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Abstract—Many real-world networks based on human activi-
ties exhibit a bipartite structure. Although bipartite graphs seem
appropriate to analyse and model their properties, it has been
shown that standard metrics fail to reproduce intricate patterns
observed in real networks. In particular, the overlapping of the
neighbourhood of communities is difficult to capture precisely.
In this work, we tackle this issue by analysing the structure of
4 real-world networks coming from online social activities. We
first analyse their structure using standard metrics. Surprisingly,
the clustering coefficient turns out to be less relevant than
the redundancy coefficient to account for overlapping patterns.
We then propose new metrics, namely the dispersion and the
monopoly coefficients, and show that they help refining the study
of bipartite overlaps. Finally, we compare the results obtained on
real networks with the ones obtained on random bipartite models.
This shows that the patterns captured by the redundancy and the
dispersion coefficients are strongly related to the real nature of
the observed overlaps.
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I. INTRODUCTION

Many real-world networks – also referred to as complex
networks – lend themselves to the use of graphs for analysing
and modelling their structure. Usually, the vertices of the graph
stand for the nodes of the network and the edges between
vertices stand for (possible) interactions between nodes of
the network. This approach have proven to be useful to
identify non trivial properties of the structure of networks
in very different contexts. We can cite for instance computer
networks (like the Internet, peer-to-peer systems, the web) [1],
[2], biological networks (protein-protein interaction networks,
metabolic processes) [3], [4], social networks (friendship net-
works, co-publication networks) [3], [5], legal networks [6],
linguistics [7], economy [8], etc.

However, even though this representation based on graphs
is relevant, it is often too simplistic to account for the inherent
complexity of most networks. Indeed, if we consider for
instance an actor-movie network [3], [9] which relates actors
to movies, or a co-publication network [9], [5] which con-
nects authors to publications, it is then natural to distinguish
formally the two kind of vertices as two disjoint sets: actors
on one side, movies on the other and authors on one side
and publications on the other. This observation has led the
scientific community to use bipartite graphs to represent such
a constrained structure. Indeed in bipartite, also referred as 2-
mode networks, the set of nodes is composed of two disjoint
parts, > and ⊥ (for example movies and actors), such that

edges only relate vertices of different sets. It has been shown
that this fundamental object is reliable both for analysing [10],
[11], [12] and modeling [13], [14] the structure of real-world
networks.

In a recent paper [14], this approach has been exploited
in order to propose for the first time a bipartite model of the
Internet topology. The model is general enough to be relevant
for any network presenting a bipartite structure as it only takes
as parameters the degree sequence of the nodes in the two dis-
joint sets. The paper showed that despite the simplicity of the
model, non trivial realistic properties of the Internet topology
emerge naturally. But it also showed that the model fails in
reproducing the overlapping observed in the bipartite structure.
This overlapping arises when two ⊥ nodes are related to
several > nodes (two authors publishing more than one paper
together for instance). The observation drawn from the study
conducted on Internet topology has been extended to a wide
variety of different networks in [15], showing that overlaps
are common in complex bipartite networks. Understanding the
structure of the overlaps in bipartite networks is thus a key
concern in the processes of improving our ability to analyse
and model such networks.

The purpose of the present paper is precisely to address the
question of the real nature of overlapping patterns observed in
real networks. To do so, we analyse the structure of 4 different
real-world networks coming from online social activities. This
choice is motivated by the fact that such networks exhibit
a genuine bipartite structure since online platforms usually
propose to the users the ability to gather into communities.
To that regard, these networks are naturally represented by
bipartite graphs with ⊥ nodes defining the users and > nodes
depicting the communities they belong to. We then analyse the
overlapping patterns through the use of both standard metrics
and new metrics proposed in this paper.

The remaining of the paper is organised as follow. First, we
detail the different datasets on which we conducted the study
and give proper definition of the different metrics we used to
analyse their structure (Section II). Then we present the results
obtained and address in particular the variety of overlaps in real
networks as well as in random models (Section III). We finally
conclude the paper by giving some perspective on future work
(Section IV).

II. DATASETS AND DEFINITIONS

In this section, we first present the different datasets we
used in this study (Section II-A) before describing the existing



(Section II-B) and new (Section II-C) metrics we used to
analyse them.

A. Datasets

As explained before, many real-world social network ex-
hibit an intricate structure involving two layers. In order to
have an approach that allows to draw general conclusions,
we relied on a wide variety of social networks involving
communities on a broad sense. We focused in particular
on two membership networks (FLICKR, LIVEJOURNAL) and
two publications networks (CITEULIKE, WIKIPEDIA). Here
below, we briefly describe them explaining what > nodes and
⊥ nodes stand for in these contexts:

• LIVEJOURNAL [16]: This dataset concerns a website
where users are freely allowed to post information
using a blogging system. It also allows people to
declare friendships to each other, and to create and
join groups. Here, > nodes stand for groups and ⊥
nodes for users. It involves approximately 1 million
users and more than 600,000 groups.

• CITEULIKE [17]: This dataset comes from a large
online library which allows users to share, cite or tag
scientific publications. Here we rely on about 150,000
tags and 700,000 publications, considering that >
nodes are the tags and ⊥ nodes are the publications.

• WIKIPEDIA [18]: Here the ⊥ nodes are WIKIPEDIA
articles and> nodes are categories that group pages on
similar topics. For computational reason, we did not
use the whole network and rather focused on a large
connected component 1. This sub-network involves 3
millions articles and almost 500,000 subcategories.

• FLICKR [16]: This dataset is composed of 100,000
groups and 400,000 users (respectively > and ⊥
nodes) from the FLICKR website that allows hosting
and sharing pictures.

Detailed statistics on those datasets are provided exten-
sively in Section III.

B. Metrics for bipartite graphs

In order to best account for the real structure of the datasets
presented above, we rely in this study on bipartite graphs.
Bipartite graphs are triplets Gb = (>,⊥, Eb), where > is the
set of top nodes (e.g., the groups in LIVEJOURNAL), ⊥ the
set of bottom nodes (e.g., the users in LIVEJOURNAL), and
Eb ⊆ >×⊥ the set of links between > and ⊥ (that relate the
users to their groups). We denote by n> (resp. n⊥) the number
of top nodes (resp. bottom nodes) and by mbip the number of
links.

Compared to standard graphs, nodes in a bipartite graph are
separated in two disjoint sets, and the links are always between
a node in one set and a node in the other set (Eb ⊆ >×⊥), see
Fig. 1. Note that for some datasets the information is richer
since we also have links between ⊥ nodes (resp. > nodes), for
instance links between articles (resp. a hierarchy of categories)

1We chose to focus on the connected component containing the Network
Protocol category

in WIKIPEDIA. These additional links are very rich and should
be used. However since we focus on the overlapping patterns
we decided to discard this extra information.

Fig. 1. Example of a bipartite graph.

There are many natural extensions of standard metrics
defined for simple graphs to the case of bipartite graphs,
such as d>(u) (resp. d⊥(v)) the degree (i.e. the number of
neighbors) of a top node u (resp. bottom node v), k> (resp.
k⊥) the average degree of top nodes (resp. bottom nodes),
d+> (resp. d+⊥) the maximal degree of top nodes (resp. bottom
nodes) and δb =

mbip

n>.n⊥
the density of the bipartite graph.

But for more intricate properties, it can be tedious to
propose a ”natural” definition. This is for instance the case of
the local density in the graph, which is defined as the density
of the induced subgraph by the neighbours of a node in simple
graphs. In bipartite graphs, this local density usually tries to
capture how the neighbourhoods of > nodes tend to overlap
each other. Some definitions have been already proposed to
study this property in bipartite graphs [19], [10], [20], [21],
[22]. In the present work, we rely on two of those metrics to
cope with the local density : the bipartite clustering coefficient
and the redundancy coefficient [10]. The first one focuses on
the intersection of the neighbourhood of two > nodes, while
the second one focuses on the impact of removing v as regard
to the relations between ⊥ nodes.

More formally, let N⊥(u) denote the set of neighbours of
a node u ∈ > (i.e., bottom nodes u is linked to) and N>(v)
the dual definition for a ⊥ node v. We can then define the
bipartite clustering coefficient between two top nodes by:

cc(u, v) =
|N⊥(u) ∩N⊥(v)|
|N⊥(u) ∪N⊥(v)|

. (1)

This coefficient is equal to 1 if the neighbourhoods of u and
v are equal (complete overlap), 0 if they have no ⊥ nodes in
common. Then, it is natural to derive the clustering coefficient
of u cc(u) as the average value of cc(u, v) for all v ∈ > that
share at least one common neighbour with u. Finally we can
derive ccbip, the clustering coefficient of the graph Gb, as the
average value for all > nodes 2

As regard the redundancy coefficient of a > node u, it is
formally defined as:

2Note that for this coefficient, as well as for the next ones, the dual notion
for bottom nodes can be derived, although we will not use it in the present
article.



rd(u) =
|{{v, w} ∈ N⊥(u)2 s.t. N>(v) ∩N>(w) 6= {u}}|(|N⊥(u)|

2

) .

(2)

Intuitively a high value of the coefficient indicates that two
⊥ nodes that u relates are likely to be also related by another
> node (two users belonging to a group u also share another
group in common), thus revealing some overlapping pattern in
the structure. As for the clustering coefficient, we can derive
the redundancy coefficient rdbip of the bipartite graph Gb, as
the average value of the former coefficient over all > nodes.

Looking at the examples provided in Fig. 2, we can assess
the relevance of the redundancy coefficient for identifying
overlapping pattern. In Fig. 2a in which there is no overlap
for node 2, one can check that rd(2) = 0 while in Fig. 2b,
the value of the coefficient is 2

3 which reflects the fact that 2
over the 3 possible relations between nodes C, D and E are
not affected by the removal of node 2 due to overlapping with
nodes 1 and 3.

(a) Structure with no
overlap

(b) Structure with overlap

Fig. 2. Two bipartite graphs depicting a different structure around node 2.

C. Two new metrics to describe the overlap

In order to refine those classical metrics, we now propose
two new coefficients, related to the overlapping structure in
bipartite graphs. We first define the dispersion coefficient
which focus on how are distributed the links among the
neighbours of u ∈ >. More precisely, we compute the maximal
number of different communities that could be related to the set
of neighbours of u. Let N>(u) denote the set of > neighbours
of a node u ∈ > (i.e., the set of all > nodes that share at least
one bottom node with u). The dispersion coefficient disp(u)
is then defined by:

disp(u) =
|N>(u)| − 1∑

v∈N⊥(u) (|N>(v)| − 1)
(3)

Intuitively, the dispersion measures whether members a
group tend to share same other groups or not. If the dispersion
of a > node u is complete, then the size of the set of all
communities related to its ⊥ neighbours (|N>(u)| − 1) will
match exactly the sum of their degree (minus 1). Thus the
value of the coefficient is equal to 1. This is the case for
node 2 in Fig. 2a. This value is directly correlated to the fact
that the redundancy of this node is equal to 0, no overlap
implying complete dispersion of the links. On the other hand,

when some overlapping pattern are present (see Fig. 2b), the
dispersion tends to decrease: disp(2) = |{1,3}|

1+2+1 = 1
2 .

Finally, we propose another metric which accounts for the
specificity of degree-1 ⊥ nodes that are particularly numerous
in real-world networks, thus impacting the analysis of overlap-
ping patterns. We therefore define the monopoly coefficient as
the proportion of degree-1 neighbours of a > node u. Formally:

mon(u) =
|{v ∈ N⊥(u) s.t. d⊥(v) = 1}|

|N⊥(u)|
(4)

As for the former coefficient, it is naturally possible to
derive the dispersion, or the monopoly, of a bipartite graph as
the average value of the corresponding coefficients over all >
nodes. As we will see further in the next section, these metrics
are able to refine the analysis provided by the standard metrics
and help understanding the true nature of the observed overlaps
in bipartite networks.

III. ANALYSIS OF THE BIPARTITE STRUCTURE

The purpose of the present section is to understand the
behaviour of the different metrics computed on the four
datasets presented previously. We start by providing general
statistics for the different networks (Section III-A). Then we
detail the analysis by investigating in particular the relevance
of the traditional clustering and redundancy coefficients to
characterise overlapping patterns in bipartite networks (Sec-
tion III-B), whether the new proposed metrics are able to refine
the analysis (Section III-C) and how random models affect
the structure of the networks as regards to these properties
(Section III-D).

As for the former coefficient, it is naturally possible to de-
rive the dispersion (resp. monopoly) of a bipartite graph as the
average value of the dispersion (resp. monopoly) coefficients
over all nodes, which we denote by dispbip (resp. monbip).

A. Global properties

CITEULIKE LIVEJOURNAL WIKIPEDIA FLICKR
n> 153,3 K 664,4 K 484,5 K 103,6 K
n⊥ 731,8 K 1,15 M 3,13 M 396 K
δb(∗10−5) 2.1 0.9 0.7 20.8
k> 15.02 10.79 22.31 82.46
k⊥ 3.20 6.24 3.46 21.58
d+> 153 K 149 K 36 K 35 K
d+⊥ 1,3 K 682 138 2.2 K
ccbip 0.138 0.117 0.063 0.055
rdbip 0.521 0.703 0.387 0.646
dispbip 0.725 0.842 0.705 0.769
monbip 0.071 0.070 0.088 0.148

TABLE I. GLOBAL PROPERTIES OF THE BIPARTITE STRUCTURE OF
THE DATASETS.

We first focus on some global statistics of bipartite graphs
as presented in the previous section. Table I presents the
results for the four datasets. It shows that the networks under
investigations present standard properties commonly observed
in real-world networks [13]. In particular one can notice that
the networks are globally sparse (δb) while local densities
are order of magnitudes higher (ccbip and rdbip). Besides,
the order of magnitude between the average degrees (k> and
k⊥) and the maximal degrees (d+> and d+⊥) indicates some



heterogeneity in the degree distribution of both > and ⊥
nodes 3.

As regard the two classical metrics usually used to capture
overlaps in bipartite structures (ccbip and rdbip), one can
notice that they strongly differ. By relying on the clustering
coefficient, those networks seems to present few overlaps
while, on the contrary, the redundancy coefficient tends to
indicates the presence of overlaps. The FLICKR case is to
that regard eloquent. This raises the question of understanding
which one of the two coefficients is the more relevant to depict
the presence of overlaps in the structure. This question will be
investigated more deeply in Section III-B.

If one focus now on the new metrics (dispbip and monbip),
one can notice that the average monopoly is very low for
each network, indicating that degree-1 ⊥ nodes seem well
distributed in the communities. On the contrary, the average
dispersion is high. This seems to contradict the redundancy
coefficient as it tends to indicate a lack of overlaps in the
structure. But such an aggregated value is difficult to analyse
and a more detailed discussion is provided in Section III-C.

B. Standard bipartite metrics

The global statistics presented in the previous section do
not allow to grasp the diversity of the possible situations for all
> nodes. In order to refine this first analysis, we then compute
the value of the different coefficients for all > nodes, which
allows to study the distribution of the values as well as some
correlations between the metrics.

(a) Clustering coefficient (b) Redundancy coefficient

Fig. 3. Inverse cumulative distribution of the clustering and redundancy
coefficient.

Fig. 3 presents the inverse cumulative distribution function
of the clustering (Fig. 3a) and redundancy (Fig. 3b) coeffi-
cients, showing clearly two different distributions. Whereas the
distributions sharply decrease for the clustering coefficient, it
seems to be quite uniformly distributed for the redundancy
coefficient, except for the extreme values (0 and 1) which are
highly represented.

More importantly, one can notice that the proportion of
poorly clustered nodes is large. More than 75% of the nodes
have a value lower than 0.2 in all datasets. The proportion of
redundant nodes are in contrast particularly high. The fraction
of > nodes that have a redundancy of 1 is for instance
extremely important for all datasets: 17% for WIKIPEDIA,
38% for CITEULIKE and FLICKR, 58% for LIVEJOURNAL.

3Due to space limitation, degree distributions plots are not presented here
but they confirm this statement.

Considering this last case, it means that for more than half of
the groups created in LIVEJOURNAL, every pair of members
belong to (at least) one other group in common. This is
surprising, especially since the average numbers of groups a
user belong to is very low (6.24, see Table I). This indicates
the presence of non trivial overlapping pattern in the networks
which is not captured by the clustering coefficient, thus leading
to the conclusion that the notion of redundancy is more suited
to identify real overlapping patterns in bipartite networks.

(a) Degree vs. Clustering (b) Degree vs. Redundancy

Fig. 4. Correlations between the degree and the clustering/redundancy
coefficients.

In order to understand why such a difference is observed,
we present Fig. 4 the correlation between the degree of a >
node and its clustering or redundancy coefficient. More pre-
cisely, we consider for each > node u a point with coordinate
(d⊥(v), disp(v)) (Fig. 4a) or (d⊥(v), rd(v)) (Fig. 4b). The
plot shows the average value for different intervals.

Fig. 4a shows a clarifying fact: the value of the clustering
seems to be strongly related to the degree of the node: the
higher the degree, the lower the clustering. Such a correlation
is not present for the redundancy, Fig. 4b. This strengthens our
former conclusion on the relevance of the redundancy to detect
overlaps. Indeed, the redundancy seems to be independent of
the degree, while the clustering can be derived from it and is
thus more related to the number of neighbours and less to the
structure of the relations.

C. Refining the analysis with new metrics

The results presented above focus on the standard metrics
proposed as extensions of the notion of local density for
bipartite graphs. It shows that the notion of redundancy is
well suited to detect overlaps in the networks. However, such
a notion does not allow to understand how those overlaps are
organised around a> node. The notion of dispersion, as well as
the monopoly, proposed in this paper, is an attempt to precise
such organisation. This section presents the analysis conducted
on the datasets through the use of those two coefficients.

Fig. 5 presents the inverse cumulative distribution of the
dispersion (Fig. 5a) and the monopoly (Fig. 5b) coefficients. As
suggested by the average values (see Table I), the dispersion is
high for large fraction of nodes. In all dataset, more than 80%
of the nodes have a value higher than 0.5. This is however
coherent with the presence of overlaps around those nodes
since 0.5 means than half of the links creates similar relations
among ⊥ and > nodes, thus inducing overlaps. Yet, these high
values contrast with the ones of the redundancy coefficients



(a) Dispersion coefficient (b) Monopoly coefficient

Fig. 5. Inverse cumulative distribution of the dispersion and monopoly
coefficient.

and reduce the importance of the overlaps in the networks. In
that sense, it refines the use of redundancy.

As regard monopoly coefficients, their distribution precise
our former statement on the fact that it is uniformly distributed.
This is obvious in all curves as they all decrease smoothly for
the complete range of strictly positive values. However, the
reader might notice the high fraction of > nodes having no
monopoly at all. Going back to the global properties of the
networks (Table I), it is easily explained by the fact that the
number of ⊥ nodes is way lower than the one of > nodes.
Thus, even if the links are well distributed over the networks,
not every top nodes can be related to a degree-1 bottom node,
thus leading to a monopoly coefficient of 0.

(a) Degree vs. Dispersion (b) Degree vs. Monopoly

Fig. 6. Correlations between the degree and the dispersion/monopoly
coefficients.

As for the clustering and the redundancy, we can precise
our analysis by looking at some correlations among the met-
rics. Fig. 6 presents the correlations of the degree of a > node
with its dispersion and its monopoly. Fig 6a shows a clear
tendency: the higher the degree, the lower the dispersion in
average. Since low value of dispersion is related to overlaps,
this refines our former analysis as we can now precise which
kind of top nodes are related for overlaps.

As regard the correlation between the degree and the
monopoly, Fig 6b shows that on average the monopoly seems
to be independent from the degree, except for FLICKR that
displays a clear decrease when the degree increases. One can
note that the case of FLICKR is still consistent with our pre-
vious statement : since degree-1 nodes cannot be responsible
for overlaps in the bipartite structure, it is then coherent with
the fact that overlaps are more related to large top nodes.

D. Impact of random model

Having analysed the overlaps in the datasets using two
traditional and two new metrics, we now turn to the impact
random models have on those coefficients. To do so, we use a
variant of the configuration model [23] which randomly assigns
edges to match a given degree sequence without adding any
other expected property. In other word, the generated bipartite
graphs have the same number of nodes and links but the links
are distributed uniformly at random among ⊥ and > nodes,
according to their real degree. This section shows the impact
such a shuffling have on some of the metrics.

(a) Clustering coefficient (b) Redundancy coefficient

Fig. 7. Inverse cumulative distribution of the clustering and redundancy
coefficients for random bipartite graphs.

Fig. 7 shows the inverse cumulative distribution function
of the clustering (Fig. 7a) and redundancy (Fig. 7b) coeffi-
cients for random networks. As expected, Fig. 7a shows that
the randomisation process has little impact on the clustering
distribution. Indeed, as shown in Section III-B, the value
of the clustering is directly related to its degree. Since the
degree sequence is kept unchanged by the model, so does the
clustering. This strengthens again our former conclusion to that
regard.

Concerning the redundancy, the behaviour is different
depending on the dataset on which we apply the model. If
the model seems to have completely remove the overlaps in
the WIKIPEDIA dataset, it is the complete opposite for the
FLICKR network. In this last case, the model seems to have
reinforced the presence of the overlaps. If no strict conclusion
can be drawn here, the reader might notice that the proportion
of high redundancy coefficients is related to the density of
the network. The relative density of the FLICKR network (30
times higher that the WIKIPEDIA network) could thus explain
the effect of the model.

(a) Dispersion coefficient (b) Degree vs. Dispersion

Fig. 8. Inverse cumulative distribution of the dispersion coefficient and
correlation between degree and dispersion for random networks with the same
> and ⊥ degree distributions.



Finally, we show Fig. 8 the impact of the model to the
dispersion coefficient. Fig. 8a presents the inverse cumulative
distribution. The plot indicates that the model has increased the
values in all cases. This is not surprising since the definition of
the dispersion coefficient is related to the notion of expected
distribution of the links. In other word, by distributing the
links uniformly at random in the networks, the model tends to
maximise this coefficient.

Fig. 8b shows the impact the random model has on
the correlation between degree and dispersion. Surprisingly,
whereas Section II-C clearly identified the degree as directly
related to the dispersion in all the dataset, the model shows
that this correlation is due to the nature of the network since,
when shuffling the real distribution of the links, this correlation
is strongly affected. Yet, the tendency identifies previously is
still correct: the higher the degree, the lower the dispersion.

IV. CONCLUSION

In this paper, we studied the overlaps observed in 4
different online social networks exhibiting a bipartite structure.
To do so we start by relying on two standard metrics recently
proposed to address the notion of local density in bipartite
graphs, namely the clustering coefficient and the redundancy
coefficient. Our analysis revealed that, the clustering coefficient
is surprisingly not particularly able to detect real observed
overlaps in networks. To explain this result, we showed that
this coefficient is more related to the number of neighbours
and less to the structure of the relations.

In order to deepen the study of the overlaps, we proposed
two new metrics, namely the dispersion and the monopoly, that
complete the analysis. The results show that it help refining
the characterisation of the overlaps made by the redundancy
coefficient by giving insights on the kind of nodes affected by
overlaps. Finally, we applied a random bipartite model in order
to assess how the shuffling of the links can affect the properties
observed in the present study. It showed in particular that such
a randomisation process affect the dispersion of the link, while
it keep unchanged the clustering, thus strengthening the interest
of this new metric as a valid candidate for the characterisation
of the overlaps.

Since several years, many researches have studied the
notion of local density in order to better understand the
properties of the structure of real-world networks leading espe-
cially to applications like recommendation and link prediction
systems [24], [21], [22]. A better understanding of the structure
of bipartite networks should help contributing to this area.
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