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ROAD MAP
3

‣ Models and results. 
‣ How to build a compact routing scheme. 
‣ Compact routing in internet-like graphs.



COMPACT ROUTING
What is compact routing, why does it exist ?



MOTIVATIONS FOR COMPACT ROUTING
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‣ Routing in large scale networks 
‣ having better scaling capabilities 
‣ forward packets faster 
‣ maintain routing tables up to date efficiently 

‣ May help to save energy
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MEMORY-STRETCH TRADEOFF
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MEMORY-STRETCH TRADEOFF

MEMORY 
# entries stored per node

STRETCH  
maximal stretch over all pairs

Route length (u,v) = 5 
Distance (u,v) = 4 

Stretch (u,v) = 5/4
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DISTRIBUTED ROUTING

Partial knowledge of 
the graph (local)

⇒ need of communication  
    to compute routing tables
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DISTRIBUTED ROUTING

COMMUNICATION COST

# of small* messages exchanged

Partial knowledge of 
the graph (local)

⇒ need of communication  
    to compute routing tables

*polylogarithmic in the size of the network
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COMPACT ROUTING

Stretch Communication cost

dest port
.. ..
w 2
.. ..

Memory

‣ Forwarding packets faster 
‣ Saving energy

‣ Cost efficient  
maintenance 

‣ Saving energy

‣ Increased latency 
‣ Increased energy  

consumption



NAME-INDEPENDENT VS. LABELED
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‣ Two models are considered for nodes naming (addresses) 
‣ Name-independent routing: use arbitrary routing addresses  
‣ Labeled routing: the designer chooses nodes’ names
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NAME-INDEPENDENT VS. LABELED 

Labeled routing

F C E D A B, 1 , 2 , 3 , 4 , 5 , 6

Query route to « A, 5 »

Name independent routing

F C E D A B

Query route to « A »
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TRADEOFFS (NAME-INDEPENDENT)
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HOW TO BUILD A ROUTING 
SCHEME

PART I : Labeled Compact Routing in Trees



Two candidates
LABELED COMPACT ROUTING IN TREES
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‣ I will not talk about the difference, they have very similar performances: 
‣ “Thorup-Zwick” [TZ’01] 
‣ “Fraigniaud-Gavoille” [FG’01]  

‣ Achieve labeled compact routing in rooted trees with: 
‣ Memory space: O(log2 n)* 
‣ Stretch: 1 
‣ (Constant query time)

*[FG’01] actually have a O(log2 n/loglog n) memory space



Fraignaud-Gavoille - Heavy child
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LABELED COMPACT ROUTING IN TREES

‣ GOAL, for every node u: 
‣ compute the compact routing label 
l(u) which represent path from u to r 
in the tree.  

‣ First step, heavy children nodes: 
‣ in the example the heavy child is 

always the rightmost one. 

u

r

a

b

c
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LABELED COMPACT ROUTING IN TREES

u

r

a

b

c

path r a b c u

path* r * * c *

cpath_u r 2 c 1

b_u 1 0 1 0

Finally we set the name of node u to  
l(u) = (u, cpath_u, b_u)



Fraignaud-Gavoille - Routing tables
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LABELED COMPACT ROUTING IN TREES

l(u)

r

‣ Routing tables are very small, every 
node stores two entries: 

‣ link to the parent 
‣ link to the heavy child 

‣ Routing is based on “prefix 
comparisons” of the source and 
destination labels.

l(v)



Fraignaud-Gavoille - Routing algorithm (roughly)
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LABELED COMPACT ROUTING IN TREES

l(u)

l(v)

cpath_u r 2 c 1
b_u 1 0 1 0

cpath_v r 3
b_v 1 0

l(u)

l(v)

Routing: 
• b_u is not a prefix of b_v ⇒ l(v) is not a descendent 

• route toward parent of	 l(u) (info. in routing table)
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LABELED COMPACT ROUTING IN TREES

l(u’’)
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cpath_u’’ r 2
b_u’’ 1 0

cpath_v r 3
b_v 1 0

l(u’’)

l(v)
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LABELED COMPACT ROUTING IN TREES

l(u’’)

l(v)

cpath_u’’ r 2
b_u’’ 1 0

cpath_v r 3
b_v 1 0

l(u’’)

l(v)

Routing: 
• l(u’’) is almost a prefix of l(v) 
• cpath_u’’[-1] < cpath_v[-1] 
   therefore l(v) is a descendent of l(u’’) 

• since b_v ends with 0, l(v) is in the heavy side,  
• route using the routing table of l(u’’)



Fraignaud-Gavoille - Routing algorithm (roughly)
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LABELED COMPACT ROUTING IN TREES

l(v)

l(w)

cpath_w r 3
b_w 1 0

cpath_v r 3 w
b_v 1 0 1

l(v)

l(w)
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LABELED COMPACT ROUTING IN TREES

l(v)

l(w)

cpath_w r 3
b_w 1 0

cpath_v r 3 w
b_v 1 0 1

l(v)

l(w)

Routing: 
•similarly as before, but in this case the routing  
information is retrieved in the cpath of l(v).



Fraignaud-Gavoille - Labels size
LABELED COMPACT ROUTING IN TREES
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‣ Now we know that routing can be achieved giving nodes labels, with 
two routing entries per node.  

‣ But what about the nodes names (labels) sizes? 



Fraignaud-Gavoille - Labels size
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path r a b c u
path* r * * c *

cpath_u r 2 c 1
b_u 1 0 1 0
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‣ Size of path can be n. 
‣ What about cpath size? 
‣ What is the maximum number of 1’s in b_u? #of non-heavy children? 

(clue: the worst-case-tree is the binary one, why?)
‣ By definition, path* stars are grouped if they are consecutive, 

therefore the number of 0’s in b_u is also bounded by log n.

‣ Every item in cpath is of size O(log n) (either a length or a node id), 
therefore, the total size of l(u) is O(log2 n).

path r a b c u
path* r * * c *

cpath_u r 2 c 1
b_u 1 0 1 0
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LABELED COMPACT ROUTING IN TREES
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‣ Performances of [FG’01] for rooted trees: 
‣ Memory space: O(log2 n) 
‣ Stretch: 1 (shortest path) 
‣ Labeled scheme



PART II : Labeled compact routing for general graphs

HOW TO BUILD A ROUTING 
SCHEME
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do shortest path with constant 
memory in the labeled model.  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l(u)

l(v)

Lstretch(u ↝ v) = 8/5

‣ In a tree, with [FG’01], we can 
do shortest path with constant 
memory in the labeled model.  

‣ But not every graph is a tree … 
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l(u)

l(v)

‣ In a tree, with [FG’01], we can 
do shortest path with constant 
memory in the labeled model.  

‣ But not every graph is a tree …  

‣ The stretch can be unbounded. 
‣ Solution: use “vicinity balls”

Lstretch(u ↝ v)  
is unbounded !!
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l(u)

l(v)

‣ For nodes closer than L e.g., l(v), use 
classical shortest path routing 

‣ For others e.g., l(v’), use [FG’01] 
routing 

‣ This way the stretch is bounded by 3. 

‣ But … vicinity balls can be huge, and 
so as the routing tables size.

L

l(v’)
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LABELED COMPACT ROUTING SCHEME

l(u)
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LABELED COMPACT ROUTING SCHEME
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LABELED COMPACT ROUTING SCHEME
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LABELED COMPACT ROUTING SCHEME
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‣ Memory: Õ(√n) 
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LABELED COMPACT ROUTING SCHEME

l(u)

v

For √n landmarks nodes:  
‣ Memory: Õ(√n) 
‣ Stretch: 3 at most  
‣ Similar to the scheme by Thorup & Zwick [TZ’01]



How to adapt this algorithm in the name-independent model ?
NAME-INDEPENDENT VS. LABELED 
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‣ When routing from u to v, if l(u) and l(v) can be retrieved then we 
are done. 

1. every node u could store its own label l(u) (constant memory) 

2. every node u cannot store every destination label  
otherwise memory would me O(n).  

‣ The routing label l(v) can be retrieved using local collaboration 
amongst vicinity nodes.
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‣ Moreover, in its vicinity 

routing table, node u stores 
the colours of the nodes. 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NAME-INDEPENDENT VS. LABELED 

u

Identifier compact-
routing-label

v1 l(v1)
v2 l(v2)
v3 l(v3)
v4 l(v4)
… …

vi = v l(v)
… …

vn l(vn)

all labels

u6

u2
‣ Moreover, in its vicinity 

routing table, node u stores 
the colours of the nodes. 

‣ The memory used for label 
sharing is #labels/#colors, for 
example it can be: 
 
           n/√n = √n



Routing
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NAME-INDEPENDENT VS. LABELED 

u

v

v ⇒ l(v)

Hash value  
of v is ⬛



Memory

38

NAME-INDEPENDENT VS. LABELED 

u

‣ Every node u stores two types of entries:
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NAME-INDEPENDENT VS. LABELED 

u

‣ Every node u stores two types of entries:

‣ Next-hop and color of nodes in its vicinity 
ball, ie., Õ(√n) entries.

‣ Compact routing labels of nodes whose 
hash value is blue, ie., Õ(√n) entries. 

‣ Therefore, the total memory per node is Õ(√n)
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NAME-INDEPENDENT VS. LABELED 

u

v

1

1

1

2

‣ Hyp.: d(u,v) = 1
‣ ⇒ Radius ≤ 1  

‣ d(v,Lv) ≤ d(v,Lu) ≤ 2
‣ d(u,Lv) ≤ d(v,Lv)+d(u,v) ≤ 3 

‣ “u ↝ w ↝ u ↝ Lv ↝ v ≤ 7”
‣ Therefore the stretch is ≤ 7.

Lv

Lu

3w
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PERFORMANCES

Stretch Memory Communication cost

[AGM’08] 3 Õ(√n) centralised

[GGHI’13] 7 Õ(√n) O(m√n)

my thesis 5 Õ(√n) O(m√n)

To be done (hard) 3 Õ(√n) o(mn)

optimal

‣ If the route use the best landmark from {Lu, Lv} the stretch can be improved to 5. 

‣ This can even be done in a distributed way without any impact on the asymptotic 
complexities.



COMPACT ROUTING FOR 
INTERNET-LIKE GRAPHS
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‣ Power-law degree distribution 
‣ Sparse graph (logarithmic average degree) 
‣ Low diameter (also logarithmic)  

‣ Looks like a tree with a dense cluster as a root  

‣ Mimicked by a synthetic graph model, called RPLG:  
‣ Random Power Law Graph 

‣ Parametrised by the power-law exponent, t

INTERNET-LIKE GRAPHS



(RPLG)
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INTERNET-LIKE GRAPHS

t = 2.1
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IMPROVING MEMORY PERFORMANCES
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‣ We are actually very used in routing with these settings, lets think 
about this  

‣ Low memory 
‣ Low stretch 
‣ Dense center 
‣ Very sparse outside the center 
‣ Most of the destinations are outside the center



How to use the structure to save some entries?
IMPROVING MEMORY PERFORMANCES
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‣ We are actually very used in routing with these settings, lets think  
about Public transportation 

‣ Low memory - New city “there’s no one around and your phone is dead”* 

‣ Low stretch - Its holidays, you can’t wait in transports 
‣ Dense center - City center is easily accessible 
‣ Very sparse outside the center - Suburban public transportation …  
‣ Most of the destinations are outside the center - Every analogy limps …

*Rob Cantor
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IMPROVING MEMORY PERFORMANCES

City center

Suburbs

v

u
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IMPROVING MEMORY PERFORMANCES

v

uI am lost, lets go 
to the center.
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IMPROVING MEMORY PERFORMANCES

v

u

What is the hash 
value of v? 

⬛
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IMPROVING MEMORY PERFORMANCES

v

u

What is the label of  
node v? 
l(v)
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IMPROVING MEMORY PERFORMANCES

vu
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IMPROVING MEMORY PERFORMANCES

u



Compared to older results for similar settings on RPLG
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THEORETICAL RESULTS

Stretch
Memory

average maximum

[GGHI’15] 5
O(n1/(t-1)+t-3) 

O(n1/110)

O(n1-1/(t-1)) 

O(n1/11)

[CSTW’12] 5
O(n (t-2)/(2t-3)) 

O(n1/12) 

[TZLL’13] ≥ 6 O(√n) O(n)

Upper bounds for t = 2.1

Labeled



Theoretical comparison for various exponential values

IN DEPTH [CSWT’12] VS. [GGHI’15]
53

‣ when t < 2.707 [GGHI’15] avg. memory is 
smaller  

‣ [CSTW’12]:  
‣ has a smaller theoretical max. memory 

‣ but is a labeled scheme! 

‣ For small values of t, hidden constants may 
play an important role  
 
What are the performances in practice?

[GG+] max. 
[GG+] avg. 
[CSWT’12]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 2  2.2  2.4  2.6  2.8  3

2.707

N
um

be
r o

f e
nt

rie
s 

nf(t
)

Power law exponent t

Comparison of Cluster and [CSTW’12]



For an RPLG with t=2.1 
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EXPERIMENTAL RESULTS

avg stretch
memory

average maximum

[AGMNT’08] 1.56 396 1 143

[CSTW’12] 1.30 .   55.2 .  580

[TZLL’13] 1.24 404 1 877

[GGHI’15] 1.75 ..       6.47 .  228

Labeled



For an AS-graph 16K nodes
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EXPERIMENTAL RESULTS

avg stretch
memory

average maximum

[AGMNT’08] 1.74 465 1 261

[CSTW’12] 1.18 .24 .  687

[TZLL’13] 1.52 106 2 324

[GGHI’15] 1.59 …….4.05 .  415

Labeled



FUTURE WORKS
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‣ In sparse networks, for q=1/2, routing tables of size Õ(nq)  
‣ communication cost is Õ(n1+q)  
‣ can that be done for any q?  

‣ Labeled = Name-independent? (True for stretch 3)* 
‣ ie., name-independent routing with  

stretch 2k+1 and memory O(n1/k) 

‣ Very compact routing schemes for internet-like graphs:  
‣ “logarithmic memory is required for infinite scaling”

*Disclaimer: No prize is offered for solving this. 



MERCI


