and classify the IP addresses according to their behaviour.
In [Abry and Veitch, 1998] that wavelets efficiently

model the long-range dependence 2 present in IP traf- 2. A phenomenon is usually considered
to have long-range dependence if
the dependence decays more slowly
than an exponential decay, typically a
power-like decay.

fic. [Abry et al., 1998] propose an aggregation method
that keeps some properties of the wavelet regardless
of the size of the aggregation window. In later
work, [Abry et al., 2002a] demonstrates the multiscale na-
ture of IP traffic.

[Barford et al., 2002] and [Kim and Reddy, 2008] make
use of wavelet filters to expose the details of both normal
and anomalous traffic, and detect statistical anomalies by
studying correlations in the packet header.

[Heymann et al., 2012] study the impact of removing
points on the skewness of a distribution, and consider that
a value is an outlier if removing it leads to a more symmet-
ric distribution. [Brauckhoff et al., 2012] study the distri-
butions of traffic-related features for anomaly detection.

In order to cluster the IP space, sketches are commonly
used. The core idea is to use a hashing key such as source
IP or destination IP, dividing a set of traffic data into sub-
groups, or sketches. In [Dewaele et al., 2007], the authors
devise an anomaly detection method relying on sketching
and multi-resolution gamma modelling. The traffic is split
into sketches, and then modelled with gamma distribu-
tions. The traffic that is distant from a computed reference
is reported as anomalous. [Li et al., 2006] apply the sub-
space method defined by [Lakhina et al., 2005] to sketches
to precisely identify anomalous IP flows rather than IP ad-
dresses.

Other approaches rely on finer-grained signal processing
techniques [Guralnik and Srivastava, 1999a], or on equilib-
rium properties [Silveira et al., 2010].

8.2.3 Machine-learning

Machine learning is a field exploring the study and con-
struction of algorithms that can learn from and make pre-
dictions on the data. These algorithms are typically clas-
sified in 3 kinds: supervised learning, semi-supervised
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learning and unsupervised learning.
The lack of labelled datasets, and the prohibitive cost of

building one makes unsupervised techniques particularly
appealing. Yet, hunting anomalies "in the dark" is much
more challenging, and semi-supervised are a good trade-
off between cost and feasibility.

Machine learning algorithms rely on features (i.e. met-
rics computed on the considered dataset) to classify ele-
ments of a given dataset. These algorithms work on the
vectorial space induced by the different features, and at-
tempt to find clusters, or deviating values in this vectorial
space.

Notice that the works presented in sections 8.2.1
and 8.2.2 provide metrics that could be considered as fea-
tures of machine learning algorithms.

Typical features extracted from the traffic are the num-
ber of packets, of bytes exchanged, of distinct IP addresses.
Some more subtle features are imported from signal pro-
cessing [Dewaele et al., 2007], or even image pattern recog-
nition [Fontugne and Fukuda, 2011].

Multiplying the number of features is tempting; how-
ever, features can be seen from a geometrical perspectives
as dimensions, and one is then faced with high dimen-
sional data. [Ankerst et al., 1999] points out 4 major chal-
lenges caused by high dimensionality:

1. The number of dimensions make it hard-to-impossible
to visualize, or enumerate the space of features.

2. Notions of neighborhood and distance lose meaning
as the number of dimensions grows. Indeed, the rela-
tive distance between the nearest and farthest point con-
verges to 0 when the number of dimensions increases.

3. Highly dimensional data means that a high number of
features were used. This implies that features might be
correlated to each other, and that clusters might exist in
arbitrarily oriented subspaces.

4. The high number of features enhances a problem known
as "local feature relevance": different clusters might be
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found in different subspaces, reducing the efficiency of
global attribute filtering.

Instead, works have attempted to reduce the number of
dimensions, and use the fact that a cluster of dimension n
is also a cluster in all subspaces of dimension k < n.

For example, work by [Lakhina et al., 2004] is based on
the use of Principal Component Analysis (PCA) to iden-
tify anomalies in large traces of network traffic. The au-
thors represent the traffic as a matrix, where each cell
(i, j) of the matrix contains the volume of traffic ex-
changed between machines i and j over a given time in-
terval. PCA is then used to extract the main compo-
nents from the matrix, and anomalies are detected in
the residual traffic. This seminal paper has drawn at-
tention on the use of PCA in the context of anomaly
detection in IP traffic: its main shortcomings have been
identified, and considerable improvements have been pub-
lished [Kanda et al., 2010, Rubinstein et al., 2009].

The Hough transform is a pattern recognition technique
aiming at finding specific shapes in pictures. In their pa-
per, [Fontugne and Fukuda, 2011] models the traffic as a
2D scatter plot where anomalous traffic appears as "lines",
and then uses the Hough transform to identify the anoma-
lies.

[Brauckhoff et al., 2012] computes the Kullback-Leibler
divergence to several histograms monitoring distinct traffic
features. Then, association rule mining permits the extrac-
tion of the set of traffic features associated to the anomalies
detected in the histograms.

[Zander et al., 2005] propose an unsupervised method
to classify the traffic according to its statistical characteris-
tics, and devise a systematic approach to identify ideal sets
of traffic features to classify IP traffic. [Dainotti et al., 2011,
Nguyen et al., 2012] use similar approaches, again with the
goal of classifying the traffic.

[Bhuyan et al., 2014, Fernandes and Owezarski, 2009]
and [Mazel et al., 2015] devise unsupervised methods
clustering the data to identify anomalies without any pre-
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vious knowledge of the data.
Finally, [Marnerides et al., 2014] published a survey fo-

cused on anomaly detection in IP traffic.

Providing relevant features to machine learning algo-
rithms is a vivid area of research, and one of the applica-
tive goals of the link stream framework is to provide new
features that induce no loss of information.

8.3 The MAWI dataset

In this section, we present in details the MAWI dataset,
which we chose to study in the remainder of this thesis.

8.3.1 Traffic captures

We use the data gathered on June 25, 2013 as part of the
experiment "A Day in the Life of the Internet" (DITL). The
data was collected (using port mirroring on a router) on a
transit link between WIDE and the upstream ISP, see Fig-
ure 8.1. Due to the nature of the capture, the resulting net-
work is intrinsically bipartite: traffic between two WIDE
machines (or between two "Internet" machines) cannot be
seen at this router, and is not captured. Thanks to expert
knowledge from the maintainers of the MAWI repository,
we can precisely know which machines are in and out of
WIDE.

WIDE
(Japan)

Upstream
ISP

(Japan, world)

Point of
capture Storage and

analysis
machine

Figure 8.1: Capture of the traffic be-
tween WIDE and the upstream ISP.
Packets circulate through the point
of capture, and port mirroring copies
them to a dedicated machine where the
capture is stored.

The original data comes in the form of raw tcpdump files
of 15 minutes each, that we merge to obtain a dump file
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containing one hour of traffic, from 00 : 00 to 01 : 00 JST
(Japan Standard Time). For an example of IP traffic, see
Figure 8.3.1. Choosing to keep 1 hour of traffic out of the
72 available in the capture was a trade-off between hav-
ing enough data to obtain significant results, and keeping
computation times to a few hours at most.



Example of IP traffic from the MAWI dataset

07:00:00.915688 IP 197.247.88.98.25197 > 149.173.188.128.6881: Flags [.], seq 1495724409:1495725789, ack 1528736985, win 64522, length 1380

07:00:00.915816 IP 149.53.11.191.1025 > 59.201.100.146.53: 38455

07:00:00.915938 IP 197.247.88.98.25197 > 149.173.188.128.6881: Flags [.], seq 1380:2760, ack 1, win 64522, length 1380

07:00:00.915944 IP 202.117.132.136.16809 > 214.2.100.173.53: 62301

07:00:00.916065 IP 80.58.88.3.53984 > 164.89.55.232.80: Flags [.], ack 2869520795, win 33210, length 0

07:00:00.916313 IP 197.247.88.98.25197 > 149.173.188.128.6881: Flags [.], seq 2760:4140, ack 1, win 64522, length 1380

07:00:00.916438 IP 215.13.122.90 > 214.130.120.245: GREv5 ERROR: unknown-version

07:00:00.916687 IP 197.247.88.98.25197 > 149.173.188.128.6881: Flags [.], seq 4140:5520, ack 1, win 64522, length 1380

07:00:00.917062 IP 197.247.88.98.25197 > 149.173.188.128.6881: Flags [.], seq 5520:6900, ack 1, win 64522, length 1380

07:00:00.917186 IP 214.2.97.241.53 > 192.168.96.4.11831: 31095-

07:00:00.917437 IP 197.247.88.98.25197 > 149.173.188.128.6881: Flags [.], seq 6900:8280, ack 1, win 64522, length 1380

07:00:00.917689 IP 215.37.127.61.80 > 219.217.167.126.46261: Flags [.], seq 1840757696:1840759144, ack 132375684, win 33304, length 1448

07:00:00.917696 IP 215.37.127.61.80 > 219.217.167.126.46261: Flags [.], seq 1448:2896, ack 1, win 33304, length 1448

07:00:00.917702 IP 215.37.127.61.80 > 219.217.167.126.46261: Flags [.], seq 2896:4344, ack 1, win 33304, length 1448

07:00:00.917708 IP 197.247.88.98.25197 > 149.173.188.128.6881: Flags [.], seq 8280:9660, ack 1, win 64522, length 1380

07:00:00.917714 IP 200.79.252.53.3730 > 215.37.113.218.3124: Flags [.], ack 3098387854, win 65535, length 0

07:00:00.917816 IP 215.37.124.41.28344 > 59.32.86.117.6972: UDP, length 3

07:00:00.917937 IP 133.208.154.172.19101 > 59.13.59.106.4095: Flags [.], seq 1638582278:1638583738, ack 1061949299, win 64667, length 1460

07:00:00.917943 IP 215.37.124.41.28344 > 59.32.86.117.6972: UDP, length 1017

Figure 8.3.1: Example of IP traffic; Each line represents a packet. The first field is the time of the capture, with
microsecond precision, followed by the layer 3 protocol . The next fields show the IP addresses involved and the
port number. The ">" shows the direction of the packet, and the rest is network-specific information.
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As stated on the MAWI website, the captures contain a
lot of ICMP traffic. This is due to the USC ANT project,
that probes the entire IPv4 space. Since this traffic has a
clear origin, we discard it by filtering the two IP addresses
associated with the ANT project.

Moreover, the data is bipartite by nature, but a few pack-
ets break this bipartite nature, due to measurement er-
rors 3. We discard them too. 3. They represent less than 0.001% of

the traffic

8.3.2 MAWILab event database

Besides from the MAWI dataset, an initiative called MAW-
ILab [Fontugne et al., 2010a] aims at providing a public
repository of events detected in each MAWI trace.

MAWILab reports events by combining the results of 4
different unsupervised detectors presented in section 8.2 of
this chapter: Hough, Gamma, PCA and Kullback-Leibler.

Since these detectors output scores on different ranges,
further work by [Fontugne et al., 2010b] is made to obtain
comparable scores.

Moreover, [Mazel et al., 2014] designed a taxonomy of
more than a 100 categories revealing the nature of back-
bone traffic anomalies; this taxonomy has been applied to
the MAWILab events.

The MAWILab event database facilitates the work of any-
one wishing to compare results from an anomaly detector
to an established truth. Nevertheless, notice that the events
on MAWILab are not a ground truth on the traffic: some
events in the traffic may have been missed by all detec-
tors (false negatives), and some events reported on MAW-
ILab may not be events at all (false positives).
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MAWI traffic as a link stream

IP traffic, and in particular traffic from the MAWI dataset,
has idiosyncrasies; for instance, it comes as a collection of
IP packets, and is bipartite by nature.

The goal of this chapter is to adapt the link stream for-
malism introduced in part 1 to the modelling of collections
of IP packets from the MAWI dataset.

9.1 Traffic modelling

The data from MAWI comes under the form of a collec-
tion of packets. One can then either study this sequence
directly, or rebuild the IP flows from the original data and
study them. We will now detail those two possibilities.

Studying the sequence of packets is appealing, since it
is the raw form of the data. We remove all port, protocol,
flag and direction information from the data, and extract
from the collection of packets a sequence of triplets (t, u, v)
meaning that machines u and v exchanged a packet at time
t. Keeping more information, such as the ports numbers,
protocol information, etc. is also interesting, yet in our
work we focus on being as generic as possible. We discuss
this in Section 9.3 of this chapter.

However, recall that in order to study instantaneous in-
teractions, one has first to choose a value of ∆ in order to
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transform the sequence of interactions into a link stream,
as we have discussed in Chapter 5.

From a collection of packets D = {(t, u, v)} and a du-
ration ∆, we obtain the link stream L′∆ = (T, V, E∆) =

{(t − ∆
2 , t + ∆

2 , u, v) : ∃(t, u, v) ∈ D}); we then simplify
L′∆ to obtain the link stream L∆, as explained in Chapter 5.
See Figure 9.1 for an illustration.

b

c

a

b

c

a

b

c

a

∆

Data LL'

Figure 9.1: Obtaining a link stream
from a collection of (t, u, v) (left). Given
a ∆, one creates links from t − ∆

2 to
t + ∆

2 (middle). However, the obtained
link stream is not simple, as there might
be overlaps between links, and so it is
made simple (right).

Studying IP flows, one can naturally build a link stream
in which a link (b, e, u, v) means that there is an IP flow
from time b to time e between machines u and v 1. Several

1. Flows are unidirectional, so any TCP
connection will create at least 2 flows.

methods and tools are used to build flows from IP packets,
NetFlow and sFlow being the most common ones.

Besides its relevance, studying IP flows instead of pack-
ets is particularly interesting when considering high-speed
traffic, since it significantly reduces the size of the data 2. 2. From 88, 266, 535 packets (600MB,

gzipped) to 2, 504, 106 flows (47MB,
gzipped) for the 1 hour traffic trace we
consider.

However, most flows contain less than 2 packets 3. Nev-

3. Flows with less than two packets
account for 96% of flows in the dataset
we use.

ertheless, many patterns of interest are constituted of 1 or 2
packet flows: a scan machine typically sends one packet to
all the IP addresses in a subnetwork, and waits for replies
from active machines in this subnetwork. In this case, ex-
changes between that machine and any other in the net-
work are flows of 1 (if the machine does not reply) or 2
packets (if the machine replies).

A first analysis of the duration link stream induced by IP
flows showed us that it was preferable to resort to packet
analysis with a ∆. Indeed, in a duration link stream, all
links (b, e, u, v) with b = e, i.e. flows consisting of one
packet, account for nothing in the density, degree, cluster-
ing and so on.
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As we discussed in part 1, Chapter 1, choosing an appro-
priate value for ∆ is an open problem [Abry et al., 2002a].
Adequately identifying relevant values for ∆ is a direction
of work that [Viard and Latapy, 2014a] has only superfi-
cially explored, and that is available in Appendix B of this
thesis; in this exploratory work, we fix ∆ = 2 seconds.

9.2 Bipartite link streams

As explained in section 8.3 of this chapter, the data col-
lected on a single router is intrinsically bipartite (i.e. nodes
can be separated into two disjoint sets > and ⊥ such that
there is no link in E between two nodes of > or two nodes
of ⊥). This bipartite nature has huge implications on the
underlying structure of the interactions. Indeed, some
links cannot exist, there are no triangles, etc. We there-
fore extend some of the notions defined in Part 1 of this
thesis to take this bipartite nature into account.

A bipartite graph is a tuple G = (>,⊥, E), with > and
⊥ sets of nodes such that > ∩⊥ = ∅, and E ⊆ >×⊥. In
other words, links can only exist between one node of >
and one node of ⊥.

The density is the probability when one takes two ran-
dom nodes u ∈ > and v ∈ ⊥ that there is a link (u, v) in E:
δ(G) = |E|

|>|·|⊥| .
The clustering coefficient of a node v ∈ ⊥ is the prob-

ability, when one takes three nodes x ∈ >, y ∈ ⊥ and
z ∈ > such that (v, x), (x, y) and (y, z) are in E, that (v, z)
is in E. This probability is nothing but the density of the
graph induced by the neighbors of v and the neighbors of
these neighbors, i.e. the density of the graph induced by
N(v) ∪ N(N(v) \ {v}). See Figure 9.2. Notice that cc(v) is
undefined if v has degree 1 or if N(N(v)) = ∅.

v

Figure 9.2: Illustration of the clustering
coefficient in bipartite graphs. The
clustering coefficient of node v is the
density of the graph induced by the
neighbors of v and the neighbors of
these neighbors, deprived of v. It is
the density of the graph in solid lines
in this figure (links between v and its
neighbors are represented in dashed
lines).

The specific structure of bipartite graphs calls for new
metrics that have no counterpart in non-bipartite graphs.
Work by [Latapy et al., 2008a] surveys key metrics for bi-
partite graphs. We adapt two of them to link streams: pro-
jection and redundancy.
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In order to benefit from the large number of works on
non-bipartite graphs, the projection of a bipartite graph is
defined as follows: given a bipartite graph G = (>,⊥, E),
its ⊥-projection 4 is the graph G⊥ = (⊥, E⊥) with E⊥ = 4. The >-projection can be defined

symmetrically.{(u, v) : ∃x ∈ >, (u, x) ∈ E, (x, v) ∈ E}. There is a link
between two nodes of ⊥ in the ⊥-projection if these two
nodes have at least one neighbor in common in >. See
Figure 9.3. Notice that each node in > induces a clique
among its neighbors in the ⊥-projection.

21 3 4

B C D E FA

Figure 9.3: > and ⊥ projections
of a bipartite graph. Reproduced
from [Latapy et al., 2008a].

In the bipartite projection, there is a link between two
nodes u and v if they have a neighbor in common. Notice
though that even if u and v have more than one neighbor
in common, there is still only one link in the projection
between u and v; it is a loss of information induced by the
projection.

In order to avoid this loss, one could resort to weighted
links (i.e. link (u, v) has weight w if u and v have w neigh-
bors in common in the bipartite graph); other relevant
ways of setting weights can be devised, yet one then trans-
forms the problem of analyzing the bipartite structure into
analyzing a weighted one, which remains difficult in spite
of recent works.

Instead, the redundancy coefficient rc(v) quantifies the ex-
tent to which a node v is the only node responsible for
connecting its neighbors in the projection. In other words,
rc(v) measures the extent at which removing v from the
network would affect the projection. It is defined as the
probability, when one takes two neighbors u and w of a
node v, that u and w are both linked to a node v′ 6= v.
One can also think of it as the density of the neighborhood
of v in the projected graph induced by the bipartite graph
deprived of v. See example in Figure 9.4. A B

C D

A B

C D

A B C D

21

Projection without

node "2"

Projection without

node "1"

Figure 9.4: Redundancy of a node in the
bipartite graph. Node 1 is connected to
A, B, C and D, hence removing node
2 does not affect the projection. Node
2 has a redundancy of 1. However,
removing node 1 disconnects A from
the other nodes; 1 has a redundancy of
3
4 .

The goal of this section is to extend these notions to link
streams.

A bipartite link stream is a tuple L = (T,>,⊥, E), with
T = [α, ω] a time interval, > and ⊥ sets of nodes such that
> ∩⊥ = ∅, and E ⊆ T × T ×>×⊥. In other words, for
all (b, e, u, v) ∈ E, either u ∈ > and v ∈ ⊥, or the converse.
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9.2.1 Density and clustering coefficient

The density is the probability, when one takes two random
nodes u ∈ > and v ∈ ⊥ and a random time t ∈ T, that
there exists a link between u and v at time t in E:

δ(L) =
∑(b,e,u,v)∈E e− b
|>| · |⊥| · (ω− α)

(9.1)

In a bipartite link stream, we define the clustering coef-
ficient of a node v ∈ > as the probability, when one takes
three nodes x ∈ ⊥, y ∈ >, z ∈ ⊥ and a time t ∈ T at
random such that there are links (t, v, x), (t, x, y), (t, y, z),
that there is also a link between z and v at time t. This is
the density of the cluster of nodes defined by the neigh-
bors of v and the neighbors of these neighbors. Formally,
it is the density of the cluster of nodes defined as fol-
lows: C(v) = {(u, t) : ∃(b, e, u, v) ∈ E, t ∈ [b, e]} ∪ {(u, t) :
{(b, e, v, x), (b′, e′, u, x)} ⊆ E, t ∈ [b′, e′] ∩ [b, e]}, i.e. the
cluster of nodes containing all neighbors of v and all neigh-
bors of the neighbors of v. See Figure 9.5 for an illustration.

cc(v) = δ(C(v)) (9.2)

a

b

u

x

v Figure 9.5: Clustering coefficient in
link streams. Consider node v; the
bipartite node cluster induced by
its neighborhood (a and b) and the
neighbors of those (u and x) is drawn
in blue. The clustering coefficient of v is
the density of this cluster.

9.2.2 Projection

Given a bipartite link stream L = (T,>,⊥, E), we define
the ⊥-projection of L as L⊥ = (T,⊥, E⊥), with E⊥ =

{(b, e, u, v) : ∃x ∈ >, ∃(b′, e′, u, x), (b′′, e′′, x, v) ∈ E, [b′, e′] ∩
[b′′, e′′] = [b, e], b > e}. In other words, there is link be-
tween u and v in E⊥ if and only if these two nodes have
a neighbor in common over the same period of time in >.
For an example, see Figure 9.6.
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u

v

x

c

b

a

u

a

v

b

x

c

Figure 9.6: Example of a bipartite
stream where > = {a, b, c} and
⊥ = {u, v, x} (left). On the right,
the >-projection of L (top) and its ⊥-
projection (bottom). There is a link
between u and x in the ⊥-projection
since the two nodes both interact with
node a.

9.2.3 Redundancy

In link streams, the intuition is the same as for graphs; one
wants to quantify the impact of the removal of a node v at
a time t.

The redundancy of a node v is the probability that, for
a random time t and two neighbors u and w of v at time
t, that u and w have a neighbor v′ 6= v at time t. The
redundancy of a node v at time t, rct(v), is nothing but
the redundancy of node v in the graph Gt. Notice that,
for the same reasons as the ones exposed in Section 3.2 of
Chapter 3, this is not equivalent to the average value of
rct(v) over t.

Just like for graphs, the notion of redundancy of a node
is easier to express in terms of density in the bipartite pro-
jection. Given a bipartite stream L = (T,>⊥, E) and a
node v ∈ > 5, let us consider the sub stream L(v) of L, 5. The definition is symmetrical for a

node v ∈ ⊥.defined as L(v) = (T,> \ {v},⊥, {(b, e, x, y) ∈ E : x 6=
v, y 6= v}). In others words, it is the sub stream induced
by L deprived of node v. Now consider the ⊥-projection
of L(v), L⊥(v). The redundancy of v is the density of the
sub stream induced by N(v) in L⊥(v). See Figure 9.7 for
an example.

Finally, we define the redundancy of the stream as the
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node v

node u

a

b

c

a

b

c

c

a

b

v

u

Projection without

Projection without Figure 9.7: Consider a bipartite link
stream L such that > = {u, v} and
⊥ = {a, b, c}. The redundancy of node
u is close to maximal: indeed, removing
u from L does not affect much the
connectivity between nodes in the ⊥-
projection of L, since all the nodes in ⊥
have v in common. However, v has a
lower redundancy: indeed, v is the only
common neighbor of a and c, as well as
b and c.

average value for all nodes:

rc(L) = ∑v∈V rc(v)
|V| (9.3)

9.3 Conclusion

In this chapter, we have discussed the possible ways of
modelling IP traffic as a link stream, as well as modelling
choices we have made in this thesis. IP traffic typically
comes as a sequence of (t, u, v), and we need to resort to
a parameter ∆ in order to use the link stream formalism
defined in Part 1 of this manuscript. In the context of this
exploratory work, we chose ∆ = 2 seconds.

The IP traffic in the MAWI dataset is intrinsically bipar-
tite, and we adapted our work on link streams to bipartite
link streams; we also have introduced new notions that
have no counterpart in non-bipartite streams.

Notice that we decided to take the bipartite nature of
single-router traffic captures into account, but not link di-
rection, or weights on links, or protocol information, and
so on. This is because in the context of link streams, undi-
rected (or unweighted) links retain meaning on the original
data, whilst the bipartite nature of traffic has so strong an
impact on the underlying structure of the stream that non-
bipartite notions would become irrelevant. For example,
not taking this bipartite nature into account means that
there are no dense groups, since not all links between two
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nodes can exist, or that the clustering coefficient is always
0.

Finally, discerning in metrics what is of interest in the
data versus what is an artifact of the bipartite structure
makes focusing on the features of the traffic more chal-
lenging.
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10
Analysis of IP traffic

Events happen at very different temporal and structural
scales: denial-of-service attacks or network scans typically
involve large number of machines on short periods of time,
whereas Advanced Persistent Threats (APTs) are more sub-
tle and last through a significant period of time. Moreover,
it is expectable that large-scale events will have an impact
on all kinds of metrics, whereas more subtle events will
call for more precise statistics to be revealed. Large-scale
events are typically many orders of magnitude over the
expected value for a statistic, and they make smaller-scale
events, such as data exfiltrations, or subtle APTs, imper-
ceptible.

The goal of this chapter is to present a methodology to
apply the link stream formalism to the study of IP traffic,
and to apply it to real traffic from the MAWI dataset, with
the aim of shedding light on events with simple statistics.

10.1 Our approach

In this section, we present the methodology we designed
to study IP traffic, modelled as a link stream. Our primary
goal is to assess the relevance of the link stream formalism
for modelling IP traffic.

Our goal is to detect and identify events in IP traffic.
We first define different types of events, then proceed to
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present a method for identifying events in IP traffic.

10.1.1 Event characterization

We define three nested types of events, from the more gen-
eral to the more specific:

• A detected event is simply an outlier in a distribution,
or an alarm from an anomaly detector. For example, a
period of time where the number of packets is signifi-
cantly higher than the usual value is a detected event;

• An identified event is a detected event for which we are
able to identify (at least) one cause in the data. For exam-
ple, if the detected event is caused by only two machines
exchanging a lot of packets, it is an identified event;

• An explained event is one for which we found an ex-
planation, eventually outside of the data. For example,
two users transferring a large file explains the rise in the
number of packets, and is an explained event.

This taxonomy of events is of course not the only possi-
ble one; signature-based event matching 1, where one tries 1. Which requires expert knowledge

and frequent updating to avoid concept
drift [Gama et al., 2014].to detect all events matching a pattern, is a natural coun-

terpart to our approach.
Instead of targeting specific events with expert knowl-

edge, we target here any kind of event, where event is then
simply a label for statistical significance. In the remainder
of this work, an event is a statistically abnormal value in a
set of data points.

10.1.2 Event identification through manual inspection

In this exploratory work, we rely on manual inspection to
find abnormal values. More precisely, following the work
of [Latapy et al., 2013], we will consider three different sit-
uations:

1. The observed values are homogeneous, as in Fig-
ure 10.1, meaning they are all similar to the average
value, and that no significant deviation from this value
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is ever seen. In this situation, the considered property
is not relevant for event detection. Bell-shaped distribu-
tions, visible in lin-lin scale, and exponential decreases
(visible as straight lines in lin-log scale), are indicators
of homogeneity.

2. The observed values are heterogeneous, as in Fig-
ure 10.2, meaning that the notions of normality or event
are irrelevant. In this situation, the considered property
is not relevant for event detection. Heterogeneity is in-
dicated by polynomial decreases, visible as straight line
in log-log scale.

3. The observed values are homogeneous with outliers,
as in Figure 10.3, meaning that most values have a ho-
mogeneous nature but a few significantly deviate from
them. In this case, the property may be used for event
detection: statistically significant values are outliers indi-
cating events, while most values correspond to a normal
behaviour.

In the following, we use the term outlier as a synonym
for statistical outlier, i.e. a data point that is abnormal in an
otherwise homogeneous distribution. We use instead the
less specific term of event for a data point that is clearly
separated from the rest of the distribution, but that is not
per se a statistical outlier 2. Notice however that it may be 2. Thus, outliers are events, but not the

opposite.possible to find events in heterogeneous distributions of
values 3, even if they do not have as much significance as 3. For example, values that are sepa-

rated by one or many orders of magni-
tude from the rest of the distribution.statistical outliers in an otherwise homogeneous distribu-

tion. Deciding which points of a distribution are outliers
is an active area of research, and we discuss in conclusion
some methods for automatically finding outliers.

10.1.3 Hierarchy of features for the analysis of IP traffic

One challenge of IP traffic is its volume, typically dozens of
thousands of packets per second of traffic. This volume is
a barrier blocking us from focusing on statistics with high
computational complexity.
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Figure 10.1: Typical homogeneous
distribution. First row (left to right):
the distribution in lin-lin, lin-log and
log-log scales. Second row: the inverse
cumulative of the distribution in the
same scales. In such situations, all
values are similar to the average value,
and the considered property is not
relevant for event detection.

Figure 10.2: Typical heterogeneous
distribution. First row (left to right):
the distribution in lin-lin, lin-log and
log-log scales. Second row: the inverse
cumulative of the distribution in the
same scales. In such situations, the
considered property is not relevant for
event detection.

Figure 10.3: Typical homogeneous
distribution with outliers. First row (left
to right): the distribution in lin-lin, lin-
log and log-log scales. Second row: the
inverse cumulative of the distribution
in the same scales. In such situations,
the property may be used for event
detection: statistically significant values
are outliers indicating events, while
most values correspond to a normal
behaviour.
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However, events do not involve all nodes all the time:
one can use easily computable features to identify groups
of nodes and periods of time that are of interest, and then
study the substreams induced by these groups of nodes
and periods of time. Since these substreams are smaller
than the stream, one may then study features that are more
computationally complex but that more descriptive power.

We propose a hierarchy of features, from the simplest
ones to the most complex. The core idea is that the more
computationally expensive a statistic is, the less data it
is possible to handle with it. We use features with low
computational complexity to detect and remove large scale
events as well as identify relevant groups of nodes and pe-
riods of time in the data, in order to then be able to com-
pute more costly features. The hierarchy we use is the
following:

0 Preliminary features: number of packets per second,
number of IP addresses per second;

1. Basic features on the stream: number of links per sec-
ond, number of nodes per second, degrees;

2. Bipartite features and dense groups: clustering coeffi-
cient, redundancy coefficient, bipartite projection;

3. Complex features: cliques.

The preliminary features do not require transforming
the data into a link stream, whilst the others do. For a se-
quence of m packets, creating the link stream can be done
in O(m) time, but not in a single pass on the data. Notice
that this hierarchy is not a computational complexity hier-
archy; while it is true that computational complexity glob-
ally increases as one goes higher in the hierarchy, there is
no equivalence between this hierarchy and computational
complexity classes.

10.1.4 Analysis of IP traffic process

We proceed as follows: we start with the original dataset
D0, and we set a counter i to 0, corresponding to the classes
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of our hierarchy. We initialize two sets: detected = ∅ will
contain detected events, and identified = ∅ will contained
identified events.

We compute the features of level i on the original dataset
D0.

We detect events on the distributions of these features.
All events detected are added to the set detected.

For all events in detected, we manually search for the
cause of the event in the data. If we find such cause, we
remove the event from detected, and place it in the set iden-
tified. If not, we leave the event in detected; our hope is that
another feature will make it possible to identify it.

For all events in identified, we carefully remove the part
of the data involved in the identified event, and we remove
the event from identified. At the end of this step, the set
identified is empty, but not the set detected.

When done with removing all identified events, we ob-
tain a new dataset Di+1 ⊆ Di. We repeat this process with
features of the next class in our hierarchy. This process is
summarized in Figure 10.4.

Notice that the set detected is never explicitly emptied.
The rationale for this is that some events may be detectable
with basic features, but those basic features might not be
enough to identify them. We keep all detected events and
expect that more complex features will bring identification.

Removing parts of the stream puts one at risk of remov-
ing events that are yet to be detected. No matter how pre-
cise the link stream statistics allow us to be, we will prob-
ably miss some events. However, the metrics we propose
allow to remove a node at a single instant t if necessary,
making it possible to remove parts of the data in a precise
manner, thus this risk is reduced.

Moreover, keep in mind that our aim is not to explain
all events in the traffic, but instead shed light on some
of them happening at different scales. Even though we
are at risk of removing a smaller-scale event happening at
the same times and involving the same nodes as a large
scale event, removing identified events allows us to notice
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Compute features

of level i

Try to identify

all detected

events

identified

Remove 

Initial

Detect events

data (i=0)

failure Leave in detected

Store in detected

i=i+1

success

Store as identified

Figure 10.4: Our process for traffic
analysis. We start with the original data
and i = 0. At each step, we compute
features of level i on the data. Then,
we manually inspect the distributions
of these features to detect events, and
add them to a set of detected events.
We then make attempts to identify
all detected events. If an event can
be identified, it is removed from the
detected events, and is added as an
identified event instead. We remove,
as carefully as possible, the cause for
all identified events. Finally, we set
i = i + 1 and iterate the process with
the data cleaned of its identified events.

smaller-scale events.

10.2 Results

We apply the methodology defined in section 10.1 to the
data described in section 8.3 of Chapter 8. Our starting
point is a collection of D = ((t, u, v)), each element of
the sequence meaning that IP addresses u and v have ex-
changed (at least) a packet at time t in the MAWI dataset.

10.2.1 Preliminary features

We first start by identifying events that do not require com-
puting the link stream; we study the number of packets
per second, and the number of distinct IP addresses per
second.

Let us start with the number of packets per second. It
is, for each second s = 0..3599, the number of (t, u, v) in
D at s, i.e. |{(t, u, v) ∈ D, s ≤ t < s + 1}|. The number of
packets oscillates around a mean value of 5 · 104 packets
per second, with some sharp peaks (where there are nearly
140, 000 packets). Figure 10.5 shows the distributions of
these values in all scales.
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Figure 10.5: Top: Distributions of the
values for the number of packets per
second. Bottom: Inverse cumulative
distributions.
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Manual inspection of the distributions shows that we are
in the case of a homogeneous distribution with outliers.
We consider all points above 100, 000 as outliers, and we
end up with 11 outliers; 9 of them are concentrated in the
time interval A = [133, 149] and 2 in the time interval B =

[1530, 1531]: there are two detected events, that we denote A
and B. We now attempt to identify these events.

In order to identify the event A, we consider the number
of packets exchanged for each pair of IP addresses, i.e. for
each (u, v), |{(t, u, v) ∈ D, 133 ≤ t ≤ 149}|. Figure 10.6
(left) shows the inverse cumulative distribution of these
values for all pairs active over [133, 149]. Clearly, one pair,
that we denote by (IPA1 , IPA2), exchanges a lot more pack-
ets than all the other pairs over this interval 4. We identify 4. This one pair exchanges 502, 320

packets, and the second highest ranking
pair exchanges 15, 420 packets.this pair as responsible for the detected event. Notice that

this event alone accounts for 0.5% of the total number of
packets in the data.
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Figure 10.6: Inverse cumulative distri-
butions of the values for the number
of packets exchanged per pair of IP
addresses for the 2 detected events
A = [133, 149] (left) and B = [1530, 1531]
(right). In the case of event A, one point
stands out from the distribution, which
helps us identify event A. However, in
the case of event B, no such point exists,
and we keep B as detected.

We repeat the process with the remaining outliers, con-
centrated in the interval B = [1530, 1531]. However, as
Figure 10.6 (right) shows, no pair of IP addresses stands
out, and the increases in the number of packets is due to
another cause. We keep this event as detected, but not as
identified, and wait for another feature to identify it.

We proceed by computing the number of distinct IP ad-
dresses per second, i.e. for all s = 0..3599, |{u : ∃(t, u, v) ∈
D, s ≤ t < s + 1}|. The number of IP addresses per second
remains stable around 3, 000 IP addresses at each second,
with some sharp peaks standing out. There is also a pat-
tern of interest between seconds 1500 and 2000, where the
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mean value changes for a short period of time.
The distributions in all scales for the values of IP ad-

dresses per second are displayed in Figure 10.7. Just like
for the number of packets per second, we are faced with
a homogeneous distribution with outliers. In order to
not risk overestimating the number of outliers, we set the
threshold to identify outliers to 20, 000, leaving 6 outliers.

Figure 10.7: Distributions and inverse
cumulative distributions for the val-
ues of the number of IP addresses
per second. The dark vertical line at
x = 20, 000 is the threshold set for
determining outliers.

The 6 outliers are concentrated at 5 different periods
of time: 2 of them over interval C = [1529, 1531], one at
second D = [1341, 1341], one at second E = [1610, 1610],
one at second F = [1908, 1908] and one at second G =

[2737, 2737]. Since the considered feature is the number of
IP addresses per second, we turn to the number of packets
exchanged for each IP address in order to seek identifi-
cation for these detected events, i.e. for all u, |{(t, u, v) :
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∃(t, u, v) ∈ D}|, and show the distributions of these values
for each detected event in Figure 10.8.
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Figure 10.8: Inverse cumulative distri-
butions of the values for the number
of packets exchanged per IP address
for the 5 detected events C (top left),D
(top right),E (middle left),F (middle
right) and G (bottom). In the case
of events C, D, F and G, one point is
clearly standing out from the rest of the
distribution, and so we use this point to
identify the event. In the case of event
E, however, no value stands out, and so
we keep E as a detected event.

The distributions for event C in Figure 10.8 is heteroge-
neous but shows a clear value standing out from the oth-
ers; one IP address, that we denote IPC, exchanges many
packets with a substantial number of IP addresses over in-
terval [1529, 1531]; we label C as an identified event. It is
likely that the detected event B, happening at the same pe-
riod of time and involving the same IP addresses, refers to
the same event. Hence, we consider that event B has been
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identified too.
Similarly, events D, F and G can be identified, since in all

cases, there is a single value an order of magnitude supe-
rior to all values in the distributions shown in Figure 10.8
for these events.

However, this is not the case for event E. Instead, as
Figure 10.8 shows, the values are distributed in a hetero-
geneous way with no point standing out. We leave E as a
detected event.

At the end of this step, we have detected 7 events –
A, B, C, D, E, F, G –, and have been able to identify 6 of
them – A, B, C, D, F, G. We now explain in details how we
remove identified events from the data. For event A, the
identified cause was a large volume of packets between
a pair of IP addresses, IPA1 and IPA2 . We remove from
the data all (t, u, v) such that t ∈ [133, 149], u = IPA1 and
v = IPA2 .

We plot the number of packets per second before (top)
and after (bottom) removal of the identified event A in Fig-
ure 10.9.

We show in Figure 10.10 the number of IP addresses per
second over time before (top) and after (bottom) removal
of the identified events C, D, F, G. Notice that the peak at
second 2737, associated to event G, did not disappear but
was instead reduced; however this feature will not tell us
more about the cause of this peak.

Notice that we did not remove event E, which was de-
tected but not identified.

After having removed these 6 events, that account for
1% of the traffic, we obtain a new dataset D1, and proceed
with more complex features.
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Figure 10.9: Top: Number of packets
per second as a function of time.
Bottom: Number of packets per second
as a function of time without packets
involved in event A = [133, 149]. The
peak has decreased under 100, 000
packets per second.
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Figure 10.10: Top: Number of IP ad-
dresses per second as a function of
time. Bottom: Number of IP addresses
per second as a function of time af-
ter removal of the 4 explained events
C, D, F and G. Event C (over interval
[1529, 1531], corresponds to an event
that had previously been detected but
not identified. Event E (at second 1610),
that has not been identified, is not
removed.
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10.2.2 Basic features on the link stream

Given the dataset D1 obtained in the last section, we trans-
form it into a link stream using the procedure described in
section 9.1 of Chapter 9. As stated before, we chose ∆ = 2
seconds.

We denote by L1 = (T1,>1,⊥1, E1) the obtained link
stream, with T1 = [0, 3600]. By convention, >1 is the set
of IP addresses in WIDE, and ⊥1 is the set of IP addresses
not in WIDE.

The number of links per second and nodes per second in
the link stream are very similar to the number of packets
per second and the number of IP addresses per second,
and their analysis leads to identifying the same events. For
these reasons, we do not display them here.

In the number of IP addresses per second displayed in
Figure 10.10 (bottom), a motif of interest is visible over
H = [1500, 2000].

Our intuition is that this short regime change will be no-
ticeable when looking at the degrees in the link stream 5. 5. Remember that the degree of a node

u in L is its number of neighbors, each
neighbor weighted by the duration of
its interactions with u.

In order to compute the degrees, we transform the stream
into a sequence±1 indicating the appearance or disappear-
ance of a link: in other words, each link (b, e, u, v) is trans-
formed into (b, 1, u, v), (e,−1, u, v), a 1 in the second field
indicating that the link started, and a −1 indicating that
the link stopped. By sorting the elements of this sequence
by u, and by increasing time for each u, it is possible to
obtain the degree profile 6 of each node in the stream in 6. The degree profile of a node u is

the function that associates to any t the
degree of u at time t, i.e. p(u) : t 7→
dt(u)

a single pass of this file without storing anything else in
memory than the degree of a node at time t, dt(u). Notice
that the degree of u, d(u), is nothing but the average value
of its degree profile p(u).

Let us first look at the degree distribution of L, presented
in Figure 10.11. It it the probability, for all k, when one
chooses a node u at random and a time t at random, that
node u has degree k at time t. In complex networks, degree
distributions have a strong descriptive importance, as they
carry a lot of information about the network. It is the same
in link streams. Notice some peaks around powers of 2,
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that are typical of IP traffic.
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Figure 10.11: Degree distribution of the
link stream in log-log scale (left), and
inverse cumulative degree distribution
in the link stream in log-log scale
(right). The degree is the is the number
of neighbors of a node u chosen at
random at a time t chosen at random.
Some small peaks can be observed in
the distribution at powers of 2, a typical
feature of IP traffic.

However, the degree distribution itself contains too
much information to pinpoint the regime change we are
looking for. We manually inspect the degree profiles of
nodes that reach a high degree, i.e. for each node we
keep its maximum degree in time 7, dmax(u), and rank the 7. i.e. for each node u, dmax(u) =

max(dt(u)).nodes by decreasing order of maximal degree in time. We
search, in the first nodes of this ranking, for nodes active
over H = [1500, 2000] that might explain the motif found
through manual inspection.

We denote by IPH1 and IPH2 the nodes that rank re-
spectively 21st and 23rd and which seem good fits, since
they are active in the stream only during the interval
H = [1500, 2000], as their degree profiles show in Fig-
ure 10.12. Moreover, when they are active, these nodes
have approximately 600 and 700 neighbors, respectively,
which approximately corresponds to the amplitude of the
change in the number of IP addresses per second, see Fig-
ure 10.13 (top).

We consider event H as identified, and we remove IPH1

(Figure 10.13, middle), then IPH2 (Figure 10.13, bottom)
from the data over interval [1500, 2000]. The pattern of in-
terest was solely caused by these two IP addresses: indeed,
it has completely disappeared in Figure 10.13 (bottom).

10.2.3 Comparison with MAWILab

We have searched the MAWILab anomaly database for the
events we have shed light onto, to validate our approach.
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Figure 10.12: Degree profiles of the
21st (left) and of the 23rd (right) nodes
of highest maximal degree (right). On
both plots, a point y at time t means
that the considered node has active
links with y neighbors at time t. For
example, the 21st node of highest
maximal degree has degree 0 (i.e. does
not interact with any other IP address)
at all times except in [1716, 1834], where
it has between 700 and 800 active
neighbors in the same second.

Surprisingly, the event A, identified through the num-
ber of packets per second over [133, 149] is not present in
MAWILab. One possible explanation is that this event is
not a anomaly, and is constituted of legitimate traffic.

Concerning the events C, D, F, G that we have pin-
pointed in the number of IP addresses per second, they
are all present in MAWILab, and are associated with time
intervals and port numbers.

The event H, identified using the degree profiles of
nodes of highest maximum degree, was caused by two IP
addresses IPH1 and IPH2 , that are both present in MAW-
ILab, and associated with times [900, 1800] and [1576, 1622],
respectively.

An interesting point is that MAWILab reports some of
these events as lasting over 900 seconds 8, while we are 8. Which does not mean that the

anomaly lasted 15 minutes, but rather
that the detectors were not able to
identify a more precise interval.

able to narrow these events to more precise intervals. For
instance, the IP IPH2 is flagged as anomalous from time
1576 to time 1622 in MAWILab, but the degree profile of
this node, in Figure 10.12, left, shows that this IP address
has no interactions before second 1612.

10.3 Conclusion

In this chapter, we have devised a method for studying IP
traffic as a link stream, and have applied it to a trace of
traffic from the MAWI dataset.

A core idea of our approach is that with enough infor-
mation, events can be removed from the data and allow
to detect smaller events. The method we devised works
by identifying statistical outliers, and labelling them as
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Figure 10.13:
Top: Inset of Figure 10.10 (bottom)
between times 1500 and 2000.
Middle: Number of IP addresses per
second after removal of the 21st node of
highest maximal degree.
Bottom: Number of IP addresses per
second after removal of the 21st and
23rd nodes of highest maximal degrees.
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detected events; manual inspection allows to identify the
cause of certain events, making it possible to remove them
from the data in a careful and precise manner.

We have illustrated our approach by shedding light on
events in 1 hour of traffic taken from the MAWI dataset.
We model the traffic as a link stream; since the traffic is a
collection of (instantaneous) packets, we chose a value of
∆ = 2 seconds to analyze the traffic. Overall, we detect 7
events and identify 6 of them, that we are able to remove
from the traffic. We summarize our results in Figure 10.14.

D
1

3.2.1

D

Initial data

D
2

3.2.2
1 detected

1 identified

0.1% of traffic

7 detected

6 identified

1.3% of traffic

Figure 10.14: Summary of the events
found in the different sections. In
section 10.2.1, we detected 7 events
(2 with the number of packets per
second, and 5 with the number of IP
addresses per second), and identified
6; in section 10.2.2, we detected 1 event
and identified it. Altogether, these
events represent 1.4% of the traffic.

This first work is exploratory, yet it shows the relevance
of analyzing IP traffic with link streams, which was its pri-
mary goal. We have only studied a few of the features
defined in Section 10.1.3; our goal was to validate our ap-
proach, yet the other features described in Section 10.1.3
are worthy of interest. We discuss now ways to apply these
more subtle features.

The degree profiles, as the ones showed in Figure 10.12,
carry a lot of information about the behaviour of individ-
ual nodes. For example, most profiles show nodes that are
active over short periods of time, and have very few neigh-
bors; others have few neighbors consistently through time;
overall, the degree profiles are diverse.

Classifying these degree profiles can help understand
the role played by nodes in the traffic. We identify two
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ways of doing so:

1. One could use expert knowledge and design a taxon-
omy with which profiles can be matched. A straight-
forward taxonomy is to separate nodes that have many
neighbors versus nodes that have few neighbors, or
nodes that are active over long periods of time versus
nodes that are active over short periods of time 9.

9. The thresholds to determine what
"long", "short", "few" and "many" mean
in the context of each dataset can be
found be inspecting the distribution of
these values.

2. One could use statistical models, and fit the distribu-
tions of values of the degree profiles to Gamma distribu-
tions. Gamma distributions are a two-parameter (α, β)

family of distributions, including among others expo-
nential distributions and normal distributions. Param-
eters can for instance be determined using maximum
likelihood estimation. Classifying the estimated param-
eters may give insight on the laws governing the nodes’
behaviour.

In order to explain the behaviour of groups of nodes,
bipartite statistics are of particular interest. For instance,
traffic from different users to a same service might be dis-
tributed to a group of servers of the same company. These
servers are expected to have a lot of users, and some them
in common: as a consequence, their degree in the stream
will be high, and their degree in the bipartite projection
will be high too. On the contrary, users typically interact
with a few services, that most users interact with: conse-
quently, users will likely have a low degree in the stream,
but a high degree in the bipartite projection. Looking at
the correlations between the degree in the stream and the
degree in the bipartite projection is a promising direction
of research.

Finally, finding bipartite cliques of interest in the traf-
fic is an important perspective. Given the volume of
traffic, enumerating all maximal cliques is currently out
of reach, yet heuristics can help finding cliques of inter-
est. For example, one could pick a random link (b, e, u, v)
of the stream and its corresponding starting clique, c =
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({u, v}, [b, e]). One can then, for instance, choose ran-
domly one of the cliques produced by c. This corresponds
to choosing a path at random in the configuration space,
and has the advantage of storing nothing more than the
link stream, the current clique and its children in the con-
figuration space. The rationale behind this idea is that
substreams induced by large maximal cliques will con-
tain more links, and that more paths in the configuration
space lead to a large maximal clique. However, in the con-
text of IP traffic, large maximal cliques in terms of num-
ber of nodes are maybe not the most interesting: indeed,
the largest cliques will likely contain hundreds of nodes,
but they are distributed as hundreds of nodes interacting
with a single node; this is a typical signature of widely
frequented servers 10. Instead, one could choose preferen- 10. The maximal cliques we obtained

on the MAWI dataset found out Google
and Twitter as cliques of respectively
600 and 300 nodes, approximately.

tially paths in the configuration space that lead to balanced
cliques, i.e. cliques that have a similar number of nodes in
> and in ⊥. Since all nodes are added in all possible ways
in our algorithm, it should be possible to keep cliques bal-
anced at each step in the configuration space.
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Conclusions and perspectives

In this second part of the thesis, we have applied the link
stream framework to the analysis of IP traffic and have
assessed the relevance of this approach. In this proof-of-
concept work, we have set our focus on showing the rele-
vance of the link stream formalism for modelling IP traffic,
and to identify events in the traffic.

We have shown that it is possible to handle link streams
of millions of links under reasonable processing times. In-
deed, all the computations presented here are performed
in less than one hour.

We have adapted the formalism introduced in the first
part of this thesis to model bipartite link streams, and ex-
tended existing notions that are specifically defined for bi-
partite graphs to the case of link streams.

With our definition of event being a statistical one, we
devised a method that sheds light on events in the traffic,
ideally leading to a stream devoid of events. We observe
that different features explain different kinds of events,
and that even simple link stream features have relevance
in terms of interpretability and realism of computation.

We have demonstrated that removing parts of the data
can be done carefully. Conscious that removing informa-
tion from the data is a delicate process, we have given some
pointers about how and when to remove elements of the
data.
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The work presented in this second part remains ex-
ploratory, and opens a variety of perspectives, be it in
terms of automated event detection or in the use of more
subtle link stream features. We now present some of these
perspectives that seem the most relevant to us.

Since we are in the context of a proof-of-concept, the
easiest way to identify outliers was with the bare eye. Yet,
many methods in the literature aim at automatically de-
tecting outliers in distributions or in time series. A sub-
stantial amount of work in statistics has been done on out-
lier detection, and books by [Leroy and Rousseeuw, 1987]
and [Bamnett and Lewis, 1994] review this work. For
more recent results, one can turn to the work
of [Bakar et al., 2006].

For now, we have been working on traffic captures stored
on-disk. However, some of our features can readily be
computed in a streaming fashion, where one keeps a (pos-
sibly evolving) sample of the past, and sees the packets
as they arrive on the network card. This is the case for
the degrees, and the degree profiles, as well as for density
and cliques. Bipartite features, however, such as the projec-
tion, can hardly be updated on the fly as new packets ar-
rive. One possible approach is to use on-the-fly features to
identify groups of nodes and periods of time of particular
interest, store them on-disk and analyze them afterwards.

Studying the influence of parameter ∆ is a perspective
of our work. Instead of having one ∆ as a parameter of
the stream, one can imagine a different ∆ for each node
at each time. For example, for each node u, one could
set ∆ inversely proportional to the number of interactions
involving u. Another possibility is to use port or proto-
col knowledge to choose ∆, for example using the default
timeouts. The formalism we provide is already adapted
to these transformations. Identifying precisely the scales
at which events happen is particularly appealing, and one
can do so by resorting to a set of {∆i}i=1..k instead of a sin-
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gle parameter, and, for all i, observe the impact of ∆i on
the stream.

Using our features into machine learning classifiers is
also a prospective work. In particular, assessing the corre-
lations between our features and normalizing their outputs
are two short term directions of research.

Another perspective is to identify and describe the links
between our approach and signature based approaches, e.
g. to characterize mice flows in the link stream, or heavy
hitters. Expressing these particular flows in terms of link
streams requires further work.

A more rigorous comparison to MAWILab is also a
prospective work. Hitherto, we have simply checked that
the events we found were also flagged as anomalies in
MAWILab; we have also seen that while MAWILab some-
times flags an anomaly as lasting 900 seconds, while link
stream metrics allow us to be more precise. However, a fu-
ture step is to compute the false positives, false negatives,
true positives and true negatives when comparing our re-
sults to MAWILab. On the long-term, our output being
groups of nodes over intervals of time, it is not incompati-
ble with integration in MAWILab.





Part III

Conclusions and
perspectives
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Summary and Contributions

In this thesis, our aim was to propose a formalism to de-
scribe sequences of interactions, just like graph theory is a
formalism to describe networks.

In our opinion, a satisfactory formalism for link streams
should be simple, and generalize both signal theory and
graph theory 1. In this endeavour, special attention has 1. For instance, a link stream L where

all links last from α to ω encodes no
temporal information, and our notions
become equivalent to the ones of graph
theory: the density of L is exactly the
density of the induced graph G(L), and
so on. Similarly, a link stream with only
2 nodes encodes no structure, and can
readily be studied as a time series.

been paid to retain the relations existing between notions
in graph theory.

Chapter 2 is dedicated to the introduction of basic defini-
tions: link streams, substreams, as well as graphs induced
by streams and line streams. Consistency with the existing
definitions in the state-of-the art, such as studying aggre-
gated graphs, or sequences of graphs, is demonstrated.

Density is a fundamental notion of graph theory, and
we focus our attention in Chapter 3 on the multiple no-
tions derived from density: neighborhood, degree, clusters
of nodes, cliques, and clustering coefficient and transitiv-
ity ratio. These notions are fundamental in graph theory,
are interesting in themselves, and have a strong descrip-
tive power. They make it possible to formally define dense
groups over time, notions of similarity between neighbor-
hoods, density between two clusters, and so on.

Then, in Chapter 4, we work on notions derived
from paths: centralities, connected components, k-closure.
These notions pave the way for assessing the importance
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of nodes over time, as well as studying reachability in link
streams.

In many contexts, the data comes as a sequence of in-
stantaneous contacts: this is the case of IP traffic, face-
to-face contacts, or email exchanges. Moreover, one often
wants to consider a time scale ∆ coarser than the exact
times of links in L. In Chapter 5, we discuss ∆-analysis
of link streams, and show that notions defined on link
streams in chapters 2 to 4 can readily be applied to such
datasets.

Studying link streams enhanced our understanding of
graphs. For instance, instead of considering that a node
u in the stream is in cluster A from time bA to eA, then
in cluster B from time bB to eB, one can consider that in
a graph, node u belongs to both communities A and B at
different levels of implication: node u might be involved
at 66% in community A and 33% in community B, for in-
stance. This work gave us a more thorough understanding
of overlapping communities in graphs.

A research paper presenting the work of Chapters 2 to 4

is in preparation.

Conscious that our formalism raises algorithmic ques-
tions, we focus on computing cliques in link streams in
Chapter 6. We propose an algorithm to enumerate the
maximal ∆-cliques of a link stream. Instead of focusing
on algorithmic efficiency 2, we concentrated on explor- 2. Recent work done

by [Himmel et al., 2016] adapts the
classical Bron-Kerbosch algorithm to ∆-
cliques, with significant improvements
in performance.

ing data and assessing the relevance of ∆-cliques on con-
tacts between individuals. We have found that ∆-cliques
exhibit different behaviours from cliques in graphs: for
instance, while nodes involved in a maximal clique in
the induced graph are typically individuals belonging to
a group (i.e. a class, or a team), maximal ∆-cliques in
link streams indicate short meetings, exams, breaks, and
so on. This work has led to publications in an interna-
tional journal [Viard et al., 2016], as well as an interna-
tional workshop [Viard et al., 2015b] and a national con-
ference [Viard et al., 2015a].

We conclude on this part of the thesis in Chapter 7 and
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present some perspectives of our formal work.

It is of critical importance to us that our work brings both
fundamental and applied progress. During our reflection, we
have made constant round-trips between theory and appli-
cation: applications gave us insights on what phenomena
were out of our understanding, and we designed the theo-
retical tools that had meaning with respect to applications.
We focused on one application, the analysis of IP traffic, in
the second part of this thesis.

After having briefly reviewed the context of IP traffic
analysis in Chapter 8, we present the MAWI dataset, a col-
lection of daily captures of traffic at a capture point be-
tween the WIDE academic network and the upstream ISP.
We chose this dataset mainly because it collects a large
number of different behaviours, over large periods of time
(up to 72 hours in a row, and 15 years of daily 15-minute
captures); finally, a key advantage of this dataset is the
MAWILab initiative, that runs various anomaly detectors
on the traffic, and provides a public breakdown of the
anomalies found in each capture. MAWILab offers an ex-
cellent baseline to compare our work and results.

We discuss ways to model IP traffic as a link stream in
Chapter 9. The traffic can be studied either at the packet
level or the flow level; both are relevant, but in our work
we focus on the traffic at packet level.

The nature of the capture makes it intrinsically bipartite,
and we present adaptations of the formal work defined in
Part 1 to take this specificity into account. After having for-
mally defined bipartite link streams, we extend the notions
of density and clustering coefficient to such link streams.
We also extend from the literature on bipartite graphs the
notion of projection, an operation to obtain a non-bipartite
stream from a bipartite stream, and redundancy.

Chapter 10 is dedicated to the analysis of IP traffic and
its events. We design a method to analyze the traffic,
and, under the assumption that events happen at different
scales, to remove carefully parts of the stream correspond-
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ing to large-scale events, in order to detect smaller-scale
events. The core idea is that simple events (such as a router
crash) can easily be identified with simple statistics, such
as the number of packets per second (which will drop to 0
in the case of a crash). Once they have been identified, one
can remove them from the data, and more complex statis-
tics will reveal more subtle events. Removing parts of the
data is delicate, as we discuss in Chapter 10.

In this exploratory work, we rely on manual inspection
of the distributions of values to identify events. We apply
our methodology to a trace of 1 hour of IP traffic, and effec-
tively identify some events. We characterize these events,
and show that some of them are also present in the MAW-
ILab database. These first results demonstrate the relevance
of our framework, and open numerous perspectives, like
introducing link stream features in machine learning algo-
rithms.

We conclude on the second part of this thesis in Chap-
ter 11 and present some perspectives for the analysis of IP
traffic.

In collaboration with researchers of the Fukuda Lab,
Tokyo, Japan, a research paper presenting the work of
Chapters 9 to 10 is in preparation.

In this thesis, we define a consistent and comprehensive
framework to describe streams of interactions; we adapt
existing notions from the literature, such as paths, and de-
fine novel notions, such as the density. This framework
allow us to analyze IP traffic directly as a stream of pack-
ets, and shed light on events in it.
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Perspectives

The work done in this thesis opens numerous perspectives.
We present some of them in the following chapter.

13.1 Generalizing link streams

In link streams, we consider that all nodes are present from
α to ω. Our work on node clusters gave us a glimpse of a
more general definition of link streams (see Figure 13.1); a
link stream L = (V , T , V, E), with V ⊆ V × T and E ⊆
V × V × T . In other words, nodes are pairs (v, t), and a
link (u, v, t) in E implies that (u, t) and (v, t) are in V. In
the case where nodes are always present (i.e. for all v ∈ V
and for all t ∈ T there exists (v, t) ∈ V), one obtains a link
stream identical to what has been previously defined.

d

c

b

a

Figure 13.1: Another definition for link
streams, in which nodes are not present
for the whole stream duration. In this
case a link (u, v, t) can only exist if u
and v are in the stream at time t.

Though more general, this definition does not simplify
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the notions we introduced, as we have seen when study-
ing node clusters (Chapter 3, section 3.2). Indeed, one has
to count nodes proportionally to their presence, leading
to more intricate formulae. Moreover, the relations that
presently hold between graphs and link streams do not
necessarily hold in such objects. However, developing the
formalism for this object, as well as studying its proper-
ties and its relevance to real-world datasets is an important
perspective.

One obvious perspective of our work is the development
of the formal framework we introduced. We paved the way
for quantifying the importance of nodes in link streams (in
Chapter 4); many of the complex objects defined on graphs
(communities, motifs, cores, and many others) have hith-
erto no defined counterpart in link streams, yet we offer
all the theoretical tools for defining such objects. Notions
from signal theory are yet to be adapted.

Moreover, researchers working on temporal net-
works have brought applied progress, and defined pre-
cise measures on interaction streams. These mea-
sures quantify diffusion [Masuda et al., 2013], bursti-
ness [Lambiotte et al., 2013], and others. Defining these
measures within the link stream framework may unify
these notions, and bring a better understanding of the re-
sults given by these measures. It is also true that analyz-
ing series of graphs can be defined within the link stream
framework, and seeing how the great amount of work on
dynamic graphs may be translated into the link stream
framework is an interesting direction.

13.1.1 Computational considerations

Whilst many graph theoretical notions have a counterpart
in link streams, classical algorithms are not trivially adapt-
able. We made a first step in this direction by providing
an algorithm for clique computation in link streams, and
exploring how it can be improved is an interesting per-
spective. Many other notions defined in Part 1, like paths,
centralities, communities, etc. raise non-trivial algorithmic
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issues.
Some work is also required to create distributed algo-

rithms, i.e. algorithms where each node is responsible for
updating its neighborhood. Clique computation in link
streams may be adapted to a distributed algorithm.

Finally, it is common that interaction streams are read
in a streaming fashion, meaning that one is only allowed
to keep a finite portion of the past, and can only read the
data a given number of times 1. This implies computing 1. Often only once.

statistics on the fly, keeping sketches of the data. Streaming
algorithmics is a vivid field of research, and methods from
this field can apply to link streams.

13.1.2 Algorithmic considerations

Going further, a theoretical perspective of our work is the
identification of classes of link streams, and the general
hierarchy between those classes. Researchers on Time-
Varying Graphs have done considerable work in this en-
deavour for TVGs, and knowing to what extent this knowl-
edge is applicable to link streams is yet to explore.

[Casteigts et al., 2012] defines 13 classes of TVGs, and
we reproduce the hierarchy obtained between classes in
Figure 13.2 (A → B means that class B is included in class
A). Some of these classes can straightforwardly be rewrit-
ten in terms of link streams. For example, the class "Com-
plete graph of interaction" corresponds to all link streams
L = (T, V, E) such that, for all u, v ∈ V ×V, there is a link
(α, ω, u, v) in E.(V, [α, ω]) is a maximal clique of L.

An interesting direction of work is to define more
classes, especially on density-based measures. For in-
stance, one could define the class of streams of density p,
the class of link streams having a given degree distribution,
or the class of link streams with forbidden substreams, and
so on.
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Figure 13.2: Relations of inclu-
sion between classes of Time-
Varying Graphs. Reproduced
from [Casteigts et al., 2012].

13.2 Modules and dense groups

Many complex objects are of high interest in both graphs
and link streams, and developing our theoretical under-
standing of these objects is interesting. We focus on two
examples of such objects: modules and dense groups.

13.2.1 Modular decomposition

In graphs, a module is a set of nodes X ⊆ V such that
all nodes of X share the same neighborhood outside of
X. When X = V, or when |X| = 1, we call the mod-
ules trivial modules. If all modules in a graph are triv-
ial, then the graph is prime. Finding the maximal mod-
ules, as shown in Figure 13.3 is called modular decompo-
sition, and applications can be found in graph compres-
sion [Lamarche-Perrin et al., 2014], but also in graph draw-
ing [Papadopoulos and Voglis, 2005].

Figure 13.3: Modular decomposition
of a small graph. All the nodes in the
same box form a module.

With the applicative goal of studying link stream com-
pression, we define modules in a link stream. Intuitively,
modules are subsets of V × T. We define a module as a
couple (V′, T′) ⊆ V × T such that all nodes in V′ share the
same neighborhood outside V′ over T′. In other words, for
all u, v in V′, NV′

T′ (u) = NV′
T′ (v).

This definition is however very stringent, and it seems
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unlikely that we will find large modules in real-world link
streams, given that real-world link streams are typically
sparse. We define relaxed modules as couples (V′, T′),
V′ ⊆ V, T′ ⊆ T such that all nodes in V′ have similar
neighborhoods outside V′ over T′.

A common way to assess the similarity of two neighbor-
hoods in a graph is the Jaccard similarity 2, that we extend 2. J (u, v) = |N(u)∩N(v)|

|N(u)∪N(v)|

to link streams. Given the neighborhood of a node u ∈ V
outside of V′ on an interval T′ ⊆ T 3, we define the Jaccard 3. NV′

T′ (u) = {(v, t) : (b, e, u, v) ∈ E, v 6∈
V′, t ∈ [b, e] ∩ T′}similarity of two nodes u and v in V′ over T′ as follows:

J V′
T′ (u, v) =

|NV′
T′ (u) ∩ NV′

T′ (v)|
|NV′

T′ (u) ∪ NV′
T′ (v)|

(13.1)

With this similarity measure, we finally define ε-relaxed
modules. For any ε in [0, 1], an ε-relaxed module is a cou-
ple (V′, T′) ⊆ V × T such that for all nodes u, v in V′,
J V′

T′ (u, v) ≥ ε. See Figure 13.4 for an example.

1 3 5 7 9 11 1 113 5 7 9
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Figure 13.4: ε-relaxed modules in a link
stream, for ε = 1 (left) and ε < 1 (right).
All the (u, t) in the same box form a
module.

Notice that when ε = 1, 1-relaxed modules are equiva-
lent to modules.

Once a relaxed modular decomposition M =

{(Vi, Ti)}i=1..k of the stream L is obtained, one can de-
fine the compressed stream LC = (T, VC, EC), where VC =

{Vi}i=1..k, and EC = {(β, ψ, Vi, Vj) : ∃(b, e, u, v) ∈ E, [b, e] ∩
Ti ∩ Tj] 6= ∅, u ∈ Vi, v ∈ Vj, [β, ψ] = Ti ∩ Tj}. In other
words, a link between (Vi, Ti) and (Vj, Tj) in LC means
that nodes in Vi and Vj interact together. Another ques-
tion of interest is the reconstruction error; it is the error
made when trying to build L from LC.

To enumerate all ε-relaxed modules in a link stream, a
naive way is to follow a greedy approach: one initializes
the algorithm with the minimal modules (i.e. ({v}, [t, t] for
all (b, e, u, v) in E, t ∈ [b, e]). Then, at each iteration, the
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algorithm picks a module M, and attempts to find mod-
ules M′ such that M ⊂ M′; if there is none, M is a max-
imal module. However, this does not form a partition of
V × T, a criterion of importance when it comes to com-
pression [Lamarche-Perrin et al., 2014]. Additionally, the
complexity of a greedy naive algorithm will be high (at
least O(2nm2)), whereas one can obtain the modular de-
composition of a graph in O(n) [Tedder et al., 2008]. An-
other approach is to formulate the problem as an optimiza-
tion problem. In this case, one may define the area of a
module as A(M) = |V′|·|T′|

|V|·|T| , and devising a method that
maximizes the area of a module is a promising direction;
another promising direction is to minimize the reconstruc-
tion error, using information theoretic measures.

Finding relevant values for ε is a non-trivial problem; in-
tuitively, on the one hand, the lower ε is, the harder it will
be to reconstruct the original stream from its compressed
version 4. On the other hand, compressing with a lower ε 4. Notice that even in the case where

ε = 1, there is a reconstruction error.will produce a smaller compressed stream, and as such is
more efficient. A first step towards setting ε is to formally
quantify the reconstruction error in terms of information
loss, and then examine the error in function of ε. One can
expect that the right choice(s) for ε will be very dataset-
dependent.

13.2.2 Dense groups and communities

A common example of dense groups in graphs are com-
munities. No formal definition of community actually has
reached a consensus, but a common intuition is a group of
nodes densely connected together, and loosely connected
with nodes outside of the community. A partition in com-
munities of a graph G = (V, E) is a partition of the nodes
{Ci}i=1..k such that the graph induced by Ci is dense, but
the graph induced by Ci × V \ Ci is not. If one were to
study the interactions in a research laboratory, the commu-
nities on the induced graph would typically correspond to
the research teams: subsets of people who frequently work
together.
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In link streams, dense substreams take on a different
meaning: while communities in graphs excel at find-
ing groups of people (i.e. teams in a laboratory), in
link streams, communities are instead meetings, coffee
breaks, or discussions: periods of time were individuals
are densely connected together.

We have done some work on the study of
discussion threads on the Debian user mailing-
list [Gaumont et al., 2015]. We analyzed the internal
density of threads, as well as their external density. The
main result of this work is that threads are typically dense
substreams that are loosely connected with the rest of
the stream, validating the intuition of community we had
beforehand. These results are described more in depth in
Appendix A.

However, in most cases, there is no ground truth on ex-
isting communities, and automatically detecting communi-
ties is a hard problem. Researchers in the ComplexNetworks
team have extended modularity 5 to link streams, with mit- 5. Modularity is a well-known evalu-

ation function of partitions of graphs,
used in the original version of the
Louvain algorithm.

igated results.
Yet, finding quality functions suited to link streams and

optimize them, in the spirit of modularity on graphs, is a
particularly interesting and promising direction.

Another approach is to extend the work done on cliques
to define ε-dense groups. A ε-dense group is a couple
(X, [b, e]), X ⊆ V, [b, e] ⊆ T such that the density of the
link stream induced by X over [b, e], δ(Lb..e(X)), is greater
than ε. Just like with cliques, one is then interested in
dense groups that are not included in any other. Notice
that finding all maximal ε-dense groups of a stream does
not form a partition of the links.

The quotient graph is another key notion for studying re-
lations between communities in a graph G = (V, E). Given
a partition C = {Ci}i=1..k of V into communities, in the
quotient graph QG each node i, i = 1..k, represents com-
munity Ci and there is a link between nodes i and j, i 6= j,
if there is a link between a node of Ci and a node of Cj
in G. See Figure 13.5 for an illustration. One may add
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a weight on each link indicating the number of links be-
tween communities. Clearly, the quotient graph captures
relations between the communities under concern; for ex-
ample, its density indicates to what extent all communities
are linked together.

2 4 6 8 102 4 6 8 10
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Figure 13.5: Top: An example of graph
exhibiting communities and its corre-
sponding graph quotient. Bottom: An
example of link stream with commu-
nities and its corresponding quotient
stream.

We define the quotient stream induced by a partition
P = {Pi = (Ti, Vi, Ei)}i=1..k of a link stream L = (T, V, E)
in substreams 6 as the stream Q = (TQ, VQ, EQ) such that 6. i.e. ∪iVi = V and ∪iTi = T.

(max(bi, bj), min(ei, ej), Pi, Pj) ∈ EQ if and only if there ex-
ists (bi, ei, u, v) in Ei, (bj, ej, u, v′) in Ej and [bi, ei] ∩ [bj, ej] 6=
∅. In other words, there is a node u ∈ V that is involved
in the two streams during the same time period.

Studying the quotient stream and its implications on
the characterization of dense groups in link streams is a
promising direction.

13.2.3 Generation of synthetic link streams

In the previous section we talked about modularity, of
which the basic principle is to compare the studied graph
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to a randomized version of the same graph. Compar-
ison to null-models is important and helpful in many
contexts, especially when one wants to know to what
extent a result on a given object is significant. On
graphs, a prevalent model is certainly the Erdös-Rényi
graph [Erdos and Rényi, 1961]. In an Erdös-Rényi graph
Gn,m, one provides a number of nodes n, and a number
of edges m. Then, m edges are picked uniformly at ran-
dom between the n nodes. This ensures that the generated
graph has a given density. A common variant Gn,p instead
sets the probability of existence of any edge to p ∈ [0, 1],
with equivalent results.

Yet, one particularly unrealistic aspect of an Erdös-Renyi
graph is its degree distribution, which follows a Poisson
law when the graph is sparse. In contrast, most real-world
graphs display heterogeneous degree distributions. In the
study of real-world graphs, one is interested in generating
graphs with a prescribed degree distribution {ki} 7, where 7. If {ki} → Poisson( c

n−1 ), then the
graph generated is very similar to an
Erdös-Renyi graph.ki is the degree of node i.

To generate such graphs given a degree distribution,
one typically considers n nodes having k "half-edges" (or
stubs), corresponding to the input degree distribution.
One then pairs the stubs at random until there is no stub
left, and obtains a random graph with this degree distri-
bution. This method is called the configuration model How-
ever, nothing prevents one from pairing two stubs that had
already been paired before, which might create loops or
multiple links. See Figure 13.6 for an example. To cir-
cumvent this problem, it is common instead to take the
original graph G = (V, E) and swap two edges taken at
random from E (i.e. if (u, v) and (x, y) are taken, create
(u, x) and (v, y), and remove (u, v) and (x, y)). This ap-
proach has no guarantee on the number of swaps needed
to converge to the random case, but studies suggest that
empirically, G can be considered randomized after 10 · |E|
swaps) [Viger and Latapy, 2005].

Figure 13.6: Top: n nodes with stubs
corresponding to their respective
degree.
Middle: randomly pairing stubs to
create edges.
Bottom: one case of rewiring where
multiple links are created.

Some models have already been devised
by [Holme and Saramäki, 2012] to randomize link streams.
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However, as the authors state themselves, it is next-to-
impossible to measure the impact of the randomization on
the properties of the stream, and as such these models are
unsatisfactory.

One solution is to generate a graph Gn,p, then use a dis-
tribution (for example Poisson) to generate times of activa-
tion for each (u, v). Given that we define a notion of den-
sity of link streams, one could imagine generating Ln,p, a
link stream with fixed density.

Using the same argument, one could think that since
there is a notion of degree on link streams, devising an
equivalent to the configuration model is an easy task. A
naive way to do so is the following: consider the degree
distribution of a stream L. One then extracts elements
(k, d) for all nodes, one element meaning that one node
generates k stubs of duration d. One can then pair the
stubs randomly, like in graphs. One may think that this
simple methodology is a good equivalent of the configura-
tion model.

However, this approach is not as simple as for graphs,
and one is at risk of creating overlapping links (i.e. two
links (b, e, u, v) and (b′, e′, u, v) such that [b, e]∩ [b′, e′] 6= ∅),
as well as pairing edges that have already been paired
before. Efficiently avoiding these issues seems hard and
computationally costly. For these reasons, it seems prefer-
able to search for swapping algorithms to randomize link
streams with prescribed degree distributions.

Ultimately, an important aim is to obtain a hierarchy of
generative models, depending on the properties one wants
to model. This hierarchy can start with basic features, i.e.
the number of links, or the distribution of durations, to-
ward more subtle features, i.e. degree, density, clustering,
and even more subtle, i.e. burstiness, centrality, and so on.

13.2.4 Visualization

In recent years, graph visualization has allowed break-
throughs in complex network analysis, both by helping de-
tecting known features (the expected), and by discovering



perspectives 145

new insights (the unexpected). The core idea is that the
human eye is excellent at identifying structures of interest,
even in sizeable graphs 8. 8. Usually thousands of nodes or edges.

Visualization is a great helper in the process of serendip-
ity, the process of accidental discovery. Exploration
through visualization is a adequate way of looking at
noisy and heterogeneous data, since it does not require
full understanding of the underlying mathematical struc-
ture [Keim, 2002].

In the same way that visualizing a graph is insightful of
its general structure, being able to visualize link streams is
of interest to anyone looking for dense groups, anomalies,
or peculiar mesoscopic structures. Though the visualiza-
tion introduced by [Holme and Saramäki, 2012] is not as
flexible as for graphs, the figures show that it is still possi-
ble to detect subsets of links worthy of attention.

In the case of real-world large link streams, studies have
shown that both a heterogeneous and noisy behaviour are
to be expected [Vestergaard et al., 2014]. Visualization then
appears as a promising direction for understanding and
learning from link streams.

We have developed a simple software tool,
LinkStreamViz, whose aim is to draw link streams au-
tomatically. The code is available on GitHub 9. Its input 9. http://github.com/TiphaineV/

LinkStreamVizis either a text file containing a list of links in the form t u

v, or a JSON file containing the previous information, as
well as other details, such as the color for example. Link
durations are not supported at the moment.

Figure 13.7 features a full example, including a color
cover of the stream in communities. Notice that the tool
is only responsible for the drawing, and that the commu-
nities have been found externally.

By default, nodes (i.e. horizontal lines) are drawn con-
ditionally to their order of appearance. This gives bloaty
drawings (see Figure 13.8, left), and it is possible to give
a better order to the nodes either through a text file, or
by performing random permutations on nodes’ positions
and keeping the permutations that minimizes the distance

http://github.com/TiphaineV/LinkStreamViz
http://github.com/TiphaineV/LinkStreamViz
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(in our case, the sum of all lengths) between two linked
nodes. An example of a better ordering obtained is shown
in Figure 13.8, right.

This first heuristic opens a larger perspective, that of as-
sessing the quality of a representation or of an ordering of
the link stream.
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Figure 13.7: A link stream, exhibiting a
community behaviour. Communities (in
color) have been found externally.
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Figure 13.8: Left: a link stream, with
random ordering of the nodes. Right:
An ordered of the nodes minimizing
the sum of link lengths between two
connected nodes.

Figures 13.7 and 13.8 show that even a simple visualiza-
tion can help identifying meaningful groups of links, or
give insight on the global structure, and this is the aim of
the first version of LinkStreamViz.

A potential help for visualization is to reorder nodes ac-
cording to their relations over time, instead of fixing an or-
der for the whole duration of stream. An example is visible
in Figure 13.9. The main drawback is that the nodes be-
come difficult to identify, especially if many nodes change
order at the same time.

Finding an appropriate way of visualizing even small
link streams, especially with duration, is a question that re-
mains open. Though graphs are high-dimensional objects,
these dimensions are only loosely constrained, allowing
for many useful and different visualizations. In the case of
link streams, the additional temporal dimension carries a
lot of meaning, about the causality of events, and special
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Figure 13.9: A visualization were one
is allowed to change the order of nodes
over time. In this example, nodes c
and e are swapped midway so that e
remains spatially close to its neighbors.

attention must be paid to not changing the order of events.
An interesting way to visualize link streams is through

movies: one can make a movie of the induced graph, with
links appearing and disappearing over time, and unfold
the corresponding link stream.

Many improvements are yet to implemented, such as
better functions for the node ordering, or notions of qual-
ity of representation. A long-term perspective is the emer-
gence of a complete tool for visualizing and manipulating
link streams, similar to Tulip or Gephi for graphs.

13.2.5 Event detection in link streams

The work we have done on IP traffic in Part 2 helped us
identify perspectives in terms of event detection on link
streams.

While large-scale events are of high interest, there is also
a considerable number of events that involve few nodes on
a diversity of time scales. Detecting such events, and then
explaining them, is a challenge that exists in most large
datasets.

For example, if your bike gets stolen, it is probably an
important event for you, even though dozens of bikes are
stolen everyday, and do not constitute an event at the scale
of the stream. Another example is a housewarming party:
it is likely that at the scale of a city, there are hundreds
of such parties everyday, yet for you and your group of
friends, it constitutes an event that happens only once ev-
ery few years.

One can expect such events to be dense sub-streams in
the link stream of people-to-people interactions 10. The it- 10. For example, the ego link stream

of a node might be all interactions
involving this node.
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erative approach we follow allows to remove easily notice-
able events, and gives rise to new events that were unseen
beforehand. Moreover, the variety of statistics capturing
both structure and time gives us a very fine-grained view
of interactions, which in turn allows for a more precise
identification of events.

13.2.6 Applications

We have devised a theoretical framework to model link
streams, and have shown its relevance to IP traffic in Part 2.
However, there is a plethora of applicative cases where link
streams may bring new results, and we describe some now.
This is of course not exhaustive, and one can imagine that
any kind of interaction can be modelled with link streams.

Face-to-face contact traces are typically obtained by giv-
ing sensors to human beings 11 that activate if two individ- 11. Or sometimes cats [soc, 2008]!

uals are facing each other. Typically, those streams contain
few nodes (less than a few hundreds) and are recorded
for varying durations (from a few hours to a few days),
which leads to a few thousands of links. These datasets
usually exhibit strong structural properties (large cliques,
dense groups), and sometimes have enough metadata so
that interpretation is eased. In the case of high-school
students contacts, we have shown that cliques are typi-
cal markers of meetings, or exams, whilst dense groups
in the graph typically exhibit the classroom affiliation of
each student [Viard et al., 2015b].

Another interesting application is software analy-
sis [Latapy and Viard, 2014]. One can model interactions
between functions in running code (i.e. function u passed
a reference to function v at time t) as a link stream. One
can then expect a small number of nodes, and many con-
nections between nodes (i.e. a very dense induced graph).
In this context, active or dense areas in the stream might
be indicators of what to put in or out of cache, paths and
motifs might give insight on memory leaks, etc. Looking
for anomalies in these interactions can point to identifying
malwares.
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Email exchanges typically contain a large number of
nodes, making it closer to classical large, scale-free net-
works. A link is obtained when u sends an email to v at
time t, and studying the structure of these exchanges over
time can give insight on the nature of relations between
people, or larger groups [Gaumont et al., 2015].

Interactions networks in biology are also important. For
example, brain networks contain the electrical interactions
between millions of neurones. Animal contact networks
are closer to face-to-face human contact traces, have been
already widely studied [Sueur et al., 2011].

13.3 Prediction

Link prediction focuses on predicting the links that will ap-
pear in the stream, given a known history. Prediction can
be based on statistical indicators, motifs indicating causal-
ity (e.g. when a interacts with b, this triggers an interaction
between b and c), and can lead to normal behaviour char-
acterization and anomaly detection – links that have not
been predicted deviate from the expected, and are events.

Based on work in link prediction, recommender systems
is an interesting perspective. In graphs, recommender sys-
tems aim at predicting the preference a user would give to
an item 12. It is a recent and extremely active field of re- 12. For example, suggesting books one

might like given her previous readings.search. In link streams, recommandation can use the com-
bination of structure and time to make more relevant de-
cisions. For example, recommending the peers one should
interact with at time t to get a file on a peer-to-peer net-
work, or whom one should email to maximize her chance
of getting a reply.

In this last chapter, we have made a short overview of
some perspectives opened by the work done in this thesis.
Yet, the directions presented in this chapter are far from
exhaustive.
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A
Analysis of the temporal and structural

features of threads in a mailing-list

In this appendix, we present our published work on the
study of emails exchanges in the Debian mailing list, and
show that threads of emails, like communities in graphs,
are dense subsets loosely connected from a link stream per-
spective.

A.1 Introduction

Exchanges in a mailing list are often studied as com-
plex networks: there is a link between two individuals
if they exchange emails. In particular, communities in
such complex networks capture groups of friends or close
colleagues (individuals that exchange many more mes-
sages within the group than outside the group, typically)
[Newman, 2004]. However, removing all time information
has important consequences if one wants to study the dy-
namics of email exchanges.

In order to study those dynamics, one may label each
link with the frequency of exchanges or the times at which
they occur [Sun et al., 2007], but capturing both the struc-
ture and the dynamics of exchanges remains challenging.
In particular, studying threads calls for methods that cap-
ture the temporal nature of interactions more accurately,
without loosing the power of network analysis.
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We propose here to model email exchanges directly as
link streams, i.e. series of triplets (t, a, b) meaning that
individuals a and b exchanged an email at time t. We
then introduce notions that capture both the temporal and
structural nature of these exchanges. We use a typical
dataset obtained from a public mailing-list archive to il-
lustrate our approach. We analyze this dataset using our
model, with a special focus on the properties of threads
within the whole archive. Our goal is to understand how
the now classical concept of communities in complex net-
works may translate to threads in link streams represent-
ing email exchanges. Indeed, we expect the exchanges of
a given thread to involve a specific set of individuals for a
specific period of time, thus being dense from both struc-
tural and temporal point of views. This is illustrated in
Figure A.1.

a

b

c

d

0 5 time15 2010

e

Figure A.1: An example of link stream
representing email exchanges between
individuals a, b, c, d and e, with threads
represented by colored areas. For
instance, at time 5, b and c exchange
an email, as well as d and e. Threads
are a priori dense series of exchanges
involving a limited group of nodes
during a limited period of time.

A.2 Dataset

Archives of exchanges in various mailing-lists are readily
available on the web, and studying them provides very
rich insights on various issues. They have the advantage of
being publicly available in many cases, and some involve
large amounts of users over long time periods.

A typical example is provided by Debian mailing
list [SPI, 2015]: it contains emails sent from over 51753
email addresses, over 20 years. In addition, exchanges in
this mailing-list have been studied in the past [Wang, 2014,
Sowe et al., 2006, Dorat et al., 2007]. Finally, this dataset
provides the thread information for each message, that we
can use as a ground truth. For all these reasons, we use in
this paper the Debian mailing list to illustrate and validate
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our approach.
More precisely, we crawled the Debian mailing list web

archive [SPI, 2015]. In this archive, each message is stored
as a separate HTML page; for each month, a page links
to every message that was sent during this month, and so
on for years. From the initial link of the mailing-list, we
follow all links on the page corresponding to months, and
then to messages. Then, for each message, we extract its
author u, the date t at which it was posted (converted into
UTC time), and the message it is replying to (through the
in-reply-to entry), which has a corresponding author v.
This corresponds to an interaction between u and v at time
t in the link stream.

We denote by α the time of the first interaction, and by
ω the time of the last recorded interaction, i.e. we se-
lected only messages appearing after (resp. before) this
time. Here, α is January 1st, 1996 and ω is December 31st,
2014 We call ω− α = 20 years the duration of the dataset.

We obtain a dataset D of n = 722716 emails sent between
January 1st, 1996 and December 31st, 2014 from 51753 dis-
tinct email addresses.

Each email m in D has an author (which we identify
by its email address in first approximation), denoted by
a(m), a time at which it was posted, denoted by t(m), and
it may be an answer to a previous message, denoted by
p(m). Some messages are not answers to any other mes-
sage (they are directly sent to the mailing-list), and in this
case we state that p(m) = m. Such messages are called root
messages.

Each root message m naturally induces a thread: it is the
set T (m) of messages such that m belongs to T (m) and if
a message m′ is in T (m) then all messages m′′ such that
p(m′′) = m′ also belong to T (m). In other words, T (m)

contains exactly m, the answers to m, the answers to these
answers, and so on. The focus of this paper is the study of
structural and temporal features of these threads.

Our data contains incomplete threads: the ones that have
an email in our dataset but began before and/or continued
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after the data collection period. Some threads also exhibit
incoherences, for instance a reply has a smaller timestamp
than the message it replies to. We manually remove those
threads, as well as all threads that last for than 2 years, or
that start 2 years before the end of our data collection.

After this bias correction procedure, we are left with
n = 316569 emails, involving 34648 distinct authors over
a duration 598532269 seconds (18 years, 11 months and 19
days).

A.3 Framework and notations

Our goal is to study the structural and temporal proper-
ties of threads within a mailing-list archive. In order to do
so, we propose a model of the data that captures both its
temporal and structural nature, and allows for easy ma-
nipulation of threads.

We model our mailing-list archive as the link stream
D = (TD, VD, ED) with TD = [α, ω], VD = {∀mi :
a(mi), a(p(mi))} and ED = {∀mi : (t(mi), a(mi), a(p(mi)))}
where (mi)i=1..k is the sequence of messages in our dataset.
In other words, a triplet (ti, ui, vi) in ED indicates that indi-
vidual ui answered to an email of individual vi at time ti,
for all i.

Such a link stream naturally contains sub-streams: L′ =
(T′, V′, E′) is a substream of L = (T, V, E) if and only if
T′ ⊆ T, V′ ⊆ V and E′ ⊆ E. In other words, all the
interactions of L′ also appear in L. Given a set of nodes
S, we define the sub-stream L(S) of L induced by S as the
largest sub-stream of L such that all the links in L(S) are
between nodes in S.

Each thread T (m) in our mailing-list archive modeled as
link stream D is naturally modeled as sub-stream T(m) of
D. See Figure A.1.

Any link stream L = (T, V, E) also induces a graph G =

(VG, EG) where VG = {u : ∃t ∈ T, v ∈ V s.t. (t, u, v) ∈ E}
and EG = {(u, v) : ∃t ∈ T s.t. (t, u, v) ∈ E}. In our case, the
whole mailing-list archive induces the graph G(D) among
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authors of emails, and each thread T induces a sub-graph
G(T) of G(D).

In a graph G = (V, E), a community structure is defined
by a partition C = {Ci}i=1..k of V into k communities. In
other words,

⋃
i Ci = V and Ci ∩ Cj = ∅ whenever i 6=

j. In a similar way, one may consider a link stream L =

(T, V, E) and a partition of its links into k sub-streams P =

{Pi = (Ti, Vi, Ei)}i=1..k. In other words, for any (t, u, v) ∈ E,
there exists a unique j between 1 and k such that (t, u, v) is
a link of Ej.

The threads in our email dataset are exactly a partition
of the whole stream, which we denote by T = {Pi}i=1..k
where k is the number of threads and each Pi is a sub-
stream representing a thread (with our notations above,
there exists a message m such that Pi = T(m)).

Notice that, although the threads are a partition of the
whole stream, their induced graphs may overlap: some
nodes and links of G(D) belong to several sub-graphs
G(Ti). As a consequence, threads do not induce a parti-
tion of G(D) into communities. Instead, one may see the
partition of D into threads as a community structure, and
this is the focus of our work.

Notice finally that we consider that links are undirected
(i.e. (t, u, v) = (t, v, u) and happen at an instant in time
(regardless, for instance, of when the message is read).

A.4 Basic statistics

In this section, we present the basic statistics describing the
threads in our dataset and the whole archive.

The most basic description of our data certainly is the
number of links (i.e. emails) they contain, the number of
distinct nodes (i.e. authors) involved, the number of dis-
tinct links they contain (distinct pairs of authors in direct
interaction), and their duration (time from the first email
to the last one).

The whole archive contains 722716 emails involving
51754 authors (and 260392 distinct pairs of authors), over
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654094800 seconds ( 20 years). After our filtering proce-
dure, we are left with n = 316569 emails, involving 34648
distinct authors (and 226879 distinct pairs of authors) over
a duration 598532269 seconds ( 18 years). Figure A.2 dis-
play the distribution of these values for each thread.

Though the largest thread lasts long (more than a year),
most threads and contained within a few days (100000 sec-
onds is a bit more than 24 hours). Similarly, the largest
thread involves 100 messages, though all intermediate
sizes are represented in the dataset. Most threads are very
short and involve less than 3 messages.
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Figure A.2: Complementary cumulative
distributions for basic statistics of our
raw (solid line) and filtered (dotted
line) dataset. Top left: thread sizes
(number of messages per thread); top
right: thread durations (time elapsed
between the first and the last message
of the thread); bottom left: number of
distinct authors; bottom right: number
of distinct pairs of authors.

In order to gain more insight, we show correlations be-
tween some of these basic statistics in Figure A.3. Fig-
ure A.3 (left) shows that thread duration and size are cor-
related (the larger a thread is, the longer it is likely to be);
notice however that for small-sized threads, all types of
durations are represented. Looking at the correlations be-
tween the size of threads and the number of distinct au-
thors involved shows that threads nearly always involve
more messages than authors. This is a typical feature
of mailing-lists [Dorat et al., 2007] and as such is dataset-
dependent.

In a link stream L = (T, V, E) with E = {(ti, ui, vi)i=1..n}
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Figure A.3: Left: Correlations between
size and duration of threads. Right:
Correlations between size of threads
and the number of authors involved.

for all i starting at time α and ending at ω, the inter-contact
time series is the series τ = (τi)i=0..n in which τ0 = t1 − α,
τn+1 = ω − tn and for all i from 1 to n− 1, τi = ti+1 − ti
[]. The inter-contact time series of a pair of nodes u and v
is the inter-contact time series of the sub-stream L({u, v})
they induce. In other words it is the series of times elapsed
between two consecutive occurrences of a link between
them.

Figure A.4 shows the inter-contact times distribution in
the Debian mailing list.
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Figure A.4: Inter-contact times dis-
tribution in the Debian mailing list
dataset.

A.5 Interactions within threads

The key feature of communities is the fact that they form
dense subgroups. This section is therefore devoted to the
study of density of interactions within threads, from both
structural and temporal point of views.
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A.5.1 Density of threads

In a graph, the density is the probability that two randomly
chosen nodes are linked together. In other words, it cap-
tures the extent at which all nodes are directly connected
to each other. The density of the graph G(D) induced by
our dataset is 3.139× 10−4.

In [Viard and Latapy, 2014b], we introduced the notion
of ∆-density to capture a similar intuition in link streams,
involving both structure and time. Indeed, given a dura-
tion ∆, the ∆-density of link stream L is the probability that
a link appears between two randomly chosen nodes during
a randomly chosen time interval of duration ∆. It captures
the extent at which all nodes are directly connected to each
other at least every ∆ time units. Formally, it is defined as:

δ∆(L) = 1−
2 ·∑u,v∈V,u 6=v ∑t∈τ(u,v) max(0, t− ∆)
|V| · (|V| − 1) ·max(0, ω− α− ∆)

where τ(u, v) denotes the inter-contact times between u
and v, and α and ω are the start and end time of the link
stream.

In order to study the ∆-density in our data, we first have
to choose an appropriate ∆. We use here several values
which capture email dynamics at different scales: ∆ = 1

minute, 1 hour, 1 day, 1 week, 1 month, 1 year and 20 years
(the whole duration of the dataset). Figure A.5 displays
the evolution of the ∆-density of the stream for all theses
values of ∆. It shows that the ∆-density is small for small
∆s, and converges to the density of the graph induced by
the email exchanges (in our case, 3.139 · 10−4).

In Figure A.5, the inflexion points give information on
the values of ∆ where the dynamics change. Still, look-
ing at the density of the whole stream is very coarse and
yields little information. A finer approach consists in look-
ing at the ∆-density of relevant sub-streams. In our case,
the threads between authors are a natural object to study.
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Figure A.5: Evolution of the ∆-density
of the link stream for ∆ from 1 second
to 20 years.

A.5.2 Intra-thread density

More globally, given a graph G = (V, E) and a partition
C = {Ci}i1..k of V into k communities, the density within
communities of C is captured by the intra-community den-
sity:

2 ·∑i |{(u, v) ∈ E, u ∈ Ci and v ∈ Ci}|
∑i |Ci| · (|Ci| − 1)

In other words, intra-community density is the probability
that two nodes chosen at random in the same community
are linked together.

In our case, this notion does not directly make sense: as
already noticed, we do not have communities defined on
G(D) since the graphs induced by threads overlap. How-
ever, we extend the notion of intra-community density to
link streams as follows. The intra-thread ∆-density is the
probability that two randomly chosen authors contributing
to the same thread are linked together within a randomly
time interval of duration ∆, for a given ∆:

1−
2 ·∑i ∑u,v∈Vi,u 6=v ∑t∈τi(u,v) max(0, t− ∆)

∑i |Vi| · (|Vi| − 1) ·max(0, ωi − αi − ∆)

where Vi is the set of authors involved in thread Pi, αi is
the time of the first message in the thread (i.e the minimal
t such that there exists a (t, u, v) ∈ Ei) and ωi is the time of
the last message in the thread (i.e the maximal t such that
there exists a (t, u, v) ∈ Ei).

In our data, the inverse cumulative distribution of intra-
thread ∆-densities are in Figure A.6 (left) for several values
of ∆ ranging from 1 minutes to 1 year. For each point
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on the x-axis, the plot gives the proportion of threads in
the mailing-list that have an intra-thread ∆-density higher
than x. As expected, the higher the ∆ used, the higher the
density is. However, there is no significant change between
a ∆ of 7 days and a ∆ of 1 year.

Moreover, these distributions confirm that the interac-
tions within threads are much denser (both structurally
and temporally) than in the global mailing-list. Indeed,
the median intra-thread ∆-density ranges from 2.69× 10−4

to 0.28 while the link stream ∆-density ranges from 1.05×
10−10 to 3.42× 10−5. The intra-thread ∆-density typically
is 105 times larger than the global ∆-density.
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Figure A.6: Left: Inverse cumulative
distributions of values of intra-thread
∆-density for different ∆s. Right:
Inverse cumulative distributions of
values of inter-thread ∆-density for
different ∆s.

This shows that threads are indeed dense substreams in
our link streams.

A.6 Relations between threads

In the previous section, we focused on structural and tem-
poral properties inside threads, compared to the whole link
stream. We now turn to the study of relations between
threads.

A.6.1 Inter-thread density

Let us first study the density of relations between threads
in a way similar to above. Given a graph G = (V, E) and
a partition C = {Ci}i1..k of V into k communities, the inter-
community density is the probability that two nodes cho-
sen at random in two different communities are linked to-



analysis of the temporal and structural features of threads in a mailing-list 163

gether:

δinter(Ci) =
1
|C| ∑

j,i 6=j

|{(u, v) ∈ E s.t. u ∈ Ci and v ∈ Cj}|
|Ci| · |Cj|

Again, this notion does not directly make sense in link
streams, as threads do not induce a partition of nodes. As
a consequence, we introduce the inter-thread ∆-density as
the probability that two randomly chosen nodes in differ-
ent communities are linked together during a time interval
of duration ∆ chosen at random during the time duration
of both threads.

Let us define the inter-thread substream between a
thread Pi and a thread Pj: Lij = (Tij, Vij, Eij), with Tij =

[min(αi, αj), max(ωi, ωj)], Vij = Vi ∪Vj and Eij = {(t, u, v) :
t ∈ Tij, u, v ∈ Vij, (t, u, v) ∈ E \ Ei ∪ Ej}. In other words, this
is the substream containing the links between nodes of Pi
or Pj that are not involved in threads Pi and Pj. The inter-
thread density between Pi and Pj is the ∆-density of Lij. In
order to obtain the inter-thread ∆-density of Pi to all other
threads, we simply average the inter-threads ∆-densities of
Pi and all other threads. More precisely:

δinter
∆ (Ci) =

1
|C| ∑

j,i 6=j
δ∆(Lij)

In our data, the inverse cumulative distribution of inter-
thread ∆-densities are displayed in Figure A.6 (right) for
different values of ∆. For each point on the x-axis, the
plot gives the proportion of threads in the mailing-list that
have an intra-thread ∆-density higher than x. Again, larger
∆ correlates with larger ∆-densities. However, the inter-
thread ∆-density does not plateau, even for large values of
∆. This is natural, since the number of links considered
in the computation of the inter-thread ∆-density naturally
grows with ∆.

In Figure A.7, the correlations between the inter- and
intra-thread ∆-density are plotted for some values of ∆. As
expected, intra-threads are denser than inter-threads. This
relation holds as ∆ is bigger, even though the difference
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between inter and intra thread ∆ shrinks. Figure A.7(d)
that for ∆ = 20 years, the difference is non-existent. This is
due to the fact that the bigger the ∆, the less the temporal
characteristics of threads are important.
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Figure A.7: Correlations between inter-
and intra-thread densities for different
values of ∆.

A.6.2 Graphs between threads

The quotient graph is another key notion for studying the
relations between communities in a graph G = (V, E).
Given a partition C = {Ci}i=1..k of V into communities,
in the quotient graph G each node i, i = 1..k, represents
community Ci and there is a link between two nodes i and
j, i 6= j, if there is a link between a node in Ci and a node
in Cj in G. See Figure A.8 for an illustration. One may add
on each link a weight indicating the number of links be-
tween communities. Clearly, the quotient graph captures
relations between the communities under concern; for in-
stance, its density indicates up to what point all communi-
ties have links between them.

Relations between sub-streams Li, i = 1..k, may have dif-
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u

v

x

y

Figure A.8: Top: An example of graph
exhibiting communities and its corre-
sponding graph quotient. Bottom: An
example of link stream with commu-
nities and its corresponding stream
quotient.

ferent forms, and in particular they have a temporal and
a structural nature. In order to capture the temporal re-
lations between sub-streams, one may define the temporal
overlap graph as follows: X = (V, E) with V = {i, i = 1..k}
and there is a link (i, j) in E whenever Pi and Pj have a tem-
poral intersection (i.e. [αi, ωi]∩ [αj, ωj] 6= ∅). Likewise, one
may define the node overlap graph as follows: Y = (V, E)
with V = {i, i = 1..k} again and there is a link (i, j) in E
whenever there is a node v involved in both Pi and Pj (i.e.
there exists a t, a t′n a u and a u′ such that there is a link
(t, u, v) in Pi and a link (t′, u′, v) in Pj.

These graphs encode much information about relations
between threads. For instance, the degree of node i in T is
the number of threads active at the same time as Pi.

We display in Figure A.9 (left) the correlations between
the degree in X and the thread size. Comment...

Figure A.9 (right) shows the correlations between the de-
gree in Y and the thread duration. Comment...
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Figure A.9: Left: Correlation between
the degree in the time overlap graph X
and the thread size. Right: Correlation
between the degree in the node overlap
graph Y and the thread duration.
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A.6.3 Quotient stream

To deepen our understanding of our data, we capture here
the both temporal and structural nature of relations be-
tween sub-streams as follows. We define the quotient
stream induced by a partition P = {Pi = (Ti, Vi, Ei)}i=1..k
of link stream L as the stream Q = (TQ, VQ, EQ) such that
(Pi, Pj, t) ∈ EQ if and only if there exists (u, v, t1) in Ei,
(u, v′, t2) in Ei and (u, v′′, t) in Ej with t1 ≤ t ≤ t2. In other
words, there is a node u that has a link within Pj occurring
between two of its links in Pi. This means that u is involved
in the two streams during the same time period.

The stream quotient induced by the threads in our
dataset has 12281269 links and involves 68524 distinct
nodes (i.e. threads). Since our dataset contains 116999
threads, this implies that 48475 threads are not in relation
with any others.
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Figure A.10: ∆-density of the
link stream and the stream quo-
tient as a function of ∆, for ∆ =
1mn, 1h, 12h, 1d, 37d, 30d, 1y and 20y.

Figure A.10 shows the ∆-density of the quotient stream
and the ∆-density of the original stream for different val-
ues of ∆. The quotient is not very ∆-dense, i.e. threads are
not densely connected together, though it is slightly denser
than the stream for large values of ∆. This is comparable
to graphs.

A.7 Conclusion

Through the prism of link streams, we have studied the
email exchanges in the Debian mailing list over 20 years.
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From ∆-density, we define notions of inter thread density,
intra thread density and quotient stream, that are gener-
alizations of the equivalent notions in graphs. We show
the relevance of these notions on a real-world dataset of
email exchanges; however, further understanding of these
notions is necessary.

We have shown that threads in the mailing list are ∆-
dense substreams from a link stream perspective, just like
communities are dense subgraphs from a graph perspec-
tive.

Though threads are readily identified in the Debian
mailing list archive, this is usually not the case. Detecting
dense substreams loosely interconnected without a priori
knowledge remains a challenge.

Our scheme is dependant of a parameter ∆, that has to
be chosen externally. Considering links with durations (i.e.
(b, e, u, v), meaning that u and v are interacting continu-
ously from b to e) instead of punctual links is a promising
direction of work.
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Identifying Roles in an IP Network with

Temporal and Structural Density

In this appendix we present the published work proposing
a notion of density that captures both temporal and struc-
tural features of interactions, that generalizes the classical
notion of clustering coefficient.

We use it to point out important differences between dis-
tinct parts of the traffic, and to identify interesting nodes
and groups of nodes in terms of roles in the network.

B.1 Introduction

Measurement, analysis and modeling network traffic at IP
level has now become a classical field in computer net-
working research [Fraleigh et al., 2003, Qadeer et al., 2010,
Klemm et al., 2003]. It relies on captures of traffic traces
on actual networks, leading to huge series of packets sent
by machines (identified by their IP adress) to others. It is
therefore natural to see such data as graphs where nodes
are IP adresses and links indicate that a packet exchange
was observed between the two corresponding machines.
One obtains this way large graphs which encode much in-
formation on the structure of observed exchanges, and net-
work science is the natural framework for studying them
[Iliofotou et al., 2009b, Eberle and Holder, 2007].

One key feature of network traffic is its intense dy-
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namics. It plays a crucial role for network optimization,
fault/attack detection and fighting, and many other
applications. As a consequence, much work is devoted
to the analysis of this dynamics [Abry et al., 2002b,
Fontugne et al., 2010c, Guralnik and Srivastava, 1999b,
Crovella and Kolaczyk, 2003]. In network science, study-
ing such dynamics means that one studies the dynam-
ics of the associated graphs [Broido and Claffy, 2001].
The most common graph approach relies on series of
snapshots: for a given ∆, one considers the graph Gt

induced by exchanges that occured in a time window
from t to t + ∆, then the graphs Gt+∆, Gt+2∆, and so
on [Lee and Maggioni, ]. Many variants exist, but the
baseline remains that one splits time into (possibly over-
lapping) slices of given (but possibly evolving) length ∆
[Basu et al., 2010].

Obviously, a key problem with this approach is that
one must choose appropriate values of ∆: too small
ones lead to trivial snapshots, while too large ones
lead to important losses of information on the dynam-
ics. In addition, appropriate values of ∆ may vary
over time, for instance because of day-night changes
in activity. As a consequence, much work has been
done to design methods for choosing and assessing
choices in the value of ∆ [Benamara and Magnien, 2010b,
Caceres and Berger-Wolf, 2013, Aynaud and Guillaume, 2011].
In [Caceres and Berger-Wolf, 2013,
Aynaud and Guillaume, 2011, Hulten et al., 2001b], the
authors even propose methods to choose values of ∆
that vary over time, or to consider non-contiguous time
windows. In all situations, however, authors assume
that merging all the events occurring at a same time is
appropriate.

On the countrary, we argue that there are interactions
in IP traffic that occur concurently but at different time
scales, and that they should not be merged. For instance,
users interacting with a system will have a faster dynamics
than a backup service that automatically saves data every
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24 hours, and a slower dynamics than a P2P system or a
large file transfer between two machines. Likewise, attacks
may have dynamics that distinguish them from legitimate
traffic [Zhou et al., 2009]. This means that different parts
of the traffic may have different appropriate values of ∆,
even though they occur at the same time (or in the same
time window). These interactions are different in nature;
they reflect different roles for involved nodes (like an end-
user machine, or a backup server) that should be studied
separately to accurately reflect the actual activity occurring
in the network.

We propose in this paper an approach for doing so. It
relies on a notion of ∆-density that captures up to what
point links appear all the time and/or all possible links be-
tween considered nodes occur all the time (Section B.2). To
this regard, it may be seen as a generalization of classical
graph density and its local version, clustering coefficient.
We show how this notion may be used to identify one or
several appropriate time scales for various parts of the traf-
fic, and how mixing time and structure makes it possible
to identify (groups of) machines playing specific roles in a
network (Section B.3). All along this paper, we illustrate
and validate our approach using two real-world captures
of traffic on a firewall between a local network and the
internet. It consists of packets that were observed on the
firewall in a time period of one month.

B.2 Notion of ∆-density

We first present the framework and notations we use in the
whole paper. Then we define the ∆-density of one link and
finally we extend it to sets of links and nodes.

B.2.1 Framework

We model a trace of IP traffic as a link stream L = (li)i=1..n
where li = (ti, ui, vi) means that we observed at time ti a
packet from ui to vi. Such a stream comes from a capture
started at time α and stopped at time ω, and so α ≤ ti < ω
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for all i. We assume in addition that the stream is tempo-
rally ordered: for all i and j, i < j implies ti ≤ tj. We call
n the size of L and denote it by |L|. We call L = ω − α its
duration.

A link stream S is a substream of L if there exists a func-
tion σ such that for all i = 1..|S|, si = lσ(i), and for all
i = 1..|S| − 1, σ(i) < σ(i + 1). In other words, all the links
in S also appear in L and they are in the same order. We
denote by S ⊆ L the fact that S is a substream of L.

Given a pair of nodes u and v, we denote by L(u, v)
the substream of L induced by (u, v), namely the largest
substream (ti, ui, vi) such that for all i, ui = u and vi = v.
By extension, given any set of pairs of nodes we define the
substream L(S) induced by S as L(S) = ∪(u,v)∈SL(u, v).
For any given set of nodes S we define L(S) the substream
induced by S as L(S) = L(S× S).

The graph G(L) induced by stream L is
defined by G(L) = (V(L), E(L)), where
V(L) = {ui, ∃vi, ti, (ui, vi, ti) ∈ L} and E(L) =

{(ui, vi), ∃ti, (ui, vi, ti) ∈ L}. In our case, V(L) is the
set of observed IP adresses, and there is a link (u, v) in
E(L) if and only if we observed a packet from u to v.
As discussed in the introduction, IP traffic and other link
streams are often studied through this induced graph.

B.2.2 ∆-density of links

Suppose a ∆ between 0 and L is given. We first define
the ∆-density of a pair of nodes u and v, that we de-
note δ∆(u, v). If there is no link involving them in L, i.e.
|L(u, v)| = 0, then we state that their ∆-density is zero:
δ∆(u, v) = 0. Now let us assume that at least one link
involving u and v occurs.

There is no significant structure in just one link, and so
the ∆-density of (u, v) is only defined with respect to time.
It captures up to what point (u, v) appears in every time
interval of size ∆ in L. To do so, we compute the fraction
of non-overlapping time intervals of size ∆ that contains



identifying roles in an ip network with temporal and structural density 173

no occurrence of the link. More formally:

δ∆(u, v) = 1−

⌊
t1−α

∆

⌋
+
⌈

ω−tn
∆

⌉
− 1 + ∑i

⌈
ti+1−ti

∆

⌉
− 1⌈

ω−α
∆

⌉
− 1

(B.1)
where ti denotes the time at which (u, v) occured for
the i-th time. The numerator counts the number of non-
overlapping intervals of size ∆ that contain no occurrence
of (u, v): the number of such intervals between the begin-
ning of the stream and the first occurrence (at t1), plus the
number between the last occurrence (at tn) and the end of
the stream, plus the number between any pair of consec-
utive occurrences. This is illustrated in Figure B.1. The
denominator counts the total number of non-overlapping
intervals of size ∆, thus ensuring that the ∆-density is al-
ways between 0 and 1. It reaches 1 if and only if a link
between u and v appears at least every ∆ time, and it is
closer and closer to 0 as more and more intervals of size ∆
contain no such link. As stated above, it is exactly 0 when
no link involving u and v occurs.

Figure B.1: Counting of the number
of non-overlapping time intervals of a
given size ∆ that contain no occurrence
of a pair of nodes. Each cross represents
an occurrence of the pairs of nodes on
the time line.

In order to extend the notion of ∆-density to any set S of
pairs of nodes, we define it as the average of the ∆-density
of the elements of S:

δ∆(S) =
∑(u,v)∈S δ∆(u, v)

|S| (B.2)

This notion still captures no notion of structure and only
focuses on temporal aspects: it measures up to what point
interactions between pairs of nodes in S occur (at least)
every ∆ time.
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B.2.3 ∆-density of streams and sets of nodes

In a classical (undirected, simple) graph G = (V, E), the
density captures the extent at which every node is con-
nected to all others: δ(G) = 2·m

n·(n−1) where n = |V| is the
number of nodes and m = |E| is the number of links. In
other words, it measures the extent to which all possible
links exist.

In a link stream S, we mix this structural point of view
with the temporal aspects captured above as follows:

δ∆(S) =
2 ·∑(u,v)∈V×V δ∆(u, v)
|V| · (|V| − 1)

(B.3)

where V is the set of nodes involved in S. In other words,
the ∆-density of a link stream captures the extent at which
all possible links occur (at least) every ∆ time in the stream.
It is the average of the ∆-density of all possible pairs of
nodes, including the ones which do not interact in the
stream.

Finally, just like one often studies the density of sub-
graphs induced by a given set of nodes, we define the ∆-
density of any set S of nodes as δ∆(L(S)), which capture
the both structural and temporal intensity of interactions
among nodes in this set. It is equal to 1 only if all nodes
interact with each another, and do so at least every ∆ time.
It decreases whenever two nodes in the set do not inter-
act or a time interval between two occurrences of a link is
greater than ∆.

We call this a ∆-clique: just like cliques are graphs with
maximal density in classical graph theory, ∆-cliques are
streams with maximal ∆-density. Notice that the ∆-cliques
of a stream necessarily induce cliques in the graph induced
by the stream.

B.3 Identifying roles

We show in this section how our notion of ∆-density may
be used to identify distinct roles in a capture of IP traf-
fic. We typically aim at identifying backup servers, user
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machines, or distributed applications. We first present
the datasets we use for our experimentations, then explain
how to compute a characteristic time for links and groups
of links, and explore a notion of clustering coefficient that
combines time and structure. We finally discuss how ob-
tained results may be used for identifying roles in the net-
work.

B.3.1 Our datasets

We rely for our experimentations on two datasets collected
in 2012. Both datasets consist of a one-month capture of
the headers of all IP packets managed by a firewall be-
tween a large local network and the internet. They are
however quite different in their key features, which makes
it interesting to consider them jointly.

The first dataset, which we model by the link stream
A = (ai), contains 6 million timestamped links. They
involve 183 distinct pairs of nodes, between 129 distinct
nodes. The second dataset, which we model by the link
stream B = (bi) contains 140 299 timestamped links. They
involve 60 330 distinct pairs of nodes, between 38 571 dis-
tinct nodes. It therefore appears clearly that, although
more exchanges occur in A than in B, these exchanges are
between a much smaller number of nodes than the ones in
B.

B.3.2 Identifying relevant ∆

Our approach relies on the identification of relevant val-
ues of ∆ that may reveal the dynamics of links, nodes, and
larger parts of the stream. To identify such values, we com-
pute the ∆-density for various values of ∆ and observe the
variations of the ∆-density as a function of ∆. More pre-
cisely, we consider ∆ = 1.01i for all i such that ∆ is between
1 second and the duration of the whole capture (namely
ω− α = 2808927s).

The exponential growth in the considered values of ∆
deserve explanations. Indeed, we want to be able to iden-
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tify interesting values which are orders of magnitudes
of differences, like one second and one day. In addi-
tion, there is a significant difference between ∆ = 1s and
∆ = 30s, while we make no significant distinction between
∆ = 24h = 86400s and ∆ = 24h + 30s = 86430s. This is ex-
actly what an exponential growth of ∆ captures. We chose
1.01 to have a large enough number of points in our plots
to allow accurate observation, while remaining reasonable
(we obtain here 1118 points).

Notice that the ∆-density of a given pair of nodes (u, v)
necessarily grows to 1 when ∆ grows, as long as it occurs
at least once in the stream (otherwise it is equal to 0 in-
dependently of ∆). Indeed, for small ∆ it is close to 0, as
almost no time interval of size ∆ contains an occurrence
of the link. When ∆ grows, the number of intervals with
no such link decreases, and so the ∆-density grows. When
∆ reaches its maximal value, i.e. the duration of the whole
stream, then there is clearly no interval at all that contains
no occurrence of the link, and so the ∆-density reaches 1.

When we consider the ∆-density of a set of links, the
same remarks hold. When we consider the case of a link
stream or the case of a set of nodes, though, the situation
is different. Indeed, in these cases the pairs of nodes that
never occur are taken into account and lower the value
of the ∆-density. Then, the ∆-density still grows when ∆
grows, but its maximal value is the (classical) density of
the induced graph and it is reached when ∆ equals the
whole duration of the stream. Then, the ∆-density of each
individual pair of nodes is either 0 (if it never occurs) or
1 (if it occurs at least once), and the formulae defining the
∆-density are reduced to the formula for the density of the
graphs, see Section B.2.

Figure B.2 presents the evolution of the ∆-density of link
streams A and B presented above, as ∆ grows.

The plots show clearly that the ∆-density of A increases
sharply at ∆ ∼ 103 and ∆ ∼ 105, indicating that these
durations play an important role in this dataset. The plot
for B instead, grows smoothly towards its maximum. It
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Figure B.2: ∆-density of streams A (blue
circles) and B (red triangles) (vertical
axis) as a function of ∆ (horizontal axis,
log scale). The horizontal lines indicate
the maximal reachable ∆-density, i.e.
the density of the induced graphs G(A)
and G(B).

increases much faster by the end of the plot, indicating
that one must take all the time-span of the stream to see
most of its links.

In order to gain more insight on these behaviors, we now
study the ∆-density of each single link. We plot the same
quantities, namely the value of the ∆-density as a function
of ∆, for each link (u, v). Figure B.3 displays two typical
examples, one from A and the other from B.

Both plots display a sigmoid shape, indicating that the
∆-density remains very small until a specific value of ∆,
and then it rapidly reaches its maximal value 1. Increasing
∆ further has no significant impact. This indicates that this
specific value plays a key role for this pair of nodes: it is
rare to have a longer time interval without an occurence of
a link involving them, while it is very frequent for shorter
time intervals.

For the example from dataset A, the sharp increase oc-
curs between ∆ = 104s and ∆ = 105s. For the example
from dataset B, the sharp increase is by the end of the plot
only. This indicates that one needs very large values of ∆
to be unable to find many intervals of size ∆ with no occur-
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Figure B.3: ∆-density (vertical axis) as
a function of ∆ (horizontal axis, log
scale), for two typical links (one of A
and one of B).

rence of the link. In other words, all the occurrences of the
link fit in a small time interval, and studying the ∆-density
of this pair of nodes has little meaning, if any.

In order to build a more global view of a dataset, we ap-
ply the following protocol. For each pair of nodes (u, v),
we seek the largest variation in the value of δ∆(u, v) as a
function of ∆ (which corresponds to the sharpest increase
in the plots of Figure B.3). To ensure that this variation
is significant enough, we discard the pairs for which it is
lower than 15%. We call the value of ∆ at which this largest
variation occurs the characteristic time of (u, v), and we de-
note it by τ(u, v).

We plot in Figure B.4 the distribution of characteristic
times we obtain for each dataset.

It appears clearly that a large fraction of the links in A
have specific but distinct characteristic times: many have
a characteristic time close to 103s, many around 105s and
most others between 105s and 106s. This indicates three
classes of links (i.e. computer communications), which we
will discuss in Section B.3.4. Notice however that large
characteristic times mean that all occurences of the corre-
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Figure B.4: Inverse cumulative distri-
bution of the characteristic time of all
pairs of nodes in our two datasets: for
each value x on the horizontal axis,
we plot the number y of pairs having
characteristic time larger than x.

sponding links appear in a very short period of time. This
typically reveals pairs of nodes that exchange packets dur-
ing a connection that lasts only a few seconds or minutes,
but that do not exchange data on a regular basis.

The situation for dataset B is quite different: a huge ma-
jority of all characteristic time are close to the maximal pos-
sible value, indicating that the occurrences of most links
appear in a very short period of time, and do not appear
outside this time interval. However, as displayed in the in-
set of Figure B.4, there is a non negligible number of links
with a drastically different behaviour, evidenced by much
smaller characteristic times. This shows that some links
in the stream have a specific role that distinguishes them
from the vast majority of links.

B.3.3 Neighborhoods and clustering coefficient

We focused above on links only. In order to gain insight
on more subtle structures, we study here the ∆-density of
nodes and their neighbors, and introduce a generalization
of the classical notion of clustering coefficient.

Let us first denote by N(v) the neighborhood of any
node v, i.e. the set nodes to which it is linked. Then the
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substream L({v} × N(v)) is the stream of all the links be-
tween v and its neighbors, while the substream L(N(v))
is the stream of links involving two neighbors of v. The
∆-density of these two substreams contains important in-
formation about v: δ∆(L({v} × N(v)) indicates up to what
extent the interactions between v and its neighbors occurs
at least every ∆ time; δ∆(L(N(v)) indicates up to what ex-
tent all possible pairs of neighbors of v interact at least
every ∆ time.

Notice that δ∆(L({v} × N(v)) captures the ∆-density of
v’s interactions. We therefore call it the ∆-density of v,
and we denote it by δ∆(v). Likewise, δ∆(L(N(v)) is the ∆-
density of the stream induced by the neighbors of v, just
like the classical clustering coefficient of a node in a graph
is the density of the subgraph induced by its neighbors
[Watts and Strogatz, 1998]. For this reason, we call it the
∆-clustering coefficient of v, we denote it by ∆-cc(v).

We now define for each node v its characteristic time
τ(v) in a way similar to previous section: we compute the
variations of δ∆(v) as a function of ∆ and select the value
of ∆ at which this variation is maximal. Figure B.5 presents
the distribution of the characteristic times of all nodes.

Figure B.5: Inverse cumulative distri-
bution of the characteristic time τ(v)
of each node v of both our datasets:
for each value x we plot the number of
nodes v such that τ(v) is larger than x.



identifying roles in an ip network with temporal and structural density 181

For both datasets, we observe a significant number of
nodes with non-trivial (i.e. much smaller than the whole
duration of the trace) ∆-density. This means that these
nodes have specific roles in the network, as we will discuss
in next section. We also observe that some values of char-
acteristic times are overrepresented, which is revealed by
sharp decreases in the plots. This indicates classes of nodes
with similar behaviors (at least regarding ∆-density).

When we turn to the computation of ∆-clustering coeffi-
cient, we face a problem related to the way our data is col-
lected. Indeed, it consists in traffic managed by firewalls,
and so they mostly consist in packets exchanged between
an internal network and the rest of the internet. As a con-
sequence, the graph they induce between IP addresses is
close to a bipartite graph: nodes are separated into two dis-
tinct sets V1 and V2 and links exist mostly between nodes
in both sets. This implies that there is only very rarely a
link between two neighbors of a same node. In our case,
this happens for only 33 nodes in dataset A, and this never
happens in dataset B.

As the ∆-clustering coefficient of a node is 0 whenever
there is no link between its neighbors (like the classical
clustering coefficient in graphs), we focus here on the 33
nodes of A for which the clustering coefficient is not 0. We
compute for these nodes their τ-clustering coefficient, i.e.
for each node its ∆-clustering coefficient when the value
of ∆ is the characteristic time of the node. These values
are strongly influenced by the degree of the nodes, and so
we plot in Figure B.6 for each node a point indicating its
degree and its τ-clustering coefficient.

This plot shows that most considered nodes have a sig-
nificant τ-clustering coefficient, much larger than 0 even
for nodes with large degree. This means that these nodes
belong to very structured substreams: many links exist
among their neighbors, and that these links are often ob-
served at least once in a time-interval of size τ. An excep-
tion is visible on the plot: a node has degree over 100 but
a τ-clustering coefficient close to 0, meaning that this node
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Figure B.6: For each node with non-
trivial clustering coefficient, we plot its
τ-clustering coefficient (vertical axis)
as a function of its degree (horizontal
axis).

belongs to a star-like structure (almost none of its neigh-
bors are linked together).

B.3.4 Interpretation

In the previous sections, we have computed and observed
several statistics describing the temporal and structural be-
haviors of nodes and links in our datasets. We now turn
to an interpretation of these results in terms of the applica-
tion area, and in particular regarding the identification of
links, nodes, or groups of elements playing specific roles
in the network.

We first identified in Section B.3.2 three characteristic
times playing a key role in dataset A: around 1000 sec-
onds (approximately 16 minutes), around 90000 seconds
(approximately 24 hours), and around 500000 seconds (ap-
proximately 5 days). Manual inspection of the data and
discussion with network operators revealed the presence
of a backup server in the local network, used by external
machines, responsible for the 24h characteristic times. We
also found, without being able to identify their cause, reg-
ular communications every 15 minutes from a subset of
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nodes. Finally, the largest characteristic time is probably
due to links appearing only a few times, and is too large
compared to the duration of the whole measurement to be
significant.

In dataset B, many pairs of nodes have a high charac-
teristic value which, as already said, has little significance.
However, a few pairs of nodes have a more interesting be-
haviour, as seen on the inset of Figure B.4. By inspecting
the dataset, we could identify from this a few servers with
a regular pattern of action: local backup servers and mail
servers mostly.

The study of clustering coefficients revealed that some
nodes forms groups which are densely connected: most
of all possible links among them appear, and do so on
a regular basis. This holds for a dozen groups of more
than 5 nodes, and even for a few groups of more than 10
nodes. This probably reveals nodes involved in a common
task distributed among them, like a complex web service,
a distributed computation, or a distributed database.

We also noticed a node with high degree, above 100, but
very low clustering coefficient. This means that this ma-
chine has many connections, but its neighbors are almost
not linked at all: we therefore have a star structure for this
machine. This information, added to the fact that this sub-
structure has a characteristic time close to 24 hours, makes
it identifiable as a backup server, periodically contacted by
the same set of nodes to save their data.

B.4 Conclusion

In this paper, we have introduced the notion of ∆-density,
which captures up to what point links appear all the time
and/or all possible links between considered nodes occur
all the time. We illustrated the use of this notion on two
real-world captures of network traffic, and we have shown
that it allows to determine the characteristic times of parts
of the traffic in a simple manner. We have shown that many
different characteristic times coexist in such traffic, and we
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used them to distinguish between nodes or set of nodes
playing specific roles in the network. This includes for in-
stance backup servers or distributed applications. Such in-
formation is useful in two means: to an attacker, who could
identify relevant targets, and to network operators, who
could optimize services, improve security, etc. It is also
a contribution to our understanding of real-world traffic,
with applications to improved modeling and simulation.

Our work may be extended in several ways. In partic-
ular, we proposed one approach for quantifying the intu-
ition behind ∆-density but variants may also be relevant.
For instance, one may slice the stream into pieces of dura-
tion ∆ and count the fraction of slices containing the con-
sidered link. One may also compute the probability that a
randomly chosen interval of size ∆ contains an occurrence
of the link. Although all these definitions are very similar,
they have small differences that should be studied.

Our initial goal was to be able to identify distinct char-
acteristic times in a link stream, whereas most studies ag-
gregate information over a given time interval. There is
still room for significant progress in this direction. In par-
ticular, one may identify several characteristic times for a
same substream, by detecting several sharp increases in the
∆-density as a function of ∆ instead of only one. This may
reflect for instance the fact that users typically have daily,
weekly and yearly activity patterns. Going further, a node
may have a characteristic time that varies during time, like
the characteristic times between two connections during
week days and during week-ends, or characteristic times
before and after an intrusion. We think that ∆-density may
easily be extended to study such phenomena, and this is
one of the main directions of our future work.

In the context of IP traffic analysis and in other areas,
an important direction also is to extend our definitions to
the case of bipartite graphs, in particular the ones regard-
ing clustering coefficient. This may help in capturing more
complex phenomena and behaviors, and the notions de-
fined in [Latapy et al., 2008b] could certainly be useful for
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doing so.
Last but not least, the notions of ∆-density and τ-

clustering coefficient defined in this paper are very gen-
eral, and may be used to study any link stream like email
exchanges, financial transactions, and others. In all these
cases, questions similar to the ones addressed here arise (in
particular the co-existence of different characteristic times
that one should distinguish).
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