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Ground-truths and quality

functions
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Community detection and quality functions

Social network :
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Community detection and quality functions

A clustering :
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Community detection and quality functions

Two clusterings :

How to chose the best?
We use quality functions, for optimisation and evaluation
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Algorithms application

Alg1
Alg2
Alg3

× Graph1
Graph2

⇒

Graph1 Graph2

Alg1

Alg2

Alg3
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Comparison with ground-truth

Graph1 Graph2

Alg1

Alg2

Alg3

+
Ground-truth1 :

Ground-truth2 :

⇒

Graph1 Graph2
Alg1 gold-standard : ...
Alg2 trustable ...
Alg3 value ...
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Application of quality functions

Graph1 Graph2

Alg1

Alg2

Alg3

×
Quality1
Quality2
Quality3

⇒

Quality1 Quality2 Quality3
Graph1 Graph2 Graph1 Graph2 Graph1 Graph2

Alg1 quality score ...
Alg2 ... ...
Alg3 ...
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Coherence quanti�cation

Quality1 Quality2 Quality3
Graph1 Graph2 Graph1 Graph2 Graph1 Graph2

Alg1 quality score ...
Alg2 ... ...
Alg3

/

Graph1 Graph2
Alg1 gold-standard : ...
Alg2 trustable ...
Alg3 value ...

⇒

Quality1 Quality2 Quality3
Graph1
Graph2

red : good coherence

blue : bad coherence
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Methodology

Graphs

Ground
truths

Quality
functions

Algorithms

Comparison
methods

Partitions Qualities

Gold standards

Spearman

We measure the coherence of the quality functions with ground-truth
data
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Finding context

Context : ground-truths where quality functions behave the same way.
Quality1 Quality2 Quality3

Graph1
Graph2

⇒

Graph1 Graph2
Graph1 -
Graph2 - -
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Need for data

Ground-truths

Algorithms

Quality
functions

Comparison
methods

Communities that can be
trusted

They should have various
designs.

The main items to compare

Multiple functions output
complementary results
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Comparison methods

Normalised Mutual Information (NMI)

Captures the quantity of information needed to infer one clustering from
the other.

F-BCubed

The average ratio, over all individuals, of neighbors in one clustering that
are still neighbors in the other one.
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Synthetic networks

Is the methodology able to recognise networks with a similar structure?
LFR benchmark : tunable virtual graphs, with social-network structure.

Results

NMI : Globally coherent with our expectations, but in�uenced by
random generation

F-BCubed : More robust, di�erence of overlapping over-matches

�le\�lea1a2a3b1b2b3c1c2c3d1d2d3e1e2e3
a1 -
a2 - -
a3 - - -
b1 - - - -
b2 - - - - -
b3 - - - - - -
c1 - - - - - - -
c2 - - - - - - - -
c3 - - - - - - - - -
d1 - - - - - - - - - -
d2 - - - - - - - - - - -
d3 - - - - - - - - - - - -
e1 - - - - - - - - - - - - -
e2 - - - - - - - - - - - - - -
e3 - - - - - - - - - - - - - - -

Table 1 : NMI

�le\�lea1a2a3b1b2b3c1c2c3d1d2d3e1e2e3
a1 -
a2 - -
a3 - - -
b1 - - - -
b2 - - - - -
b3 - - - - - -
c1 - - - - - - -
c2 - - - - - - - -
c3 - - - - - - - - -
d1 - - - - - - - - - -
d2 - - - - - - - - - - -
d3 - - - - - - - - - - - -
e1 - - - - - - - - - - - - -
e2 - - - - - - - - - - - - - -
e3 - - - - - - - - - - - - - - -

Table 2 : F-BCubed
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Results

(�ickr, lj, youtube) : Online social networks

�le\quality cc fb3 mod nmi perm sign cond FOMD comp cut_ratio f-odf sur

CS

actors

amazon

cora

dblp

�ickr

football

github

lj

youtube

(�ickr, lj, youtube) : Modularity
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CoDACom : free software
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Communities and temporal

motifs
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De�nition

Hypothesis

The communication structure (i.e. frequent motifs) is di�erent inside and
outside communities.

A motif is a regularly repeated communication pattern. A motif has a
depth (distance from origin), a size (number of nodes) and a level
(number of edges).

Figure 1 : All level 2 motifs
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Assessing causality

Traditionnally (Zhao et al. 2010, Tabourier et al. 2012), causality is
assessed if there is a small time (parameter W ) di�erence between
emission of the messages.

β γ

0

1

1000

t

α

β γα

β γα

Not adapted to asynchronous communication.

In this example, AB-AC-CA is not a motif if W < 999.
What if C was just away?
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Activity periods

t

Messages received Messages sent

Activity period 1

Activity period 2
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Example of activity period-based motifs

0

1

2

t

1000

1001

αβ-βγ-αβ
AB-BC-AB

αβ-βγ-γα
AB-BC-CA

βγ-γα-αγ
AB-BC-CB

α β γ

α β γ

α β γ

α β γ

α β γ
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Null models

A null model, generated from a base graph, is the same except for a
structural property that has been randomised.

Objective

By di�erentiating the null model and the base graph, one can isolate the
in�uence of the randomised property.

Time-mixing model : the timestamps of communications are shu�ed
for each user ⇒ causality is destroyed
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Using the time-mixing model to asses the in�uence of
causality

Assumption : the measured values follow a gaussian distribution in the
null model (checked in practice).
Therefore :

low (∼ 0.3%) probability that a value from this distribution would
be far from the average (3× σ)
a point far from the average probably does not come from this
distribution

the distribution di�erence is due to the destruction of causality (the
only property that is randomised)
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Experiments : data

Data from KONECT (http://konect.uni-koblenz.de/):

Digg : reply-to

lkml : reply-to

slashdot : reply-to

radoslaw : mail

Enron : mail

Facebook wall : post-to

UC Irvine : instant message

Memberships : iLCD, Louvain and infomap (on aggregated networks)
We also have access to a reply-to network with an overlapping group
structure (threads):

Debian : reply-to (with membership)
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Experiments : temporal triangles (1)
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Experiments : temporal triangles (2)

Triangles are more frequent and short than the null model ⇒ we are
detecting structure
Slightly less included in communities, multiple possible explanation :

individuals inside of communities use various means of
communication

peripherical communications need structure
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Conclusions

No structure inside communities?

No pattern has a surprisingly high community score, except with debian
membership.
Negociation with my university to get anonymised data about mails and
users.

Using motifs for user categorisation

Analysis at user level : if a user emits a lot of some patterns, does that
imply a role for him?

Jean Creusefond, GREYC, Normandy University Quality and motifs 25/25


