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Ground-truths and quality
functions




Community detection and quality functions

Social network :
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Community detection and quality functions

A clustering :
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Community detection and quality functions

Two clusterings :

How to chose the best?
We use quality functions, for optimisation and evaluation
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Algorithms application
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Comparison with ground-truth
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Application of quality functions
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Coherence quantification

Quality1 Quality2 Quality3
Graphl Graph2 | Graphl | Graph2 | Graphl | Graph2
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red : good coherence
blue : bad coherence
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Methodology

Ground
truths

Graphs

%Algorithms

Spearman

Comparison Gold standards
methods
N
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functions

We measure the coherence of the quality functions with ground-truth

data
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Finding context

Context : ground-truths where quality functions behave the same way.
Qualityl | Quality2 | Quality3

Graphl
Graph2

=

‘ Graphl
Graphl -
Graph?2 -

Graph2

Jean Creusefond, GREYC, Normandy University Quality and motifs 9/25



Need for data

Ground-truths

Algorithms

Quality
functions

Comparison
methods

Communities that can be
trusted

They should have various
designs.

The main items to compare

Multiple functions output
complementary results
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Comparison methods

Normalised Mutual Information (NMI)

Captures the quantity of information needed to infer one clustering from
the other.

| \

F-BCubed

The average ratio, over all individuals, of neighbors in one clustering that
are still neighbors in the other one.

A\
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Synthetic networks

Is the methodology able to recognise networks with a similar structure?
LFR benchmark : tunable virtual graphs, with social-network structure.

@ NMI : Globally coherent with our expectations, but influenced by
random generation

o F-BCubed : More robust, difference of overlapping over-matches
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Table 1 : NMI Table 2 : F-BCubed
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(flickr, 1j, youtube) : Online social networks

file\quality | cc [fb3 | mod | nmi | perm |sign |cond | FOMD | comp |cut ratio | f-odf | sur
Cs
actors
amazon
cora
dblp
flickr
football
github
lj
youtube

(flickr, 1j, youtube) : Modularity
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CoDACom : free software

CoDACoOm

A community detection tool
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Communities and temporal

motifs




Definition

The communication structure (i.e. frequent motifs) is different inside and
outside communities.

A motif is a regularly repeated communication pattern. A motif has a
depth (distance from origin), a size (number of nodes) and a level
(number of edges).

/&N L

Figure 1 : All level 2 motifs
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Assessing causality

Traditionnally (Zhao et al. 2010, Tabourier et al. 2012), causality is
assessed if there is a small time (parameter W) difference between
emission of the messages.

Not adapted to asynchronous communication.

In this example, AB-AC-CA is not a motif if W < 999.
What if C was just away?
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Messages received

B ——

Messages sent

Activity period 1

> Activity period 2
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Example of activity period-based motifs

0 —0—0 0
a B Y

1 ._@_
a B Y

> ap-y-ap
_@_._ AB-BC-AB

o B Y
1000 aB-By-ya
AB-BC-CA

o] B Y

1001 By-ya-ay
00 W AB-BC-CB
t
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Null models

A null model, generated from a base graph, is the same except for a
structural property that has been randomised.

Objective

By differentiating the null model and the base graph, one can isolate the
influence of the randomised property.

Time-mixing model : the timestamps of communications are shuffled
for each user = causality is destroyed
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Using the time-mixing model to asses the influence of

causality

Assumption : the measured values follow a gaussian distribution in the
null model (checked in practice).
Therefore :
@ low (~ 0.3%) probability that a value from this distribution would
be far from the average (3 x o)
@ a point far from the average probably does not come from this
distribution
@ the distribution difference is due to the destruction of causality (the
only property that is randomised)
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Experiments : data

Data from KONECT (http://konect.uni-koblenz.de/):
o Digg : reply-to

Ikml : reply-to

slashdot : reply-to

radoslaw : mail

Enron : mail

Facebook wall : post-to
o UC Irvine : instant message

Memberships : iLCD, Louvain and infomap (on aggregated networks)
We also have access to a reply-to network with an overlapping group
structure (threads):

@ Debian : reply-to (with membership)
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Experiments : temporal triangles (1)
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Experiments : temporal triangles (2)
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Triangles are more frequent and short than the null model = we are
detecting structure
Slightly less included in communities, multiple possible explanation :

o individuals inside of communities use various means of
communication

@ peripherical communications need structure
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Conclusions

No structure inside communities?

No pattern has a surprisingly high community score, except with debian
membership.

Negociation with my university to get anonymised data about mails and
users.

Using motifs for user categorisation

Analysis at user level : if a user emits a lot of some patterns, does that
imply a role for him?
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