Densest subgraph computation and applications in finding events on social media

Oana Denisa Balalau
advised by Mauro Sozio
Télécom ParisTech, Institut Mines Télécom
Table of Contents

1 Event detection in social media
 - Motivation
 - Current work

2 Subgraphs with maximum total density
 - Introduction
 - Related work
 - Problem definition
 - Algorithms
 - Experiments

3 Conclusion
Table of Contents

1 Event detection in social media
 • Motivation
 • Current work

2 Subgraphs with maximum total density
 • Introduction
 • Related work
 • Problem definition
 • Algorithms
 • Experiments

3 Conclusion
People use social media to

- keep in touch with friends
- share daily personal stories
- get informed about events
- inform other users about events
Mining social media for

- better understanding of human behaviour
- customized user experience
- automatically detecting events

An event is an important happening correlated to a location and a time frame.

In social media, every user can be a reporter. Benefits but also challenges!
Opportunities: Fast notification about an event

Bomb blasts in Mumbai in November 2008

U.S. Airways plane ditched on the Hudson river in January 2009

Eyewitnesses giving the first news about the events.
Opportunities: Fast updates on the evolution of an event

2007 - Ushahidi (Swahili for “testimony” or “witness”)
Kenya’s 2007 presidential elections

2012 - American Red Cross Digital Operations Center (DigiDOC)
“first social media center devoted exclusively to humanitarian and disaster relief efforts”

Big Crisis Data: Social Media in Disasters and Time-Critical Situations
Upcoming book by Carlos Castillo.
Opportunities: Large coverage of events

Ignored events in traditional media:
- small events
- censored events due to political constraints
Challenges

"I see smoke from the woods.. #wildfire? ”

"The gargoyle contemplates Paris at night #Paris #art #photography #beauty #architecture ”

"#chat #perdu POLIGIGNY 77167 (FR) http://t.co/gb3Pw4XAqb ”

- unstructured and short text
- uninformative content
- informal language
- large amount of data
Algorithm for event detection

An ideal algorithm would have:

- good coverage of events
- low latency in event discovery
- good coverage of an event
- good precision in detection
Our approach for event detection

1) Crawl tweets/posts from the social media

I see smoke from the woods.. #wildfire?

#wildfire!!! in the woods of Middletown!

2) Extract nouns and hashtags

smoke, woods, wildfire

wildfire, woods, Middletown

3) Create a word co-occurrence graph

4) Find top k dense subgraphs

5) Describe the event(s)

#wildfire!!! in the woods of Middletown!
Our approach

- good coverage of events: unsupervised approach via a dense subgraph primitive
- **low latency in event discovery**: dense subgraphs in a dynamic graph
- good coverage of an event: overlapping dense subgraphs
- good precision in detection: classification of dense subgraphs
Table of Contents

1. Event detection in social media
 - Motivation
 - Current work

2. Subgraphs with maximum total density
 - Introduction
 - Related work
 - Problem definition
 - Algorithms
 - Experiments

3. Conclusion
Finding Subgraphs with Maximum Total Density and Limited Overlap

Oana Balalau1, Francesco Bonchi2, T-H.~Hubert Chan3, Francesco Gullo2 and Mauro Sozio1

1Telecom ParisTech 2Yahoo Labs 3The University of Hong Kong

WSDM 2015
Related work

Finding multiple dense subgraphs
Find one densest subgraph in the current graph, remove all its vertices and edges, and iterate at most \(k \) times.

Drawbacks:
- it is costly to compute a densest subgraph
- the subgraphs found are disjoint
- no formal definition for the problem
- we can compute a "bad" solution
Related work

Figure: Each clique has density 2 as well as the entire graph.
Densest subgraph definition

Given an undirected graph G, its **density** is defined as the number of edges divided by the number of nodes.

Densest subgraph problem: finding a subgraph with maximum density.

Solutions in polynomial time:

- max-flow algorithm (Goldberg)
- linear-programming formulation (Charikar).

Heuristic: $1/2$ approximation algorithm (linear in the size of the input).
Problem definition
Multiple dense subgraphs with limited overlap

Given
- an undirected graph $G = (V, E)$
- an integer $k > 0$
- a rational number $\alpha \in [0, 1]$

we want to find at most k subgraphs of G such that their total density is maximum and the pairwise Jaccard coefficient on the sets of nodes $\leq \alpha$.
Problem definition
Multiple dense subgraphs with limited overlap

Given
- an undirected graph \(G = (V, E) \)
- an integer \(k > 0 \)
- a rational number \(\alpha \in [0, 1] \)

we want to find at most \(k \) subgraphs of \(G \) such that their total density is maximum and the pairwise Jaccard coefficient on the sets of nodes \(\leq \alpha \).

Theorem
The problem is NP-hard.

Proof.
Reduction from the maximum independent set problem.
An undirected graph G is a **minimal densest graph** if its density is maximum and it doesn’t contain a proper subgraph with the same density.
Subgraphs with maximum total density

An undirected graph G is a **minimal densest graph** if its density is maximum and it doesn’t contain a proper subgraph with the same density.

Can we compute minimality efficiently? Yes.
Computing minimal densest subgraphs

- faster algorithm for the densest subgraph (via pruning the search space)
- faster rounding scheme for the rounding of the fractional linear programming solution (order of n versus order of $n\log(n) + m$)
- minimality by solving at most $4\log_{4/3}(n)$ number of linear programs
MinAndRemove

Find $k = 3$ subgraphs that have an overlap of at most $\alpha = 0.25$.
MinAndRemove

Find $k = 3$ subgraphs that have an overlap of at most $\alpha = 0.25$.

- Find a densest subgraph
MinAndRemove

Find $k = 3$ subgraphs that have an overlap of at most $\alpha = 0.25$.

- Find a densest subgraph
- Make it minimal
MinAndRemove

Find $k = 3$ subgraphs that have an overlap of at most $\alpha = 0.25$.

- Find a densest subgraph
- Make it minimal
- Remove 75% of the subgraph’s nodes
MinAndRemove

Find $k = 3$ subgraphs that have an overlap of at most $\alpha = 0.25$.

- Find a densest subgraph
- Make it minimal
- Remove 75% of the subgraph’s nodes
- Iterate

Density = 2
MinAndRemove

Find $k = 3$ subgraphs that have an overlap of at most $\alpha = 0.25$.

- Find a densest subgraph
- Make it minimal
- Remove 75% of the subgraph’s nodes
- Iterate
MinAndRemove

Find $k = 3$ subgraphs that have an overlap of at most $\alpha = 0.25$.

- Find a densest subgraph
- Make it minimal
- Remove 75% of the subgraph's nodes
- Iterate
MinAndRemove

Find $k = 3$ subgraphs that have an overlap of at most $\alpha = 0.25$.

- Find a densest subgraph
- Make it minimal
- Remove 75% of the subgraph’s nodes
- Iterate

Density = 2
MinAndRemove

Find $k = 3$ subgraphs that have an overlap of at most $\alpha = 0.25$.

- Find a densest subgraph
- Make it minimal
- Remove 75% of the subgraph’s nodes
- Iterate
- Solution $= \{C_1, C_2, C_3\}$
Experiments

We considered 8 datasets, 2 groups according to size:

- 5 datasets with the number of edges between 2M and 11M
- 3 datasets with the number of edges between 43M and 117M

For solving linear programs we used the Gurobi Optimizer.
Evaluation and upper bound

Let ρ_{max} be the density of the densest subgraph.

$k \cdot \rho_{\text{max}}$ gives an upper bound on the optimum solution.
The density found by the algorithm as a percentage of the upper bound.

<table>
<thead>
<tr>
<th></th>
<th>(k = 10)</th>
<th>(\alpha = 0.1)</th>
<th>(\alpha = 0.2)</th>
<th>(\alpha = 0.3)</th>
<th>(\alpha = 0.4)</th>
<th>(\alpha = 0.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>web-Stanford</td>
<td>71%</td>
<td>73%</td>
<td>76%</td>
<td>79%</td>
<td>81%</td>
<td></td>
</tr>
<tr>
<td>com-Youtube</td>
<td>48%</td>
<td>52%</td>
<td>51%</td>
<td>61%</td>
<td>62%</td>
<td></td>
</tr>
<tr>
<td>web-Google</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
<td></td>
</tr>
<tr>
<td>Youtube-growth</td>
<td>44%</td>
<td>46%</td>
<td>53%</td>
<td>59%</td>
<td>57%</td>
<td></td>
</tr>
<tr>
<td>As-Skitter</td>
<td>58%</td>
<td>59%</td>
<td>59%</td>
<td>62%</td>
<td>64%</td>
<td></td>
</tr>
</tbody>
</table>
The density found by the algorithm as a percentage of the upper bound.

<table>
<thead>
<tr>
<th></th>
<th>$k = 10$</th>
<th>$\alpha = 0.1$</th>
<th>$\alpha = 0.2$</th>
<th>$\alpha = 0.3$</th>
<th>$\alpha = 0.4$</th>
<th>$\alpha = 0.5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiveJournal</td>
<td>18%</td>
<td>24%</td>
<td>24%</td>
<td>25%</td>
<td>28%</td>
<td>27%</td>
</tr>
<tr>
<td>Hollywood-2009</td>
<td>18%</td>
<td>19%</td>
<td>19%</td>
<td>21%</td>
<td>23%</td>
<td>23%</td>
</tr>
<tr>
<td>Orkut</td>
<td>18%</td>
<td>20%</td>
<td>21%</td>
<td>25%</td>
<td>27%</td>
<td>27%</td>
</tr>
</tbody>
</table>
Running time

Minimal densest subgraph routine: 15m (the smallest dataset) to 3h (the biggest dataset, 11M edges) to find 10 subgraphs.

Approximation subgraph routine: from 30m to at most 2h20m (117M edges) to find 10 subgraphs.
Table of Contents

1 Event detection in social media
 • Motivation
 • Current work

2 Subgraphs with maximum total density
 • Introduction
 • Related work
 • Problem definition
 • Algorithms
 • Experiments

3 Conclusion
Future challenges

- testing how well dense subgraphs correspond to events on Twitter
- thorough evaluation of our approach

Thank you for your attention!