
COMPACT ROUTING

LIP6

Main results and techniques

25 septembre 2015

LaBRI - Université de Bordeaux - CNRS

CO-AUTHORS

Cyril Gavoille Nicolas Hanusse David Ilcinkas

ROAD MAP
3

‣ Models and results.
‣ How to build a compact routing scheme.
‣ Compact routing in internet-like graphs.

COMPACT ROUTING
What is compact routing, why does it exist ?

MOTIVATIONS FOR COMPACT ROUTING
5

‣ Routing in large scale networks
‣ having better scaling capabilities
‣ forward packets faster
‣ maintain routing tables up to date efficiently

‣ May help to save energy

6

MEMORY-STRETCH TRADEOFF

u

v

6

MEMORY-STRETCH TRADEOFF

MEMORY
entries stored per node

u

vdest port
.. ..
v 2
.. ..

w

6

MEMORY-STRETCH TRADEOFF

MEMORY
entries stored per node

u

vdest port
.. ..
v 2
.. ..

w

6

MEMORY-STRETCH TRADEOFF

MEMORY
entries stored per node

STRETCH
maximal stretch over all pairs

Route length (u,v) = 5
Distance (u,v) = 4

Stretch (u,v) = 5/4

u

vdest port
.. ..
v 2
.. ..

w

7

DISTRIBUTED ROUTING

Partial knowledge of
the graph (local)

⇒ need of communication  
 to compute routing tables

7

DISTRIBUTED ROUTING

COMMUNICATION COST

of small* messages exchanged

Partial knowledge of
the graph (local)

⇒ need of communication  
 to compute routing tables

*polylogarithmic in the size of the network

8

COMPACT ROUTING

Stretch Communication cost

dest port
.. ..
w 2
.. ..

Memory

‣ Forwarding packets faster
‣ Saving energy

‣ Cost efficient  
maintenance

‣ Saving energy

‣ Increased latency
‣ Increased energy  

consumption

NAME-INDEPENDENT VS. LABELED
9

‣ Two models are considered for nodes naming (addresses)
‣ Name-independent routing: use arbitrary routing addresses
‣ Labeled routing: the designer chooses nodes’ names

The short answer

10

NAME-INDEPENDENT VS. LABELED

Name independent routing

F C E D A B

The short answer

10

NAME-INDEPENDENT VS. LABELED

Name independent routing

F C E D A B

Query route to « A »

The short answer

10

NAME-INDEPENDENT VS. LABELED

Labeled routing

F C E D A B

Name independent routing

F C E D A B

Query route to « A »

The short answer

10

NAME-INDEPENDENT VS. LABELED

Labeled routing

F C E D A B, 1 , 2 , 3 , 4 , 5 , 6

Name independent routing

F C E D A B

Query route to « A »

The short answer

10

NAME-INDEPENDENT VS. LABELED

Labeled routing

F C E D A B, 1 , 2 , 3 , 4 , 5 , 6

Query route to « A, 5 »

Name independent routing

F C E D A B

Query route to « A »

11

TRADEOFFS (NAME-INDEPENDENT)

Stretch Memory Communication cost

[AGM’06a] < 2k+1 Ω(n1/k) any

lo
w

er
 b

ou
nd

s

11

TRADEOFFS (NAME-INDEPENDENT)

Stretch Memory Communication cost

[AGM’06a] < 2k+1 Ω(n1/k) any

[GGHI’13] 1 any Ω(n2)lo
w

er
 b

ou
nd

s

11

TRADEOFFS (NAME-INDEPENDENT)

Stretch Memory Communication cost

[AGM’06a] < 2k+1 Ω(n1/k) any

[GGHI’13] 1 any Ω(n2)

BFS-tree 1 Õ(n) Õ(nm)

lo
w

er
 b

ou
nd

s
up

pe
r

bo
un

ds

11

TRADEOFFS (NAME-INDEPENDENT)

Stretch Memory Communication cost

[AGM’06a] < 2k+1 Ω(n1/k) any

[GGHI’13] 1 any Ω(n2)

BFS-tree 1 Õ(n) Õ(nm)optimal

< 3 Ω(n)

lo
w

er
 b

ou
nd

s
up

pe
r

bo
un

ds

11

TRADEOFFS (NAME-INDEPENDENT)

Stretch Memory Communication cost

[AGM’06a] < 2k+1 Ω(n1/k) any

[GGHI’13] 1 any Ω(n2)

BFS-tree 1 Õ(n) Õ(nm)

[AR’93] 1 Õ(n) Õ(n2)

optimal

< 3 Ω(n)

lo
w

er
 b

ou
nd

s
up

pe
r

bo
un

ds

11

TRADEOFFS (NAME-INDEPENDENT)

Stretch Memory Communication cost

[AGM’06a] < 2k+1 Ω(n1/k) any

[GGHI’13] 1 any Ω(n2)

BFS-tree 1 Õ(n) Õ(nm)

[AR’93] 1 Õ(n) Õ(n2)

[AGM’06b] O(k) Õ(n1/k) centralised

optimal

< 3 Ω(n)

lo
w

er
 b

ou
nd

s
up

pe
r

bo
un

ds

11

TRADEOFFS (NAME-INDEPENDENT)

Stretch Memory Communication cost

[AGM’06a] < 2k+1 Ω(n1/k) any

[GGHI’13] 1 any Ω(n2)

BFS-tree 1 Õ(n) Õ(nm)

[AR’93] 1 Õ(n) Õ(n2)

[AGM’06b] O(k) Õ(n1/k) centralised

[AGM’08] 3 Õ(√n) centralised

optimal

< 3 Ω(n)

lo
w

er
 b

ou
nd

s
up

pe
r

bo
un

ds

11

TRADEOFFS (NAME-INDEPENDENT)

Stretch Memory Communication cost

[AGM’06a] < 2k+1 Ω(n1/k) any

[GGHI’13] 1 any Ω(n2)

BFS-tree 1 Õ(n) Õ(nm)

[AR’93] 1 Õ(n) Õ(n2)

[AGM’06b] O(k) Õ(n1/k) centralised

[AGM’08] 3 Õ(√n) centralised

optimal

< 3

< 5

Ω(n)
Ω(√n)

optimal

lo
w

er
 b

ou
nd

s
up

pe
r

bo
un

ds

11

TRADEOFFS (NAME-INDEPENDENT)

Stretch Memory Communication cost

[AGM’06a] < 2k+1 Ω(n1/k) any

[GGHI’13] 1 any Ω(n2)

BFS-tree 1 Õ(n) Õ(nm)

[AR’93] 1 Õ(n) Õ(n2)

[AGM’06b] O(k) Õ(n1/k) centralised

[AGM’08] 3 Õ(√n) centralised

[SGF+10] 7 Õ(√n) NC.

optimal

< 3

< 5

Ω(n)
Ω(√n)

optimal

lo
w

er
 b

ou
nd

s
up

pe
r

bo
un

ds

11

TRADEOFFS (NAME-INDEPENDENT)

Stretch Memory Communication cost

[AGM’06a] < 2k+1 Ω(n1/k) any

[GGHI’13] 1 any Ω(n2)

BFS-tree 1 Õ(n) Õ(nm)

[AR’93] 1 Õ(n) Õ(n2)

[AGM’06b] O(k) Õ(n1/k) centralised

[AGM’08] 3 Õ(√n) centralised

[SGF+10] 7 Õ(√n) NC.

[GGHI’13] 7 Õ(√n) O(m√n)

optimal

< 3

< 5

Ω(n)
Ω(√n)

optimal

lo
w

er
 b

ou
nd

s
up

pe
r

bo
un

ds

11

TRADEOFFS (NAME-INDEPENDENT)

Stretch Memory Communication cost

[AGM’06a] < 2k+1 Ω(n1/k) any

[GGHI’13] 1 any Ω(n2)

BFS-tree 1 Õ(n) Õ(nm)

[AR’93] 1 Õ(n) Õ(n2)

[AGM’06b] O(k) Õ(n1/k) centralised

[AGM’08] 3 Õ(√n) centralised

[SGF+10] 7 Õ(√n) NC.

[GGHI’13] 7 Õ(√n) O(m√n)

my thesis 5 Õ(√n) O(m√n)

optimal

< 3

< 5

Ω(n)
Ω(√n)

optimal

lo
w

er
 b

ou
nd

s
up

pe
r

bo
un

ds

12

TRADEOFFS (LABELED)

Stretch Memory Communication cost

[AGM’06] < 2k+1 Ω(n1/k) any

lo
w

er
 b

ou
nd

s
up

pe
r

bo
un

ds

12

TRADEOFFS (LABELED)

Stretch Memory Communication cost

[AGM’06] < 2k+1 Ω(n1/k) any

[GGHI’13] 1 any Ω(n2)

lo
w

er
 b

ou
nd

s
up

pe
r

bo
un

ds

12

TRADEOFFS (LABELED)

Stretch Memory Communication cost

[AGM’06] < 2k+1 Ω(n1/k) any

[GGHI’13] 1 any Ω(n2)

All name-independent results hold,

lo
w

er
 b

ou
nd

s
up

pe
r

bo
un

ds

12

TRADEOFFS (LABELED)

Stretch Memory Communication cost

[AGM’06] < 2k+1 Ω(n1/k) any

[GGHI’13] 1 any Ω(n2)

All name-independent results hold,

[TZ’01] 4k-5 Õ(n1/k) centralised

lo
w

er
 b

ou
nd

s
up

pe
r

bo
un

ds

12

TRADEOFFS (LABELED)

Stretch Memory Communication cost

[AGM’06] < 2k+1 Ω(n1/k) any

[GGHI’13] 1 any Ω(n2)

All name-independent results hold,

[TZ’01] 4k-5 Õ(n1/k) centralised

[TZ’01] 3 Õ(√n) centralised

lo
w

er
 b

ou
nd

s
up

pe
r

bo
un

ds

HOW TO BUILD A ROUTING
SCHEME

PART I : Labeled Compact Routing in Trees

Two candidates
LABELED COMPACT ROUTING IN TREES

14

‣ I will not talk about the difference, they have very similar performances:
‣ “Thorup-Zwick” [TZ’01]
‣ “Fraigniaud-Gavoille” [FG’01]  

‣ Achieve labeled compact routing in rooted trees with:
‣ Memory space: O(log2 n)*
‣ Stretch: 1
‣ (Constant query time)

*[FG’01] actually have a O(log2 n/loglog n) memory space

Fraignaud-Gavoille - Heavy child

15

LABELED COMPACT ROUTING IN TREES

‣ GOAL, for every node u:
‣ compute the compact routing label
l(u) which represent path from u to r
in the tree.

‣ First step, heavy children nodes:
‣ in the example the heavy child is

always the rightmost one.

u

r

a

b

c

Fraignaud-Gavoille - Nodes names

16

LABELED COMPACT ROUTING IN TREES

u

r

a

b

c

path r a b c u

Fraignaud-Gavoille - Nodes names

16

LABELED COMPACT ROUTING IN TREES

u

r

a

b

c

path r a b c u

path* r * * c *

Fraignaud-Gavoille - Nodes names

16

LABELED COMPACT ROUTING IN TREES

u

r

a

b

c

path r a b c u

path* r * * c *

cpath_u r 2 c 1

Fraignaud-Gavoille - Nodes names

16

LABELED COMPACT ROUTING IN TREES

u

r

a

b

c

path r a b c u

path* r * * c *

cpath_u r 2 c 1

b_u 1 0 1 0

Fraignaud-Gavoille - Nodes names

16

LABELED COMPACT ROUTING IN TREES

u

r

a

b

c

path r a b c u

path* r * * c *

cpath_u r 2 c 1

b_u 1 0 1 0

Finally we set the name of node u to
l(u) = (u, cpath_u, b_u)

Fraignaud-Gavoille - Routing tables

17

LABELED COMPACT ROUTING IN TREES

l(u)

r

‣ Routing tables are very small, every
node stores two entries: 

‣ link to the parent
‣ link to the heavy child

‣ Routing is based on “prefix
comparisons” of the source and
destination labels.

l(v)

Fraignaud-Gavoille - Routing algorithm (roughly)

18

LABELED COMPACT ROUTING IN TREES

l(u)

l(v)

cpath_u r 2 c 1
b_u 1 0 1 0

cpath_v r 3
b_v 1 0

l(u)

l(v)

Routing:
• b_u is not a prefix of b_v ⇒ l(v) is not a descendent

• route toward parent of	 l(u) (info. in routing table)

Fraignaud-Gavoille - Routing algorithm (roughly)

19

LABELED COMPACT ROUTING IN TREES

l(u’’)

l(v)

cpath_u’’ r 2
b_u’’ 1 0

cpath_v r 3
b_v 1 0

l(u’’)

l(v)

Fraignaud-Gavoille - Routing algorithm (roughly)

19

LABELED COMPACT ROUTING IN TREES

l(u’’)

l(v)

cpath_u’’ r 2
b_u’’ 1 0

cpath_v r 3
b_v 1 0

l(u’’)

l(v)

Routing:
• l(u’’) is almost a prefix of l(v)
• cpath_u’’[-1] < cpath_v[-1] 
 therefore l(v) is a descendent of l(u’’)

• since b_v ends with 0, l(v) is in the heavy side,
• route using the routing table of l(u’’)

Fraignaud-Gavoille - Routing algorithm (roughly)

20

LABELED COMPACT ROUTING IN TREES

l(v)

l(w)

cpath_w r 3
b_w 1 0

cpath_v r 3 w
b_v 1 0 1

l(v)

l(w)

Fraignaud-Gavoille - Routing algorithm (roughly)

20

LABELED COMPACT ROUTING IN TREES

l(v)

l(w)

cpath_w r 3
b_w 1 0

cpath_v r 3 w
b_v 1 0 1

l(v)

l(w)

Routing:
•similarly as before, but in this case the routing  
information is retrieved in the cpath of l(v).

Fraignaud-Gavoille - Labels size
LABELED COMPACT ROUTING IN TREES

21

‣ Now we know that routing can be achieved giving nodes labels, with
two routing entries per node.

‣ But what about the nodes names (labels) sizes?

Fraignaud-Gavoille - Labels size
LABELED COMPACT ROUTING IN TREES

22

path r a b c u
path* r * * c *

cpath_u r 2 c 1
b_u 1 0 1 0

Fraignaud-Gavoille - Labels size
LABELED COMPACT ROUTING IN TREES

22

‣ Size of path can be n.
‣ What about cpath size?

path r a b c u
path* r * * c *

cpath_u r 2 c 1
b_u 1 0 1 0

Fraignaud-Gavoille - Labels size
LABELED COMPACT ROUTING IN TREES

22

‣ Size of path can be n.
‣ What about cpath size?
‣ What is the maximum number of 1’s in b_u? #of non-heavy children?

(clue: the worst-case-tree is the binary one, why?)

path r a b c u
path* r * * c *

cpath_u r 2 c 1
b_u 1 0 1 0

Fraignaud-Gavoille - Labels size
LABELED COMPACT ROUTING IN TREES

22

‣ Size of path can be n.
‣ What about cpath size?
‣ What is the maximum number of 1’s in b_u? #of non-heavy children?

(clue: the worst-case-tree is the binary one, why?)
‣ By definition, path* stars are grouped if they are consecutive,

therefore the number of 0’s in b_u is also bounded by log n.

path r a b c u
path* r * * c *

cpath_u r 2 c 1
b_u 1 0 1 0

Fraignaud-Gavoille - Labels size
LABELED COMPACT ROUTING IN TREES

22

‣ Size of path can be n.
‣ What about cpath size?
‣ What is the maximum number of 1’s in b_u? #of non-heavy children?

(clue: the worst-case-tree is the binary one, why?)
‣ By definition, path* stars are grouped if they are consecutive,

therefore the number of 0’s in b_u is also bounded by log n.

‣ Every item in cpath is of size O(log n) (either a length or a node id),
therefore, the total size of l(u) is O(log2 n).

path r a b c u
path* r * * c *

cpath_u r 2 c 1
b_u 1 0 1 0

Two candidates
LABELED COMPACT ROUTING IN TREES

23

‣ Performances of [FG’01] for rooted trees:
‣ Memory space: O(log2 n)
‣ Stretch: 1 (shortest path)
‣ Labeled scheme

PART II : Labeled compact routing for general graphs

HOW TO BUILD A ROUTING
SCHEME

USING [FG’01] TO DESIGN UNIVERSAL
COMPACT ROUTING SCHEMES

25

u

v

‣ Using “reference node(s)”
‣ we call them, Landmark(s)

L

USING [FG’01] TO DESIGN UNIVERSAL
COMPACT ROUTING SCHEMES

25

u

v

‣ Using “reference node(s)”
‣ we call them, Landmark(s)

L

USING [FG’01] TO DESIGN UNIVERSAL
COMPACT ROUTING SCHEMES

26

l(u)

l(v)

L

‣ In a tree, with [FG’01], we can
do shortest path with constant
memory in the labeled model.  

USING [FG’01] TO DESIGN UNIVERSAL
COMPACT ROUTING SCHEMES

26

l(u)

l(v)

L

‣ In a tree, with [FG’01], we can
do shortest path with constant
memory in the labeled model.  

‣ But not every graph is a tree …

USING [FG’01] TO DESIGN UNIVERSAL
COMPACT ROUTING SCHEMES

27

l(u)

l(v)

Lstretch(u ↝ v) = 8/5

‣ In a tree, with [FG’01], we can
do shortest path with constant
memory in the labeled model.  

‣ But not every graph is a tree …

USING [FG’01] TO DESIGN UNIVERSAL
COMPACT ROUTING SCHEMES

28

l(u)

l(v)

‣ In a tree, with [FG’01], we can
do shortest path with constant
memory in the labeled model.  

‣ But not every graph is a tree …  Lstretch(u ↝ v)
is unbounded !!

USING [FG’01] TO DESIGN UNIVERSAL
COMPACT ROUTING SCHEMES

28

l(u)

l(v)

‣ In a tree, with [FG’01], we can
do shortest path with constant
memory in the labeled model.  

‣ But not every graph is a tree …  

‣ The stretch can be unbounded.

Lstretch(u ↝ v)
is unbounded !!

USING [FG’01] TO DESIGN UNIVERSAL
COMPACT ROUTING SCHEMES

28

l(u)

l(v)

‣ In a tree, with [FG’01], we can
do shortest path with constant
memory in the labeled model.  

‣ But not every graph is a tree …  

‣ The stretch can be unbounded.
‣ Solution: use “vicinity balls”

Lstretch(u ↝ v)
is unbounded !!

USING [FG’01] TO DESIGN UNIVERSAL
COMPACT ROUTING SCHEMES

29

l(u)

l(v)

‣ For nodes closer than L e.g., l(v), use
classical shortest path routing 

‣ For others e.g., l(v’), use [FG’01]
routing 

‣ This way the stretch is bounded by 3.

‣ But … vicinity balls can be huge, and
so as the routing tables size.

L

l(v’)

30

LABELED COMPACT ROUTING SCHEME

l(u)

30

LABELED COMPACT ROUTING SCHEME

l(u)

With √n landmarks

30

LABELED COMPACT ROUTING SCHEME

l(u)

vicinity balls have
size Õ(√n)

With √n landmarks

30

LABELED COMPACT ROUTING SCHEME

l(u)

For √n landmarks nodes:
‣ Memory: Õ(√n)
‣ Stretch: 3 at most
‣ Similar to the scheme by Thorup & Zwick [TZ’01]

vicinity balls have
size Õ(√n)

With √n landmarks

31

LABELED COMPACT ROUTING SCHEME

l(u)

l(v)

For √n landmarks nodes:
‣ Memory: Õ(√n)
‣ Stretch: 3 at most
‣ Similar to the scheme by Thorup & Zwick [TZ’01]

PART III : From Labeled to Name-independent routing

HOW TO BUILD A ROUTING
SCHEME

33

LABELED COMPACT ROUTING SCHEME

l(u)

v

For √n landmarks nodes:
‣ Memory: Õ(√n)
‣ Stretch: 3 at most
‣ Similar to the scheme by Thorup & Zwick [TZ’01]

33

LABELED COMPACT ROUTING SCHEME

l(u)

v

For √n landmarks nodes:
‣ Memory: Õ(√n)
‣ Stretch: 3 at most
‣ Similar to the scheme by Thorup & Zwick [TZ’01]

How to adapt this algorithm in the name-independent model ?
NAME-INDEPENDENT VS. LABELED

34

‣ When routing from u to v, if l(u) and l(v) can be retrieved then we
are done.

1. every node u could store its own label l(u) (constant memory)

2. every node u cannot store every destination label  
otherwise memory would me O(n).  

‣ The routing label l(v) can be retrieved using local collaboration
amongst vicinity nodes.

Vicinity label-sharing

35

NAME-INDEPENDENT VS. LABELED

u

Identifier compact-
routing-label

v1 l(v1)
v2 l(v2)
v3 l(v3)
v4 l(v4)
… …

vi = v l(v)
… …

vn l(vn)

u1
u2

u3

u4

u5

u6

all n labels

Vicinity label-sharing

35

NAME-INDEPENDENT VS. LABELED

u

Identifier compact-
routing-label

v1 l(v1)
v2 l(v2)
v3 l(v3)
v4 l(v4)
… …

vi = v l(v)
… …

vn l(vn)

u1
u2

u3

u4

u5

u6 Identifier compact-
routing-label

v1 l(v1)
v4 l(v4)
v9 l(v9)

Identifier compact-
routing-label

v2 l(v2)
v3 l(v3)
vi l(vi)hash

function
n → √n

all n labels

Vicinity label-sharing

35

NAME-INDEPENDENT VS. LABELED

u

Identifier compact-
routing-label

v1 l(v1)
v2 l(v2)
v3 l(v3)
v4 l(v4)
… …

vi = v l(v)
… …

vn l(vn)

u1
u2

u3

u4

u5

u6 Identifier compact-
routing-label

v1 l(v1)
v4 l(v4)
v9 l(v9)

u

u6

Identifier compact-
routing-label

v2 l(v2)
v3 l(v3)
vi l(vi)hash

function
n → √n

all n labels

How to adapt this algorithm in the name-independent model ?

36

NAME-INDEPENDENT VS. LABELED

u

u6

u2

How to adapt this algorithm in the name-independent model ?

36

NAME-INDEPENDENT VS. LABELED

u

Identifier compact-
routing-label

v1 l(v1)
v2 l(v2)
v3 l(v3)
v4 l(v4)
… …

vi = v l(v)
… …

vn l(vn)

all labels

u6

u2

How to adapt this algorithm in the name-independent model ?

36

NAME-INDEPENDENT VS. LABELED

u

Identifier compact-
routing-label

v1 l(v1)
v2 l(v2)
v3 l(v3)
v4 l(v4)
… …

vi = v l(v)
… …

vn l(vn)

all labels

u6

u2
‣ Moreover, in its vicinity

routing table, node u stores
the colours of the nodes. 

How to adapt this algorithm in the name-independent model ?

36

NAME-INDEPENDENT VS. LABELED

u

Identifier compact-
routing-label

v1 l(v1)
v2 l(v2)
v3 l(v3)
v4 l(v4)
… …

vi = v l(v)
… …

vn l(vn)

all labels

u6

u2
‣ Moreover, in its vicinity

routing table, node u stores
the colours of the nodes. 

‣ The memory used for label
sharing is #labels/#colors, for
example it can be: 
 
 n/√n = √n

Routing

37

NAME-INDEPENDENT VS. LABELED

u

v

v ⇒ l(v)

Hash value
of v is ⬛

Memory

38

NAME-INDEPENDENT VS. LABELED

u

‣ Every node u stores two types of entries:

Memory

38

NAME-INDEPENDENT VS. LABELED

u

‣ Every node u stores two types of entries:

‣ Next-hop and color of nodes in its vicinity
ball, ie., Õ(√n) entries.

Memory

38

NAME-INDEPENDENT VS. LABELED

u

‣ Every node u stores two types of entries:

‣ Next-hop and color of nodes in its vicinity
ball, ie., Õ(√n) entries.

‣ Compact routing labels of nodes whose
hash value is blue, ie., Õ(√n) entries. 

Memory

38

NAME-INDEPENDENT VS. LABELED

u

‣ Every node u stores two types of entries:

‣ Next-hop and color of nodes in its vicinity
ball, ie., Õ(√n) entries.

‣ Compact routing labels of nodes whose
hash value is blue, ie., Õ(√n) entries. 

‣ Therefore, the total memory per node is Õ(√n)

Stretch factor

39

NAME-INDEPENDENT VS. LABELED

u

v

1

‣ Hyp.: d(u,v) = 1
Lv

Lu

w

Stretch factor

39

NAME-INDEPENDENT VS. LABELED

u

v

1

1

1

‣ Hyp.: d(u,v) = 1
‣ ⇒ Radius ≤ 1  

Lv

Lu

w

Stretch factor

39

NAME-INDEPENDENT VS. LABELED

u

v

1

1

1

2

‣ Hyp.: d(u,v) = 1
‣ ⇒ Radius ≤ 1  

‣ d(v,Lv) ≤ d(v,Lu) ≤ 2

Lv

Lu

w

Stretch factor

39

NAME-INDEPENDENT VS. LABELED

u

v

1

1

1

2

‣ Hyp.: d(u,v) = 1
‣ ⇒ Radius ≤ 1  

‣ d(v,Lv) ≤ d(v,Lu) ≤ 2
‣ d(u,Lv) ≤ d(v,Lv)+d(u,v) ≤ 3 

Lv

Lu

3w

Stretch factor

39

NAME-INDEPENDENT VS. LABELED

u

v

1

1

1

2

‣ Hyp.: d(u,v) = 1
‣ ⇒ Radius ≤ 1  

‣ d(v,Lv) ≤ d(v,Lu) ≤ 2
‣ d(u,Lv) ≤ d(v,Lv)+d(u,v) ≤ 3 

‣ “u ↝ w ↝ u ↝ Lv ↝ v ≤ 7”

Lv

Lu

3w

Stretch factor

39

NAME-INDEPENDENT VS. LABELED

u

v

1

1

1

2

‣ Hyp.: d(u,v) = 1
‣ ⇒ Radius ≤ 1  

‣ d(v,Lv) ≤ d(v,Lu) ≤ 2
‣ d(u,Lv) ≤ d(v,Lv)+d(u,v) ≤ 3 

‣ “u ↝ w ↝ u ↝ Lv ↝ v ≤ 7”
‣ Therefore the stretch is ≤ 7.

Lv

Lu

3w

40

PERFORMANCES

Stretch Memory Communication cost

[AGM’08] 3 Õ(√n) centralised

[GGHI’13] 7 Õ(√n) O(m√n)

my thesis 5 Õ(√n) O(m√n)

To be done (hard) 3 Õ(√n) o(mn)

optimal

‣ If the route use the best landmark from {Lu, Lv} the stretch can be improved to 5.

‣ This can even be done in a distributed way without any impact on the asymptotic
complexities.

COMPACT ROUTING FOR
INTERNET-LIKE GRAPHS

42

‣ Power-law degree distribution
‣ Sparse graph (logarithmic average degree)
‣ Low diameter (also logarithmic)  

‣ Looks like a tree with a dense cluster as a root  

‣ Mimicked by a synthetic graph model, called RPLG:
‣ Random Power Law Graph

‣ Parametrised by the power-law exponent, t

INTERNET-LIKE GRAPHS

(RPLG)

43

INTERNET-LIKE GRAPHS

t = 2.1

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0.001 0.01 0.1 1 10 100

D
eg

re
e

Number of nodes

Degree distribution

t=2.1
t=2.3
t=2.5
t=2.7
t=2.9

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0.001 0.01 0.1 1 10 100

D
eg

re
e

Number of nodes

Degree distribution

t=2.1
t=2.3
t=2.5
t=2.7
t=2.9

 1

 10

 100

 1000

 10000

 1 10 100

D
eg

re
e

Number of nodes

Degree distribution

t=2.1
t=2.3
t=2.5
t=2.7
t=2.9

degree

degree distribution

Power-law exponent

nodes

How to use the structure to save some entries?

44

IMPROVING MEMORY PERFORMANCES

Very dense

Almost a tree

How to use the structure to save some entries?

45

IMPROVING MEMORY PERFORMANCES

Very dense

Almost a tree

v

u

How to use the structure to save some entries?

45

IMPROVING MEMORY PERFORMANCES

Very dense

Almost a tree

v

u

How to use the structure to save some entries?

45

IMPROVING MEMORY PERFORMANCES

Very dense

Almost a tree

v

u

How to use the structure to save some entries?

45

IMPROVING MEMORY PERFORMANCES

Very dense

Almost a tree

v

u

How to use the structure to save some entries?

45

IMPROVING MEMORY PERFORMANCES

Very dense

Almost a tree

v

u

How to use the structure to save some entries?

45

IMPROVING MEMORY PERFORMANCES

Very dense

Almost a tree

v

u

How to use the structure to save some entries?
IMPROVING MEMORY PERFORMANCES

46

‣ We are actually very used in routing with these settings, lets think
about this

‣ Low memory
‣ Low stretch
‣ Dense center
‣ Very sparse outside the center
‣ Most of the destinations are outside the center

How to use the structure to save some entries?
IMPROVING MEMORY PERFORMANCES

47

‣ We are actually very used in routing with these settings, lets think  
about Public transportation

‣ Low memory - New city “there’s no one around and your phone is dead”*

‣ Low stretch - Its holidays, you can’t wait in transports
‣ Dense center - City center is easily accessible
‣ Very sparse outside the center - Suburban public transportation …
‣ Most of the destinations are outside the center - Every analogy limps …

*Rob Cantor

How to use the structure to save some entries?

48

IMPROVING MEMORY PERFORMANCES

City center

Suburbs

v

u

How to use the structure to save some entries?

49

IMPROVING MEMORY PERFORMANCES

v

u

How to use the structure to save some entries?

49

IMPROVING MEMORY PERFORMANCES

v

uI am lost, lets go
to the center.

How to use the structure to save some entries?

49

IMPROVING MEMORY PERFORMANCES

v

u

How to use the structure to save some entries?

49

IMPROVING MEMORY PERFORMANCES

v

u

What is the hash
value of v?

⬛

How to use the structure to save some entries?

49

IMPROVING MEMORY PERFORMANCES

v

u

How to use the structure to save some entries?

49

IMPROVING MEMORY PERFORMANCES

v

u

What is the label of
node v?
l(v)

How to use the structure to save some entries?

49

IMPROVING MEMORY PERFORMANCES

v

u

How to use the structure to save some entries?

50

IMPROVING MEMORY PERFORMANCES

vu

How to use the structure to save some entries?

51

IMPROVING MEMORY PERFORMANCES

u

Compared to older results for similar settings on RPLG

52

THEORETICAL RESULTS

Stretch
Memory

average maximum

[GGHI’15] 5
O(n1/(t-1)+t-3)

O(n1/110)

O(n1-1/(t-1))

O(n1/11)

[CSTW’12] 5
O(n (t-2)/(2t-3)) 

O(n1/12)

[TZLL’13] ≥ 6 O(√n) O(n)

Upper bounds for t = 2.1

Labeled

Theoretical comparison for various exponential values

IN DEPTH [CSWT’12] VS. [GGHI’15]
53

‣ when t < 2.707 [GGHI’15] avg. memory is
smaller  

‣ [CSTW’12]:
‣ has a smaller theoretical max. memory

‣ but is a labeled scheme!

‣ For small values of t, hidden constants may
play an important role  
 
What are the performances in practice?

[GG+] max.
[GG+] avg.
[CSWT’12]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 2 2.2 2.4 2.6 2.8 3

2.707

N
um

be
r o

f e
nt

rie
s

nf(t
)

Power law exponent t

Comparison of Cluster and [CSTW’12]

For an RPLG with t=2.1

54

EXPERIMENTAL RESULTS

avg stretch
memory

average maximum

[AGMNT’08] 1.56 396 1 143

[CSTW’12] 1.30 . 55.2 . 580

[TZLL’13] 1.24 404 1 877

[GGHI’15] 1.75 .. 6.47 . 228

Labeled

For an AS-graph 16K nodes

55

EXPERIMENTAL RESULTS

avg stretch
memory

average maximum

[AGMNT’08] 1.74 465 1 261

[CSTW’12] 1.18 .24 . 687

[TZLL’13] 1.52 106 2 324

[GGHI’15] 1.59 …….4.05 . 415

Labeled

FUTURE WORKS
56

‣ In sparse networks, for q=1/2, routing tables of size Õ(nq)
‣ communication cost is Õ(n1+q)
‣ can that be done for any q?  

‣ Labeled = Name-independent? (True for stretch 3)*
‣ ie., name-independent routing with  

stretch 2k+1 and memory O(n1/k) 

‣ Very compact routing schemes for internet-like graphs:
‣ “logarithmic memory is required for infinite scaling”

*Disclaimer: No prize is offered for solving this.

MERCI

