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Graph

⇒ Reconfiguration graph

Solutions // Nodes. Most similar solutions // Neighbors.
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Necessary condition
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Another necessary condition
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Two sufficient conditions

Theorem (Wrochna ’14)

Let α, β be 3-colorings of a graph G. If

w(C , α) = w(C , β) for every cycle C in G, and

there is no frozen cycle in α nor β,

then G can be recolored from α to β

Corollary

Every graph with no cycle of length 0 mod 3 is 3-colorable.

Proof.

Take a minimum counter-example G . Take an edge uv ∈ E (G ).
⇒ 3-coloring α of G − uv .
 3-coloring β as β(w) = α(w) + 1 (mod 3) for every vertex w .
⇒ G − uv can be recolored from α to β.
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Anti-ferromagnetic Potts Model

A spin configuration of G = (V ,E ) is a func-
tion σ : V → {1, . . . , k}. (a graph coloring)

Probability that a configuration appears is
proportional to (temperature of the sys-
tem)/(number of monochromatic edges).

Definition

(Glauber dynamics) Limit of a k-state Potts model when T → 0.
⇔ All the k-colorings of G .

The physicists want to:

Find the mixing time of Markov chains on Glauber dynamics.

We need to recolor only one vertex at a time.

Generate all the possible states of a Glauber dynamics.

We have no constraint on the method.
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Limit of the recoloring model

In many applications, colors are interchangeable.

More actions may be available.

Which type of actions ensures that the reconfiguration graph
is connected?

M. Bonamy, N. Bousquet, C. Feghali, M. Johnson Kempe equivalence of colourings 7/16



Limit of the recoloring model

In many applications, colors are interchangeable.

More actions may be available.

Which type of actions ensures that the reconfiguration graph
is connected?

M. Bonamy, N. Bousquet, C. Feghali, M. Johnson Kempe equivalence of colourings 7/16



Limit of the recoloring model

In many applications, colors are interchangeable.

More actions may be available.

Which type of actions ensures that the reconfiguration graph
is connected?

M. Bonamy, N. Bousquet, C. Feghali, M. Johnson Kempe equivalence of colourings 7/16



Kempe chains

Let a, b be two colors.

A connected component of the graph induced by the vertices
colored by a or b is a Kempe chain.

Permuting the colors of a Kempe chain is a Kempe change.

⇒ Kempe changes generalize single vertex recolorings.
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Kempe equivalence
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Goal

∆: Maximum degree of the graph

Theorem (Brooks ’41)

Every graph is ∆-colourable, except for cliques and odd cycles.

Conjecture (Mohar ’05)

All the ∆-colourings of a graph are Kempe equivalent.

Meyniel, Las Vergnas ’01: All the (k + 1)-colourings of a
k-degenerate graph are Kempe equivalent.

(k-degenerate: every subgraph contains a vertex of degree ≤ k)
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∆: Maximum degree of the graph

Theorem (Brooks ’41)

Every graph is ∆-colourable, except for cliques and odd cycles.

Conjecture (Mohar ’05)
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Results

The conjecture is false! (van den Heuvel ’13)

2 3

1

2

13
1 2

3

2

13

(3-prism)
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Results (2)

Theorem (Feghali, Johnson, Paulusma ’15)

True for all cubic graphs (other than the 3-prism).

Partial positive result: no ’equivalent’ to the 3-prism for k ≥ 4!

Theorem (B., Bousquet, Feghali, Johnson ’15)

True for all k-regular graphs with k ≥ 4.
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Main observation

Lemma (Meyniel, Las Vergnas ’01)

In a 3-connected graph with

u
v

w

, all the colorings
where u and w are colored alike are Kempe equivalent.

Sketch:
Identify u and w .

The resulting graph is connected and (∆− 1)-degenerate.

∆-colorings of a (∆− 1)-degenerate graph are equivalent.

Consequence: If every coloring is equivalent to a coloring where u
and w are colored alike, all the colorings are Kempe equivalent.

∆-coloring α ∆-coloring β
⇓ ⇑

∆-col. α′ where α′(u) = α′(w) ⇒ ∆-col. β′ where β′(u) = β′(w)
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Sketch of the main result

Theorem (B., Bousquet, Feghali, Johnson ’15)

All the colorings of a connected k-regular graph with k ≥ 4 are
Kempe equivalent.

By contradiction: let G be a minimal k-regular graph with ≥ 2
Kempe classes.

If G is not 3-connected ⇒ contradiction.

If G does not have diameter at least 3 ⇒ contradiction.

⇒ G is 3-connected of diameter ≥ 3.
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If G does not have diameter at least 3 ⇒ contradiction.

⇒ G is 3-connected of diameter ≥ 3.
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Sketch (2)

So G is 3-connected of diameter ≥ 3.

Let u, v at distance ≥ 3.

Let w1,w2 in N(u) s.t. (w1,w2) /∈ E .

Let x1, x2 in N(v) s.t. (x1, x2) /∈ E .

d ≥ 3

x1

x2

w1

w2

u v

Goal: There exists a coloring s.t. w1,w2 are colored alike and
x1, x2 are colored alike.

for any ∆-coloring, two neighbors of v are colored the same

Sketch:
∆-coloring α ∆-coloring β

↓ ↑
∆-col. α s.t. ∆-col. β s.t.
α(x1) = α(x2) β(x3) = β(x4)

↘ ∆ col. γ s.t. ∆ col. γ′ s.t. ↗
γ(w1) = γ(w2) → γ′(w1) = γ′(w2)
γ(x1) = γ(x2) γ′(x3) = γ′(x4)
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Goal: There exists a coloring s.t. w1,w2 are colored alike and
x1, x2 are colored alike.

for any ∆-coloring, two neighbors of v are colored the same

Only problem if {x1, x2,w1,w2} is a vertex cut.

Erdős et al ’79: A connected graph is degree-choosable unless
every 2-connected component is a clique or an odd cycle.
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Conclusion

Maximal distance between two colorings?

Algorithmic aspects of Kempe chain reconfiguration?

Characterize the graphs for which all the (∆− 1)-colorings are
Kempe equivalent.

Number of Kempe classes for the triangular lattice for k = 5?

Consequence in physics: Close the study
of the Wang-Swendsen-Koteký algorithm for
Glauber dynamics on triangular lattices.

Thanks for your attention!
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