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Research questions

Can we model opinion evolution as a result of interactions ?

How good can we expect predictions to be ?
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How to get opinion dynamics data ? An in vitro
experiment
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worldwide
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64 groups × 6 participants × 30 pictures × 3 rounds of estimations
71 groups × 6 participants × 30 pictures × 3 rounds of estimations

Incentives⇒ Money $0.10 (+ ∼ $0.5) per 30min
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Experimental design
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Data analysis
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Opinion dynamics models

xi(t + 1) = xi(t) +
1
n

∑
j

aij(t) (xj(t) − xi(t))+ηi(t)

Models

Null : No influence : aij(t) = 0
Ours : Infuencability Decay in time : aij(t) = αi(t)

Additive noise : ηi(t)
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How to estimate the parameters ?

→ Minimize the mean square error

Mean-square error

MSE(α, σ2) =
∑

g∈games

‖x̃(2) − x(2)‖2 + x̃(3) − x(3)‖2

x(t) : actual decision by the real participants
x̃(t) : prediction given x(1) and α
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How to assess the predictive power of the models ?
⇒ Via crossvalidation : Split population of 600 participants into 2

  

Learn α(1) ∈ R and α(2) ∈ R best
predicting opinion evolution

Use α(1) and α(2) to predict opinion
evolution
→ Compute MSE on validation set

→ Repeat many times + Compute average MSE
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Model prediction errors

Second Round judgments Third Round judgments
gauging counting gauging counting(A) (B) (C) (D)
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Assume we know the ideal predictive model

xi(2) = fi(xi(1), xothers(1), picture) + η,

→ std(η) intrinsic variation of a participant : lower bound for prediction
error

How can we measure std(η)?

24



Control experiment
→ Over 30 pictures, 20 were couples of replicates
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Control experiment
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Computing the intrinsic variation

Theorem

Assume it exists λ ∈ [0, 1], function gi and hi such that

fi(xi(1), xothers(1), picture) = λgi(xi(1), xothers(1)) + (1 − λ)hi(picture)

and
gi(xi(1) + s, xothers(1) + s) = gi(xi(1), xothers(1)) + s,

Then,

std(η) =

√
mean

(
1
2
(x′i (2) − xi(2) − λ(x′i (1) − xi(1)))2

)
where mean is taken over all repeated games and all participants and
where the prime notation is taken for judgments from the second
replicated game in the control experiment.
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Proof : Judgments in two replicated games by a same participants :

xi(2) = fi(xi(1), xothers(1), picture) + η

x′i (2) = fi(x′i (1), x
′
others(1), picture) + η′

η, η′ : 2 independent draws. Judgments are shifted by same known
constant s = x′i (1) − xi(1) :

x′i (1) = xi(1) + s,

x′others(1) = xothers(1) + s,

With the assumption on fi :

xi(2) = λgi(xi(1), xothers(1)) + (1 − λ)hi(picture) + η,

x′i (2) = λgi(x′i (1), x
′
others(1)) + (1 − λ)hi(picture) + η′

Then, with assumption on gi :

x′i (2) = λ (gi(xi(1), xothers(1)) + s) + (1 − λ)hi(picture) + η′

and
x′i (2) − xi(2) = λs + η′ − η.
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Recall
x′i (2) − xi(2) = λs + η′ − η.

Notice η, η′ independent with zero mean, i.e. , E(η) = E(η′) = 0, the
theoretical variance of η is

E(η2) =
1
2
E(η2) + E(η′2)

=
1
2
(E(η′2) − 2E(η′)E(η) + E(η2))

=
1
2
(E(η′2 − 2η′η+ η2))

=
1
2
E((η′ − η)2).

Consequently, the variance of η is empirically measured as the average
of

1
2
(x′i (2) − xi(2) − λs)2

over all repeated games and all participants.
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Take the most conservative std(η) over all λ
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Prediction improvement

→ Use past information on each participant

distinct αi(1), αi(2) or

2 classes : stubborn (αS(1), αS(2)) or compliant (αC(1), αC(2))
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Challenges

Network                  
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