

Situations

 Predictions under null model Predictions via our model

Modelling influence and opinion evolution in online collective behaviour

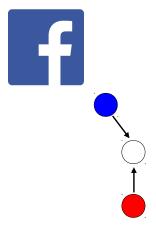
Samuel Martin

Joint work with Corentin Vande Kerckhove, Pascal Gend, Julien Hendrickx, Jason Rentfrow, Vincent Blondel Centre de Recherche en Automatique, NANCY, CNRS-Uni Lorraine UCLouvain, UCambdridge

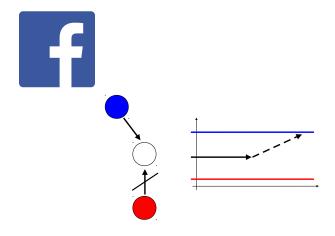
2016

Why modeling opinion dynamics?

Why modeling opinion dynamics?



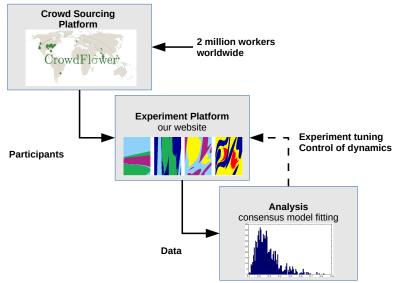
Why modeling opinion dynamics?



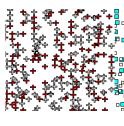
Research questions

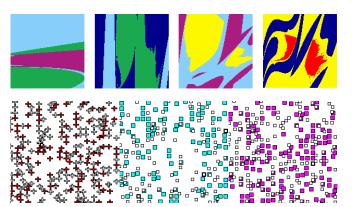
- Can we model opinion evolution as a result of interactions?
- How good can we expect predictions to be?

How to get opinion dynamics data? An in vitro experiment

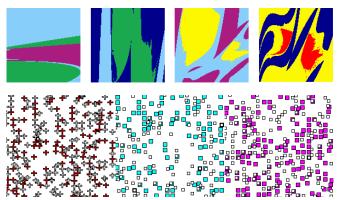


.





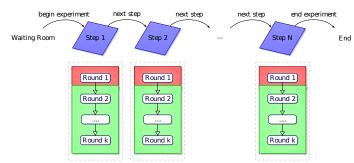
64 groups \times 6 participants \times 30 pictures \times 3 rounds of estimations 71 groups \times 6 participants \times 30 pictures \times 3 rounds of estimations



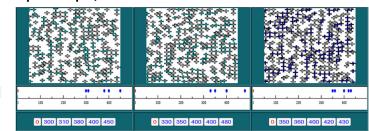
64 groups \times 6 participants \times 30 pictures \times 3 rounds of estimations 71 groups \times 6 participants \times 30 pictures \times 3 rounds of estimations

Incentives \Rightarrow Money \$0.10 (+ \sim \$0.5) per 30min

Experimental design



Example - Step 1, Round 2



Data analysis

Opinion dynamics models

$$x_i(t+1) = x_i(t) + \frac{1}{n} \sum_i a_{ij}(t) (x_j(t) - x_i(t)) + \eta_i(t)$$

Models

- **Null :** No influence : $a_{ii}(t) = 0$
- Ours : Infuencability Decay in time : $a_{ij}(t) = \alpha_i(t)$

Additive noise : $\eta_i(t)$

How to estimate the parameters?

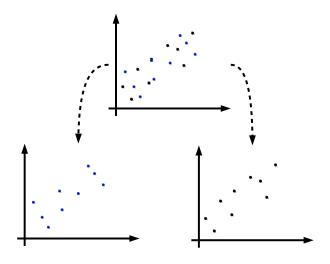
→ Minimize the mean square error

Mean-square error

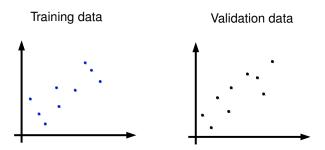
$$\mathit{MSE}(\alpha, \sigma^2) = \sum_{g \in \mathit{games}} \|\tilde{x}(2) - x(2)\|^2 + \tilde{x}(3) - x(3)\|^2$$

- x(t): actual decision by the real participants
- $\tilde{x}(t)$: prediction given x(1) and α

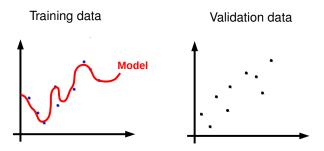
 \Rightarrow Via crossvalidation : Split population of 600 participants into 2



⇒ Via crossvalidation : Split population of 600 participants into 2

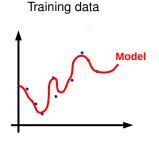


⇒ Via crossvalidation : Split population of 600 participants into 2

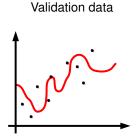


Learn $\alpha(1) \in \mathbb{R}$ and $\alpha(2) \in \mathbb{R}$ best predicting opinion evolution

⇒ Via crossvalidation : Split population of 600 participants into 2

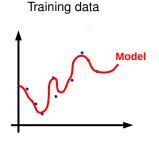


Learn $\alpha(1) \in \mathbb{R}$ and $\alpha(2) \in \mathbb{R}$ best predicting opinion evolution

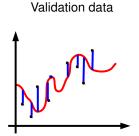


Use $\alpha(1)$ and $\alpha(2)$ to predict opinion evolution

⇒ Via crossvalidation : Split population of 600 participants into 2



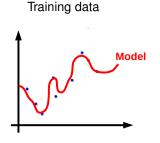
Learn $\alpha(1) \in \mathbb{R}$ and $\alpha(2) \in \mathbb{R}$ best predicting opinion evolution



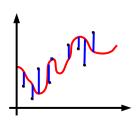
Use $\alpha(1)$ and $\alpha(2)$ to predict opinion evolution

→ Compute MSE on validation set

⇒ Via crossvalidation : Split population of 600 participants into 2



Validation data



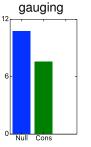
Learn $\alpha(1) \in \mathbb{R}$ and $\alpha(2) \in \mathbb{R}$ best predicting opinion evolution

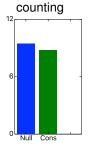
Use $\alpha(1)$ and $\alpha(2)$ to predict opinion evolution

→ Compute MSE on validation set

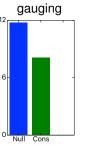
→ Repeat many times

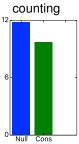
Compute average MSE





Third Round judgments

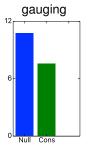


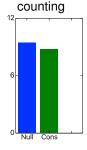


Situations

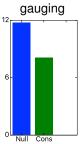
 Predictions assuming constant opinions Predictions via consensus model

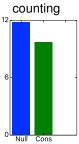
Second Round judgments





Third Round judgments



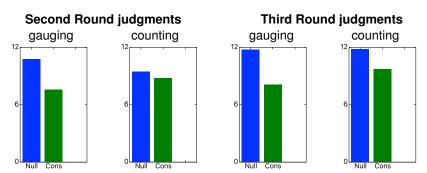


HOW GOOD IS THIS?

Situations

 Predictions assuming constant opinions

 Predictions via consensus model



HOW GOOD IS THIS? ... compared to BEST POSSIBLE PREDICTIONS?

Situations

 Predictions assuming constant opinions Predictions via consensus model

Assume we know the ideal predictive model

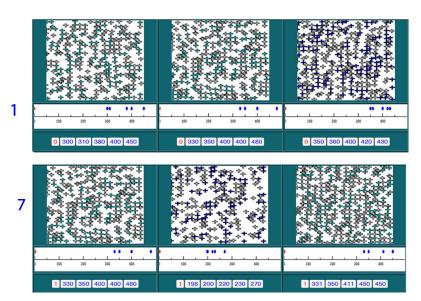
$$x_i(2) = f_i(x_i(1), x_{others}(1), picture) + \eta,$$

ightarrow std(η) intrinsic variation of a participant : lower bound for prediction error

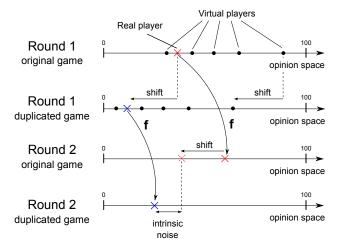
How can we measure $std(\eta)$?

Control experiment

→ Over 30 pictures, 20 were couples of replicates



Control experiment



Computing the intrinsic variation

Theorem

Assume it exists $\lambda \in [0, 1]$, function g_i and h_i such that

$$f_i(x_i(1), x_{others}(1), picture) = \lambda g_i(x_i(1), x_{others}(1)) + (1 - \lambda)h_i(picture)$$

and

$$g_i(x_i(1) + s, x_{others}(1) + s) = g_i(x_i(1), x_{others}(1)) + s,$$

Then,

$$std(\eta) = \sqrt{mean\left(\frac{1}{2}(x_i'(2) - x_i(2) - \lambda(x_i'(1) - x_i(1)))^2\right)}$$

where mean is taken over all repeated games and all participants and where the prime notation is taken for judgments from the second replicated game in the control experiment.

Proof: Judgments in two replicated games by a same participants:

$$x_i(2) = f_i(x_i(1), x_{others}(1), picture) + \eta$$

 $x_i'(2) = f_i(x_i'(1), x_{others}'(1), picture) + \eta'$

 η , η' : 2 independent draws. Judgments are shifted by same known constant $s = x_i'(1) - x_i(1)$:

$$x'_i(1) = x_i(1) + s,$$

 $x'_{others}(1) = x_{others}(1) + s,$

With the assumption on f_i :

$$x_i(2) = \lambda g_i(x_i(1), x_{others}(1)) + (1 - \lambda)h_i(picture) + \eta,$$

$$x_i'(2) = \lambda g_i(x_i'(1), x_{others}'(1)) + (1 - \lambda)h_i(picture) + \eta'$$

Then, with assumption on g_i :

$$x_{i}'(2) = \lambda (g_{i}(x_{i}(1), x_{others}(1)) + s) + (1 - \lambda)h_{i}(picture) + \eta'$$

and

$$x_i'(2) - x_i(2) = \lambda s + \eta' - \eta.$$

Recall

$$x_i'(2) - x_i(2) = \lambda s + \eta' - \eta.$$

Notice η , η' independent with zero mean, i.e., $\mathbb{E}(\eta) = \mathbb{E}(\eta') = 0$, the theoretical variance of η is

$$\mathbb{E}(\eta^2) = \frac{1}{2}\mathbb{E}(\eta^2) + \mathbb{E}(\eta'^2)$$

$$= \frac{1}{2}(\mathbb{E}(\eta'^2) - 2\mathbb{E}(\eta')\mathbb{E}(\eta) + \mathbb{E}(\eta^2))$$

$$= \frac{1}{2}(\mathbb{E}(\eta'^2 - 2\eta'\eta + \eta^2))$$

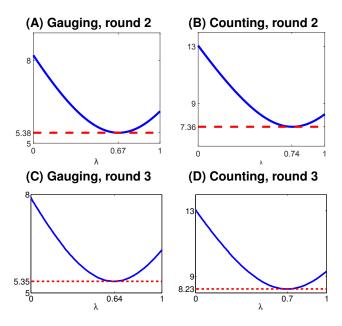
$$= \frac{1}{2}\mathbb{E}((\eta' - \eta)^2).$$

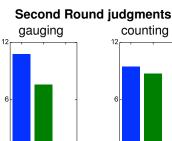
Consequently, the variance of $\boldsymbol{\eta}$ is empirically measured as the average of

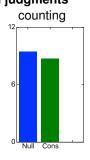
$$\frac{1}{2}(x_i'(2)-x_i(2)-\lambda s)^2$$

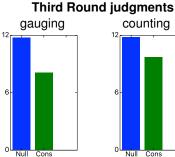
over all repeated games and all participants.

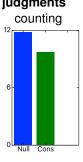
Take the most conservative $std(\eta)$ over all λ







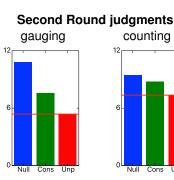


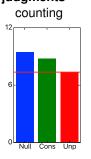


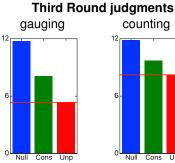
Situations

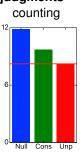
Null Cons

- Predictions assuming constant opinions
- Predictions via consensus model









Situations

- Predictions assuming constant opinions
- Predictions via consensus model

Level of unpredictability

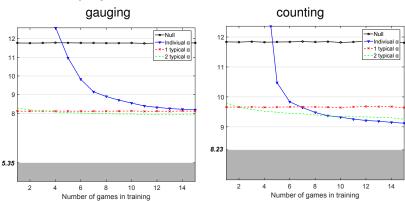
Prediction improvement

- → Use past information on each participant
 - distinct $\alpha_i(1), \alpha_i(2)$ or
 - 2 classes : stubborn ($\alpha^{S}(1), \alpha^{S}(2)$) or compliant ($\alpha^{C}(1), \alpha^{C}(2)$)

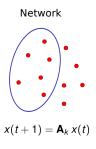
Prediction improvement

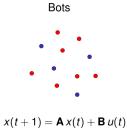
- → Use past information on each participant
 - distinct $\alpha_i(1), \alpha_i(2)$ or
 - 2 classes : **stubborn** $(\alpha^{S}(1), \alpha^{S}(2))$ or **compliant** $(\alpha^{C}(1), \alpha^{C}(2))$

Third Round judgments



Challenges





Modelling influence and opinion evolution in online collective behaviour

Samuel Martin

Joint work with Corentin Vande Kerckhove, Pascal Gend, Julien Hendrickx, Jason Rentfrow, Vincent Blondel Centre de Recherche en Automatique, NANCY, CNRS-Uni Lorraine UCLouvain, UCambdridge

2016