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TALK SUMMARY

Diffusion processes and epidemic models

Overview of diffusion suppression control approaches
A greedy method with dynamic resource allocation

A dynamic method based on priority planning

Conclusions



DIFFUSION PROCESSES ON NETWORKS

Basics
DPs arise in systems with interconnected agents (real or electronic network) b0
each agent has a variable state S N
% 2
. . . &=
agent behavior depends on, and propagates to, its close environment —=p e\

the propagation causes changes in agents’ state according to some “rules” A

Propagating entities: from disease epidemics to... digital and social epidemics
Epidemiology: diseases/viruses
Computer systems: computer viruses, fault cascade, computational errors (e.g. sensor networks)

Social and information networks: information, ideas, rumors, social behaviors...



MOTIVATION:

FROM DISEASE EPIDEMICS TO... DIGITAL AND SOCIAL EPIDEMICS

[5] Brockmann et al. The Hidden Geometry of Complex, Network-Driven Contagion Phenomena, Science, 201 3.



DIFFUSION PROCESSES ON NETWORKS

Diffusion Models

[~ — —————

SIS model |

|
Diffusion model | @_>0 |
| e |

a mathematical model that encodes the “propagation rules”
R ey e =l

SIR model

Well-studied models @—»0 _>®

compartmental models from epidemiology (SIS, SIR, SEIR, ...)

no single model able to describe all possible complex diffusion phenomena

other models from statistical physics (e.g. Percolation) SEIR model
common characteristic: constant propagation rates @ 0—>®
Modern information-oriented models @

Information Cascades, Hawks Processes, ...

Common direction: propagation rates variable in time to model user interest g, (cceptible | E: exposed

|: infected | R: recovered



DIFFUSION PROCESSES ON NETWORKS

Diffusion Models — SIS demo

Example

uncontrolled SIS process on contact network

Homogeneous [ - #infectedNeighbors

continuous-time ——
SIS model 4_

for one node

X;(t ): 0 — 1 at rate sz Ajin( )
X;(t): 1 — 0 at rate &

spreading rate f§
node self-recovery rate ¢
adjacency matrix 4

network state X

two possible events each time: infection or recovery

SIS diffusion process in a contact nework

Woatch online: http:

www.youtube.com/watchev=fGSKHxSD-40



http://www.youtube.com/watch?v=fGSKHxSD-40

DIFFUSION PROCESSES ON NETWORKS

Directions of research

Depending on the situation, a DP can be desired or undesired

Roughly three directions of research
Network assessment: worst case analysis, risk /vulnerability assessment

DP engineering: influence maximization, (viral) marketing

DP suppression and control: containment of viruses, rumors, social
behaviors, etc., using control actions



DIFFUSION SUPPRESSION AND CONTROL

Possible control actions

DP suppression and control using control actions on nodes or edges

Node deletion Edge deletion



DIFFUSION SUPPRESSION AND CONTROL

Healing resources on nodes — more variations

DP suppression and control using control actions on nodes

r——— — — — - = Dynamic Resource Allocation

corrective

preventive preparatory

-
I
I
I
I
I

vaccines antidotes I treatments



DYNAMIC RESOURCE ALLOCATION (DRA)

Modelling and control framework

SIS model for one node
| p - #infectedNeighbors -i

@

X@(t) 0 — 1 at rate /sz Alej(t)
Xi(t): 1 — 0 at rate 0 + pR;(t)

Continuous-time SIS model
treatment efficiency p

resource allocation R

DRA objective

ming C,(R) = [,77 e "*E[N;(t)]dt

Formally a DRA strategy

percentage of infected nodes

R:R, —{0,1}"
s.t. Vi e Ry, > Ri(t) < b(t)

Constraints for tractability
unlimited resources disposed at constant rate

inability to store resources
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DYNAMIC RESOURCE ALLOCATION (DRA)

Modelling and control framework

Score-based DRA strategies

a1 A Si(X(2)) = 0
Ri(t) = { 0 otherwise

where D> . Ri(t) =biot

Complexity
update O(E+N logN)

but much lower for scores that are
based on local graph properties

Algorithm Applying a score-based DRA strategy

Input : infection state vector X (¢), budget size bsot,
scoring function S.
Output: the resource allocation vector R(?).

if Zz Xi (t) < btot then
return X ()
end if
Let R(t) a zero N-dimensional vector
Let V « {S;(X(t))}_, a vector containing the node scores
Sort the elements of V' in descending order
and let [ the node indexes of the ranking
for i =1 to btot do
R](i) (t) — 1
end for
return R(t)




DYNAMIC RESOURCE ALLOCATION (DRA)

Modelling and control framework

Score-based DRA strategies Examples
1 if S;(X(1)) > 6, Strategy | Scoring function S*(X) for node ¢
Ri(t) = 0 otherwise RAND o(X;)+Ri, where R; is i.i.d. uniform in [0, 1]
MN G(XZ)—FZJ Aij
PRC o(X;)+Pi, where P; is the PageRank score for
where > . Ri(t) = biot node i |
LRSR G(Xi)+()\1—A1G\%), where Aq is the largest eigen-
Complexiiy value of A, aéld_ )\f\l the largest eigenvalue of
date O(E-+N logN) the matrix A\ _for the network without node 7
update 9 MSN G(Xz)—i—zj Ar,.;ij
but much lower for scores that are LIN g(Xi)—Zj AjiX;
based on local grcph proper'ries LRIE O“(XZ)+Z7[A@3)_(3 —Ajin], sums MSN and LIN

o(1) =0 and ¢(0) = -0
X (t)the infection state, X (t)=1— X ()



OPTIMAL GREEDY DRA

LRIE - Largest Reduction of Infectious Edges *TorfegtNeduction m nfectinss Edges

Derivation

rewrite the DRA objective according to the Markovian property

ming Cy(R) = [, 0 e "E[N;(t)]dt For an infected node i
. —|—oo —~u —
ming Cy (R, t, X)= [ _ e E[NI(HU)\X (t) = X]du STAGX (t) — Aji X(t))
- Do (u) / \
then, a second order approximation

Cy(R,t,X) =237, Xi+ = @;X(O)

virality vulnerability

infectious edge



OPTIMAL GREEDY DRA

LRIE - Largest Reduction of Infectious Edges

Toy example

O infected node

O healthy node

= edge between
nodes of the
same state

=== |nfectious edges
possible to transmit
the disease

Node h is the most central

Node e and d are the most viral

Node e is the least vulnerable (safest)

"laréa't eduction in Infectious Edges

LRIE node ranking
Priority 1: e | S;.=3-0
Priority 2: d | S;=3-1
Priority 3: f | S=1-2



OPTIMAL GREEDY DRA

Demonstration on an artificial contact network *“Lorfag Reduction in infections Edges
Comparison of Resource Allocation strategies for diffusion control
Imq st Reduction of \putml Rmhus - IRSR Largest Reduction of Infectious Edges - LRIE

‘~(

Woatch online: http://www.youtube.com/watch2v=xS-0p7h10eM



http://www.youtube.com/watch?v=xS-0p7h1OeM

RESULTS

Random graph model: scale-free

Scale-free network: 2 35! ——— RAND
4 3 ™" | s \IN
N = 10 nodes £ 30 LRSR
[0}
_ S 25¢ — PRC
p - 0-001 :i)j 20 _MSN
— 4V LIN
m=5 ;’_,) 15| —— LRIE
£ 10!
3
o b
Q.
0 0.05 01 0.15
time
(a) e =4000
r=2,b,=10

percentage of infected nodes
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time
(b) e=3000

r=2,b,=10



RESULTS

Random graph model: Erdés-Rényi

Heatmaps of avg. AUC ratio
AUC(LRIE) / AUC(LRSR)

Erdos-Rényi networks:

N = 1,000 nodes, p =0.01

Small and large values for
r=pf/oande=p/o

effective spreading rate (r)
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treatment efficiency (e)

6
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0.6

75
treatment efficiency (e)

(a) bror = 100; small r, e

0 25 5

(b) btor = 10; large r, e values



RESULTS

Random graph model: scale-free

o
o

Heatmaps of avg. AUC ratio
AUC(LRIE) / AUC(LRSR)
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Scale-free networks:

N = 1,000 nodes, p =0.01

o
w

o
~
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Small and large values for
r=pf/oande=p/o

effective spreading rate (r)
effective spreading rate (r)
w

o
o
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(a) btor = 100; small r, e (b) btor = 10; large r, e values



RESULTS

Real-world networks

Twitter subgraph

1,000 ego-networks
N = 81,306 nodes, E = 1,342,303 edges

US air traffic

N = 2,939 nodes, E = 30,501 edges

DP scenario

Network Strategy AUC, T..ep Ni(T),
) r (= btot

Twitter 1 0.2 300 100 RAND 00 00 30.6%

subgraph MN 00 00 33.4%

LRSR 246,476 7.70 0%

MSN 89,671 2.52 0%

LRIE 64,425 2.07 0%

1 0.2 200 100 RAND o0 s 37.3%

MN o0 s 42.3%

LRSR 161,195 5.11 0%

LRIE 87,600 3.03 0%

1 0.2 50 100 RAND o0 s 46.4%

MN 00 e 48.5%

LRSR 00 %) 48.9%

MSN o0 %) 44.4%

LRIE 00 %) 29.2%

US air I 2 210 50 RAND o0 %) 26.1%

traffic MN o0 o) 73.8%

LRSR 3,723 1.81 0%

MSN 3,235 1.65 0%

LRIE 493 0.43 0%

1 2 150 50 RAND 00 e 38.9%

MN 00 00 76.6%

LRSR 00 s 76.5%

MSN 00 s 76.4%

LRIE 863 1.08 0%

1 2 100 50 RAND 00 00 49.7%

MN o'e 00 79.0%

LRSR 00 00 79.2%

MSN o0 00 77.4%

LRIE 00 00 23.1%




LRIE: PROS & CONS

"'Larﬁaqt eduction in Infectious Edges

Advantages
brings the intuitive idea of reduction of infectious edges (front)
optimal greedy, fast and quite efficient
can adapt to network and/or budget changes

not difficult to imagine a distributed version

Disadvantages
ignores macroscopic network properties (e.g. clusters)

cannot apply co-ordinated actions



PROBLEM SOLVED?

Question

Is there a way to make an efficient plan that respects the network
properties, and follow it persistently throughout the whole process®

What kind of guarantees could be provided?



GLOBAL PRIORITY PLANNING

Definitions

Priority-order: a bijection ¢ : V—{1,..., N}

s.t. /(v) the position of node v in the order

Priority planning: DRA strategies that are
based on a priority-order

limited budget I, max resource per node p,
healing top-q(t) nodes (i.e. left-most)

a(t) = min {[£], 52, X (1)}
{ o7 if Xa(t) = Land £(v;) < 0(t);

0 otherwise

O infected node
O healthy node
cwl =3l _ o eececccsaq
.....

-
--------

Priority-order ¢: V — {1,2,3,4,5}



GLOBAL PRIORITY PLANNING

Graph theoretic properties of a priority-order

Cut at positionC: (. (/) = Zw AijLip(v)<e<e(v;))
MaxCut of {1 C*(¢) = max C.({)
Cutwidth of G: VW = min C*(f)
Extinction time: 7, = min{t€ R |X(0) ==z, X(¢) =0}
non-inf random quantity depending on the DRA strategy

sub-critical behavior:  IE[7,] < polynomial function

super-critical behavior: E[7:] > exponential function

Requirement for designing a strategy:

connect the properties of the order £ to [E[7,]

O infected node
O healthy node
cwl =3l _ o eececccsaq
e - - : ".’ .......

Priority-order ¢: V — {1,2,3,4,5}



GLOBAL PRIORITY PLANNING

Explaining the role of MaxCut

Toy e)fqmple @ @ I I @

O infected node
O healthy node

.-.---.. ‘.---...

- eadge between ..
nogdes of the (a) PrlorltY'Order g: V — {1, 2, 3, 4, 5}
same state

=== infectious edges cut =1

possible to transmit

the disease I I I I lI

(b) Priority-order ¢': V —{1,3,4,2,5}

Red vertical line: the front separating the healthy (left) from the

infected part (right) of the network

Priority-order with

MaxCut = 3

Priority-order with
minimal MaxCut = 1

The MaxCut indicates highest vulnerability for the healthy part and is

the most difficult step of the priority plan



THEORETICAL RESULTS

How good priority-orders are?

UPPER BOUND

Let d the maximum number of neighbors, g = (%] the number of treated nodes, and
~ d(3+2In N+4q)
C*(¢)

. Assume that:

r+38g > BCT (L) (1+ 2./ +¢)
Then the following upper bound holds for the expected extinction time [E[7|:

6N

Elr]| < 3



MAXCUT MINIMIZATION (MCM)

MCM Strategy [2, 3, 4]

MCM strategy

seeks for the priority-order ¢ with the minimum
MaxCut C*(/) of edges

heals the ((t) leftmost infected nodes in ¢
uses a relaxation of ¢,,.,,(G) = argminC" (/)
¢
by
P 1/p
MpLA: ¢(G, () = (ZMA@- £(v) = L))

Algorithm 1 MCM strategy

> Prior to he diffusion process:

Compute the priority-order {=/{,,,,,(G) by minimizing the
maxcut C* (/)

Order the nodes of G according to /, i.e. compute the node list
(1, .y on) st Vi€ {1, ... N}, O(v;) =i

> During the diffusion process:
Input: network G, state vector X (), resource budget r,
resource threshold p
Output: the resource allocation vector p(t)
q <[]
if Y. Xi(t) < ¢ then
return %X(_t)
end if
p(t) <0 // a zero vector in RN
budget < q
1+ 1
while budget > 0 do
if X,,(t) =1 then
Po; (1) ¢ g
budget + budget — 1
end if
141+ 1
end while
return p(t)




MAXCUT MINIMIZATION (MCM)

Solving the MLA problem

Learning an ordering for a network

find communities in G and order them :

(high-level nodes) with spectral ®e ’

sequencing \J

order nodes inside each cluster with e ®

spectral sequencmg,. orlenf ’r.o each - - - -

other, and then optimize with node D D— D— D

swaps internally to clusters e T PP P o
S* S~—F - S

apply the swap-based approach — — . o o

again to the overall node ordering ~— ~— ~—



RESULTS

Quality of the theoretical bound

Verifying
r* =~ BC*(¢)

resource threshold (r*)
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(a) high infectivity: 8 =10 (b) low infectivity: 5 =0.1

picks orderings at random out of MCM, RAND, MN, LN, LRSR
various random network models, N = 1,000, g = {1,...100}

I was estimated empirically with simulations



RESULTS

Experiments on real-networks

W.H.GermanSpeedway

/,

N 1 168 nodes E =1,243 edges,
max(d) =12,6=1,0=0,9=1

MaxCut: 650+/-50 RAND, 379 MN and LN,
104 LRSR, 29 CURE and MCM

OpenFlights

N = 2,939 nodes, E = 30,501 edges,
max(d) =242, 5=1,0=0,9=1

MaxCut: 7,800+/-100 RAND, 7,504 MN and
LN, 6,223 LRSR, 2,231 CURE and MCM

percentage of infected nodes

percentage of infected nodes

CURE
MCM

\

0 10

20

30
time

40 50

(a) low resource budget: » =100

\\W"w\——\_,—-
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(a) low resource budget: r = 3000
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0
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(b) high resource budget: r = 250
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40
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time
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(b) high resource budget: » = 7000



GLOBAL PRIORITY PLANNING

Experiments on real-networks

Subset of Twitter network

with 8 1.306 nodes

MCM can remove the contagion
with ~5 times less resources
than its best competitor !

Strategy | Maxcut Maxcut Expected resource threshold
% w.r.t. RAND (6=1,8=0.1, ¢g=100)

RAND 670,000 = 1000 100.0 % 67,000

MN 628,571 93.8 % 62,957

LN 628,571 93.8 % 62,957

LRSR 349,440 52.2% 34,944

MCM 71,956 10.7 % 7,196

percentage of infected nodes

RAND
MN
LN
LRSR
MCM

time

(a) high resource budget: » =20, 000

percentage of infected nodes

time

(b) low resource budget: r =12, 000
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GLOBAL PRIORITY PLANNING

Experiments on real network (TwitterNet)

€ . ClforLRSR.
1
1
- - Y’ C*for MCM !
| —— LAOofLRSR !
! —— LA of MCM v
%104 ¥ x 10°
0 0.5 1 15 2 25 3 35

cut value

(c) cuts and maxcuts

node position in LRSR order

(d) network state under LRSR

node position in MCM order

(e) network state under MCM



ROBUSTNESS ANALYSIS

Experiments on an increasingly perturbed contact network

x10% x10°
. 35 : : : : : 25 : : : : :
Contact network in [0,1]2 where random priority-order '
each node is connected with all o g Ll |
Ll L[] L E
nodes in radius I 29 g
& 85t .
Q 2r g 15
E E almost all original
815 g edges have been
. ol ordering E changed (o = 3r)
MCM 1T Eos
05 - [~
The priority ordering remains o optimal priority-order | . . . . . .
. pe e 0 05 1 15 2 25 3 0 05 1 15 2 25 3
VCIIId cffer IOCGI mOd’f’CGhonS noise to neighborhood size ratio (o /1) noise to neighborhood size ratio (7 /1)
of the network connectivity (@) C*(¢) value as a function of (b) number of edges added or re-

noise moved as a function of noise



CONCLUSION

Diffusion processes and control... introduced
DPs are super-significant in the new socio-economic context

Two efficient methods were presented for dynamic resource allocation
Computational approaches which can be applied in multiple network resolutions

They can be used for epidemic control, MCM also as an assessment tool

The MaxCut assesses the quality of a plan
The Minimum MaxCut assess the resource needs of a network
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