#### LIP6

### COMPACT ROUTING Main results and techniques

LaBRI - Université de Bordeaux - CNRS

#### 25 septembre 2015

# CO-AUTHORS

Cyril Gavoille





#### Nicolas Hanusse



David Ilcinkas



- Models and results.
- How to build a compact routing scheme.
- Compact routing in internet-like graphs.







What is compact routing, why does it exist?

### COMPACT ROUTING

### MOTIVATIONS FOR COMPACT ROUTING

- Routing in large scale networks
  - having better scaling capabilities
  - forward packets faster
  - maintain routing tables up to date efficiently
- May help to save energy









#### MEMORY # entries stored per node





#### MEMORY # entries stored per node





#### MEMORY # entries stored per node

Route length (u,v) = 5Distance (u,v) = 4

Stretch (u,v) = 5/4

#### STRETCH maximal stretch over all pairs



### **DISTRIBUTED ROUTING**



Partial knowledge of the graph (local)

⇒ need of communication to compute routing tables





### **DISTRIBUTED ROUTING**



**COMMUNICATION COST** # of small\* messages exchanged

\*polylogarithmic in the size of the network

Partial knowledge of the graph (local)

⇒ need of communication to compute routing tables





### COMPACT ROUTING



Increased energy consumption

Forwarding packets faster Saving energy 



### **Communication cost**



- Cost efficient maintenance
- Saving energy



### NAME-INDEPENDENT VS. LABELED

- Two models are considered for nodes naming (addresses)
  - Name-independent routing: use arbitrary routing addresses
  - Labeled routing: the designer chooses nodes' names

odes naming (addresses) e arbitrary routing addresses chooses nodes' names



F

### Name independent routing





F

### Name independent routing



Query route to « A »



F

#### Name independent routing





Query route to « A »



F

#### Name independent routing



#### Labeled routing



Query route to « A »



F

#### Name independent routing



#### Labeled routing



Query route to « A »

Query route to « A, 5 »



|           | Stretch | Memory            | Communication cost |
|-----------|---------|-------------------|--------------------|
| [AGM'06a] | < 2k+1  | $\Omega(n^{1/k})$ | any                |

lower bounds



|     |           | Stretch | Memory                              | Communication cost |
|-----|-----------|---------|-------------------------------------|--------------------|
|     | [AGM'06a] | < 2k+1  | $\mathbf{\Omega}(\mathbf{n}^{1/k})$ | any                |
| OME | [GGHI'13] | 1       | any                                 | $\Omega(n^2)$      |



|     |           | Stretch | Memory                              | Communication cost |
|-----|-----------|---------|-------------------------------------|--------------------|
|     | [AGM'06a] | < 2k+1  | $\mathbf{\Omega}(\mathbf{n}^{1/k})$ | any                |
| owe | [GGHI'13] | 1       | any                                 | $\Omega(n^2)$      |
|     | BFS-tree  | 1       | Õ(n)                                | Õ(nm)              |



|          |           | Stretch |       | Memory                        | Communication cost |
|----------|-----------|---------|-------|-------------------------------|--------------------|
| r bounds | [AGM'06a] | < 2k+1  | < 3   | $\Omega(n^{1/k})$ $\Omega(n)$ | any                |
| OWE      | [GGHI'13] | 1       |       | any                           | $\Omega(n^2)$      |
|          | BFS-tree  | 1       | optir | mal Õ(n)                      | Õ(nm)              |



|     |           | Stretch    | Memory                        | Communication cost |
|-----|-----------|------------|-------------------------------|--------------------|
|     | [AGM'06a] | < 2k+1 < 3 | $\Omega(n^{1/k})$ $\Omega(n)$ | any                |
| owe | [GGHI'13] | 1          | any                           | $\Omega(n^2)$      |
|     | BFS-tree  | 1 opti     | mal Õ(n)                      | Õ(nm)              |
|     | [AR'93]   | 1          | Õ(n)                          | $\tilde{O}(n^2)$   |



|          |           | Stretch    | Memory                                          | Communication cost |
|----------|-----------|------------|-------------------------------------------------|--------------------|
| r bounds | [AGM′06a] | < 2k+1 < 3 | $\mathbf{\Omega}(n^{1/k})$ $\mathbf{\Omega}(n)$ | any                |
| IOWe     | [GGHI'13] | 1          | any                                             | $\Omega(n^2)$      |
|          | BFS-tree  | 1 opti     | mal Õ(n)                                        | Õ(nm)              |
|          | [AR'93]   | 1          | Õ(n)                                            | $\tilde{O}(n^2)$   |
| nds      | [AGM'06b] | O(k)       | $\tilde{O}(n^{1/k})$                            | centralised        |
| DO       |           |            |                                                 |                    |

upper



|          |           | Stretch |       | Memory                |      | Communication cost     |
|----------|-----------|---------|-------|-----------------------|------|------------------------|
| r bounds | [AGM'06a] | < 2k+1  | < 3   | $\Omega(n^{1/k})$     | Ω(n) | any                    |
| owe      | [GGHI'13] | 1       |       | any                   |      | $\mathbf{\Omega}(n^2)$ |
|          | BFS-tree  | 1       | optir | mal Õ(n)              |      | Õ(nm)                  |
|          | [AR'93]   | 1       |       | $\tilde{O}(n)$        |      | $\tilde{O}(n^2)$       |
| nds      | [AGM'06b] | O(k)    |       | $\tilde{O}(n^{1/k})$  |      | centralised            |
| noq      | [AGM'08]  | 3       |       | $\tilde{O}(\sqrt{n})$ |      | centralised            |
| upper    |           |         |       |                       |      |                        |



|          |           | Stretch |            |     | Memory                |               | Communication cost |
|----------|-----------|---------|------------|-----|-----------------------|---------------|--------------------|
| r bounds | [AGM'06a] | < 2k+1  | < 3<br>< 5 |     | $\Omega(n^{1/k})$     | Ω(n)<br>Ω(√n) | any                |
| owe      | [GGHI'13] | 1       |            |     | any                   |               | $\Omega(n^2)$      |
|          | BFS-tree  | 1       | opti       | mal | Õ(n)                  |               | Õ(nm)              |
|          | [AR'93]   | 1       |            |     | $\tilde{O}(n)$        |               | $\tilde{O}(n^2)$   |
| nds      | [AGM'06b] | O(k)    |            |     | $\tilde{O}(n^{1/k})$  |               | centralised        |
| noq .    | [AGM'08]  | 3       | opti       | mal | $\tilde{O}(\sqrt{n})$ |               | centralised        |
| upper    |           |         |            |     |                       |               |                    |



|          |           | Stretch |            |     | Memory                |               | Communication cost |
|----------|-----------|---------|------------|-----|-----------------------|---------------|--------------------|
| r bounds | [AGM'06a] | < 2k+1  | < 3<br>< 5 |     | $\Omega(n^{1/k})$     | Ω(n)<br>Ω(√n) | any                |
| owe      | [GGHI'13] | 1       |            |     | any                   |               | $\Omega(n^2)$      |
|          | BFS-tree  | 1       | opti       | mal | Õ(n)                  |               | Õ(nm)              |
|          | [AR'93]   | 1       |            |     | $\tilde{O}(n)$        |               | $\tilde{O}(n^2)$   |
| nds      | [AGM'06b] | O(k)    |            |     | $\tilde{O}(n^{1/k})$  |               | centralised        |
| bou      | [AGM'08]  | 3       | opti       | mal | $\tilde{O}(\sqrt{n})$ |               | centralised        |
| pper     | [SGF+10]  | 7       |            |     | $\tilde{O}(\sqrt{n})$ |               | NC.                |



|          |           | Stretch |            |     | Memory                |                               | Communication cost |
|----------|-----------|---------|------------|-----|-----------------------|-------------------------------|--------------------|
| r bounds | [AGM'06a] | < 2k+1  | < 3<br>< 5 |     | $\Omega(n^{1/k})$     | <b>Ω</b> (n)<br><b>Ω</b> (√n) | any                |
| ove      | [GGHI'13] | 1       |            |     | any                   |                               | $\Omega(n^2)$      |
|          | BFS-tree  | 1       | opti       | mal | $\tilde{O}(n)$        |                               | Õ(nm)              |
|          | [AR'93]   | 1       |            |     | $\tilde{O}(n)$        |                               | $\tilde{O}(n^2)$   |
| nds      | [AGM'06b] | O(k)    |            |     | $\tilde{O}(n^{1/k})$  |                               | centralised        |
| noq .    | [AGM'08]  | 3       | opti       | mal | $\tilde{O}(\sqrt{n})$ |                               | centralised        |
| pper     | [SGF+10]  | 7       |            |     | $\tilde{O}(\sqrt{n})$ |                               | NC.                |
| D        | [GGHI'13] | 7       |            |     | $\tilde{O}(\sqrt{n})$ |                               | O(m√n)             |



|          |           | Stretch |            |     | Memory                |                               | Communication cost |
|----------|-----------|---------|------------|-----|-----------------------|-------------------------------|--------------------|
| r bounds | [AGM'06a] | < 2k+1  | < 3<br>< 5 |     | $\Omega(n^{1/k})$     | <b>Ω</b> (n)<br><b>Ω</b> (√n) | any                |
| owe      | [GGHI'13] | 1       |            |     | any                   |                               | $\Omega(n^2)$      |
|          | BFS-tree  | 1       | opti       | mal | $\tilde{O}(n)$        |                               | Õ(nm)              |
|          | [AR'93]   | 1       |            |     | $\tilde{O}(n)$        |                               | $\tilde{O}(n^2)$   |
| nds      | [AGM'06b] | O(k)    |            |     | $\tilde{O}(n^{1/k})$  |                               | centralised        |
| noq.     | [AGM'08]  | 3       | opti       | mal | $\tilde{O}(\sqrt{n})$ |                               | centralised        |
| pper     | [SGF+10]  | 7       |            |     | $\tilde{O}(\sqrt{n})$ |                               | NC.                |
| D        | [GGHI'13] | 7       |            |     | $\tilde{O}(\sqrt{n})$ |                               | O(m√n)             |
|          | my thesis | 5       |            |     | $\tilde{O}(\sqrt{n})$ |                               | O(m√n)             |





| Memory            | Communication cost |
|-------------------|--------------------|
| $\Omega(n^{1/k})$ | any                |



|              |           | Stretch | Memory            | Communication cost         |
|--------------|-----------|---------|-------------------|----------------------------|
| lower bounds | [AGM'06]  | < 2k+1  | $\Omega(n^{1/k})$ | any                        |
|              | [GGHI'13] | 1       | any               | <b>Ω</b> (n <sup>2</sup> ) |





| Memory            | Communication cost |  |
|-------------------|--------------------|--|
| $\Omega(n^{1/k})$ | any                |  |
| any               | $\Omega(n^2)$      |  |
|                   |                    |  |

All name-independent results hold,





|    | Memory                 | Communication cost |  |  |  |
|----|------------------------|--------------------|--|--|--|
|    | $\Omega(n^{1/k})$      | any                |  |  |  |
|    | any                    | $\Omega(n^2)$      |  |  |  |
| ep | ependent results hold, |                    |  |  |  |

|--|



|             |                                    | Stretch | Memory                | Communication cost |  |  |
|-------------|------------------------------------|---------|-----------------------|--------------------|--|--|
| sounds      | [AGM'06]                           | < 2k+1  | $\Omega(n^{1/k})$     | any                |  |  |
| ower k      | [GGHI'13]                          | 1       | any                   | $\Omega(n^2)$      |  |  |
| S           | All name-independent results hold, |         |                       |                    |  |  |
| upper bound | [TZ'01]                            | 4k-5    | $\tilde{O}(n^{1/k})$  | centralised        |  |  |
|             | [TZ'01]                            | 3       | $\tilde{O}(\sqrt{n})$ | centralised        |  |  |



### HOW TO BUILD A ROUTING SCHEME PART I : Labeled Compact Routing in Trees

### LABELED COMPACT ROUTING IN TREES Two candidates

- I will not talk about the difference, they have very similar performances:
  - "Thorup-Zwick" [TZ'01]
  - "Fraigniaud-Gavoille" [FG'01]
- Achieve labeled compact routing in rooted trees with:
- Memory space: O(log<sup>2</sup> n)\*
  - Stretch: 1
  - (Constant query time)

\*[FG'01] actually have a O(log<sup>2</sup> n/loglog n) memory space


## LABELED COMPACT ROUTING IN TREES Fraignaud-Gavoille - Heavy child ► GOAL, for every node u: a in the tree.

- - compute the compact routing label l(u) which represent path from u to r
- First step, heavy children nodes:
  - in the example the heavy child is always the rightmost one.



# LABELED COMPACT ROUTING IN TREES Fraignaud-Gavoille - Nodes names a h

| path | r | a | b | С | U |
|------|---|---|---|---|---|
|      |   |   |   |   |   |





# LABELED COMPACT ROUTING IN TREES Fraignaud-Gavoille - Nodes names a h

| path  | r | a | b | С | U |
|-------|---|---|---|---|---|
| path* | r | * | * | С | * |





# LABELED COMPACT ROUTING IN TREES Fraignaud-Gavoille - Nodes names a h

| path    | r | a | b | С | U |
|---------|---|---|---|---|---|
| path*   | r | * | * | С | * |
| cpath_u | r |   | 2 | С | 1 |



# LABELED COMPACT ROUTING IN TREES Fraignaud-Gavoille - Nodes names a

| path    | r | а | b | С | U |
|---------|---|---|---|---|---|
| path*   | r | * | * | С | * |
| cpath_u | r |   | 2 | С | 1 |
| b_u     | 1 | ( | ) | 1 | 0 |



# LABELED COMPACT ROUTING IN TREES Fraignaud-Gavoille - Nodes names a b

| path    | r | а | b | С | U |
|---------|---|---|---|---|---|
| path*   | r | * | * | С | * |
| cpath_u | r |   | 2 | С | 1 |
| b_u     | 1 | ( | ) | 1 | 0 |

Finally we set the name of node u to  $\ell(u) = (u, cpath_u, b_u)$ 



# LABELED COMPACT ROUTING IN TREES Fraignaud-Gavoille - Routing tables l(V) destination labels.



Routing tables are very small, every node stores two entries:

- link to the parent
- link to the heavy child
- Routing is based on "prefix comparisons" of the source and



Fraignaud-Gavoille - Routing algorithm (roughly)



- b\_u is not a prefix of  $b_v \Rightarrow \ell(v)$  is not a descendent
- route toward parent of  $\ell(u)$  (info. in routing table)



Fraignaud-Gavoille - Routing algorithm (roughly)





Fraignaud-Gavoille - Routing algorithm (roughly)



- therefore  $\ell(v)$  is a descendent of  $\ell(u'')$
- since  $b_v$  ends with 0,  $\ell(v)$  is in the heavy side,
- route using the routing table of  $\ell(u'')$



Fraignaud-Gavoille - Routing algorithm (roughly)

 $\ell(\mathbf{v})$ 

 $\ell(\mathbf{w})$ 





Fraignaud-Gavoille - Routing algorithm (roughly)





#### Routing:

 $\ell(\mathbf{v})$ 

l(w

• similarly as before, but in this case the routing information is retrieved in the cpath of  $\ell(v)$ .

#### LABELED COMPACT ROUTING IN TREES Fraignaud-Gavoille - Labels size

- two routing entries per node.
- But what about the nodes names (labels) sizes?



Now we know that routing can be achieved giving nodes labels, with

Fraignaud-Gavoille - Labels size

| path    | r | а | b | С | U |
|---------|---|---|---|---|---|
| path*   | r | * | * | С | * |
| cpath_u | r | 2 | ) | С | 1 |
| b_u     | 1 | ( | ) | 1 | 0 |



Fraignaud-Gavoille - Labels size

| path    | r | а | b | С | U |
|---------|---|---|---|---|---|
| path*   | r | * | * | С | * |
| cpath_u | r |   | ) | С | 1 |
| b_u     | 1 | ( | ) | 1 | 0 |

Size of path can be n.
What about cpath size?



Fraignaud-Gavoille - Labels size

| path    | r | а | b | С | U |
|---------|---|---|---|---|---|
| path*   | r | * | * | С | * |
| cpath_u | r | 2 | ) | С | 1 |
| b_u     | 1 | ( | ) | 1 | 0 |

- Size of path can be n.
- What about cpath size?
  - (clue: the worst-case-tree is the binary one, why?)



What is the maximum number of 1's in b\_u? #of non-heavy children?

Fraignaud-Gavoille - Labels size

| path    | r | а | b | С | U |
|---------|---|---|---|---|---|
| path*   | ľ | * | * | С | * |
| cpath_u | r | 2 | ) | С | 1 |
| b_u     | 1 | ( | ) | 1 | 0 |

- Size of path can be n.
- What about cpath size?
  - What is the maximum number of 1's in b\_u? #of non-heavy children? (clue: the worst-case-tree is the binary one, why?)
  - By definition, path\* stars are grouped if they are consecutive, therefore the number of O's in b\_u is also bounded by log n.



Fraignaud-Gavoille - Labels size

| path    | r | а | b | С | U |
|---------|---|---|---|---|---|
| path*   | ľ | * | * | С | * |
| cpath_u | r | 2 | ) | С | 1 |
| b_u     | 1 | ( | ) | 1 | 0 |

- Size of path can be n.
- What about cpath size?
  - What is the maximum number of 1's in b\_u? #of non-heavy children? (clue: the worst-case-tree is the binary one, why?)
  - By definition, path\* stars are grouped if they are consecutive, therefore the number of O's in b\_u is also bounded by log n.
- Every item in cpath is of size O(log n) (either a length or a node id), therefore, the total size of l(u) is O(log<sup>2</sup> n).



#### LABELED COMPACT ROUTING IN TREES Two candidates

- Performances of [FG'01] for rooted trees:
  - Memory space: O(log<sup>2</sup> n)
  - Stretch: 1 (shortest path)
  - Labeled scheme



#### HOW TO BUILD A ROUTING SCHEME PART II : Labeled compact routing for general graphs





Using "reference node(s)"
 we call them, Landmark(s)





Using "reference node(s)"
 we call them, Landmark(s)





In a tree, with [FG'01], we can do shortest path with constant memory in the labeled model.







- In a tree, with [FG'01], we can do shortest path with constant memory in the labeled model.
- But not every graph is a tree ...







- In a tree, with [FG'01], we can do shortest path with constant memory in the labeled model.
- But not every graph is a tree ...







- In a tree, with [FG'01], we can do shortest path with constant memory in the labeled model.
- But not every graph is a tree ...







- In a tree, with [FG'01], we can do shortest path with constant memory in the labeled model.
- But not every graph is a tree ...
- The stretch can be unbounded.







- In a tree, with [FG'01], we can do shortest path with constant memory in the labeled model.
- But not every graph is a tree ...
- The stretch can be unbounded.
- Solution: use "vicinity balls"



 $\ell(v')$ 





- For nodes closer than L e.g.,  $\ell(v)$ , use classical shortest path routing
- For others e.g.,  $\ell(\mathbf{v}')$ , use [FG'01] routing
  - This way the stretch is bounded by 3.
  - But ... vicinity balls can be huge, and so as the routing tables size.













#### With $\sqrt{n}$ landmarks

 $\ell(u)$ 





# *L*(u)

With  $\sqrt{n}$  landmarks vicinity balls have  $\tilde{O}(\sqrt{n})$ 



With  $\sqrt{n}$  landmarks vicinity balls have size  $\tilde{O}(\sqrt{n})$ 

 $\ell(u)$ 

For  $\sqrt{n}$  landmarks nodes:

- Memory:  $\tilde{O}(\sqrt{n})$ 
  - Stretch: 3 at most
  - Similar to the scheme by Thorup & Zwick [TZ'01]





#### For $\sqrt{n}$ landmarks nodes:

**l**(u)

- Memory:  $\tilde{O}(\sqrt{n})$ 
  - Stretch: 3 at most
  - Similar to the scheme by Thorup & Zwick [TZ'01]



 $\ell(v)$ 

#### HOW TO BUILD A ROUTING SCHEME PART III : From Labeled to Name-independent routing

### For $\sqrt{n}$ landmarks nodes:

**l**(u)

- Memory:  $\tilde{O}(\sqrt{n})$ 
  - Stretch: 3 at most
  - Similar to the scheme by Thorup & Zwick [TZ'01]



V
# LABELED COMPACT ROUTING SCHEME

## For $\sqrt{n}$ landmarks nodes:

**l**(u)

- Memory:  $\tilde{O}(\sqrt{n})$ 
  - Stretch: 3 at most
  - Similar to the scheme by Thorup & Zwick [TZ'01]



V

How to adapt this algorithm in the name-independent model?

- When routing from U to V, if  $\ell(U)$  and  $\ell(V)$  can be retrieved then we are done.
  - otherwise memory would me O(n).
  - 1. every node U could store its own label  $\ell(U)$  (constant memory) 2. every node U cannot store every destination label
- The routing label  $\ell(v)$  can be retrieved using local collaboration amongst vicinity nodes.





Vicinity label-sharing

## all n labels

| Identifier | comp<br>routing-                                                              |
|------------|-------------------------------------------------------------------------------|
| V1         | $\ell(v)$                                                                     |
| <b>V</b> 2 | $\ell(v_2)$                                                                   |
| <b>V</b> 3 | $\ell(v)$                                                                     |
| V4         | $\ell(\mathbf{v})$                                                            |
| • • •      | • • •                                                                         |
| $v_i = v$  | l(v                                                                           |
| • • •      | • • •                                                                         |
| Vn         | $\ell(v_r)$                                                                   |
|            | Identifier<br>$V_1$<br>$V_2$<br>$V_3$<br>$V_4$<br>$V_4$<br>$V_i = V$<br>$V_i$ |



### pactng-label

- $V_1$
- $(v_2)$
- $(v_3)$
- $(v_4)$

- $(\mathbf{v})$
- \  $v_n)$

Vicinity label-sharing

|     | all n      | labels<br>compact- |                          | Identifier | compo<br>routing-l |
|-----|------------|--------------------|--------------------------|------------|--------------------|
|     | Identitier | routing-label      |                          | <b>V</b> 2 | $\ell(v_2)$        |
|     | V1         | $\ell(v_1)$        |                          | V3         | $\ell(v_3)$        |
| U3  | <b>V</b> 2 | $\ell(v_2)$        | hash                     | Vi         | $\ell(v_i)$        |
| u 🔵 | <b>V</b> 3 | $\ell(v_3)$        | function                 |            |                    |
|     | V4         | $\ell(v_4)$        | $n \rightarrow \sqrt{n}$ |            | compo              |
|     | • • •      | • • •              |                          | Identifier | routina-l          |
| U5  | $v_i = v$  | $\ell(v)$          |                          |            |                    |
|     | • • •      | 0 0 0              |                          | V 1        |                    |
|     | Vn         | $\ell(v_n)$        |                          | V4         | <b>E</b> (V4)      |
|     |            |                    |                          | V9         | $\ell(V_9)$        |







Vicinity label-sharing

|                                       |                     |                    |                          | l          | 16                 |
|---------------------------------------|---------------------|--------------------|--------------------------|------------|--------------------|
|                                       | all n<br>Identifier | labels<br>compact- |                          | Identifier | compo<br>routing-l |
|                                       | Idennier            | routing-label      |                          | <b>V</b> 2 | $\ell(v_2)$        |
|                                       | V1                  | $\ell(v_1)$        |                          | <b>V</b> 3 | $\ell(v_3)$        |
| U3                                    | <b>V</b> 2          | $\ell(v_2)$        | hash                     | Vi         | $\ell(v_i)$        |
| u                                     | <b>V</b> 3          | $\ell(v_3)$        | function                 |            |                    |
|                                       | <b>V</b> 4          | $\ell(v_4)$        | $n \rightarrow \sqrt{n}$ |            |                    |
| U U U U U U U U U U U U U U U U U U U | • • •               | • • •              |                          | Identifier | compo<br>routing-l |
| U U 5                                 | $V_i = V$           | $\ell(v)$          |                          |            |                    |
|                                       | • • •               |                    |                          | V1         | $\mathcal{E}(V_1)$ |
|                                       | Vp                  | $\ell(v_{p})$      |                          | <b>V</b> 4 | $\ell(v_4)$        |
|                                       | V []                |                    |                          | <b>V</b> 9 | $\ell(v_9)$        |







How to adapt this algorithm in the name-independent model?





How to adapt this algorithm in the name-independent model?

## all labels

| Identifier | cor<br>routi                                                                             |
|------------|------------------------------------------------------------------------------------------|
| V1         | l                                                                                        |
| <b>V</b> 2 | l                                                                                        |
| <b>V</b> 3 | l                                                                                        |
| <b>V</b> 4 | l                                                                                        |
| • • •      |                                                                                          |
| $v_i = v$  |                                                                                          |
| • • •      |                                                                                          |
| Vn         | l                                                                                        |
|            | Identifier<br>$V_1$<br>$V_2$<br>$V_3$<br>$V_4$<br>$V_4$<br>$V_i = V$<br>$\dots$<br>$V_n$ |



- mpacting-label
- $\ell(v_1)$
- $\ell(v_2)$
- $\ell(v_3)$
- $\ell(v_4)$
- *l*(v)
- $\ell(v_n)$

• • •

How to adapt this algorithm in the name-independent model?

## all labels

| Identifier | cor<br>routi                                                                             |
|------------|------------------------------------------------------------------------------------------|
| V1         | l                                                                                        |
| <b>V</b> 2 | l                                                                                        |
| <b>V</b> 3 | l                                                                                        |
| <b>V</b> 4 | l                                                                                        |
| • • •      |                                                                                          |
| $v_i = v$  |                                                                                          |
| • • •      |                                                                                          |
| Vn         | l                                                                                        |
|            | Identifier<br>$V_1$<br>$V_2$<br>$V_3$<br>$V_4$<br>$V_4$<br>$V_i = V$<br>$\dots$<br>$V_n$ |



- mpacting-label
- $\ell(v_1)$
- $\ell(v_2)$
- $\ell(v_3)$
- $\ell(v_4)$
- $\ell(v)$
- $\ell(v_n)$

• • •

 Moreover, in its vicinity routing table, node U stores the colours of the nodes.

How to adapt this algorithm in the name-independent model?

## all labels

| Identifier | cor<br>routi                                                                             |
|------------|------------------------------------------------------------------------------------------|
| V1         | l                                                                                        |
| <b>V</b> 2 | l                                                                                        |
| <b>V</b> 3 | l                                                                                        |
| <b>V</b> 4 | l                                                                                        |
| • • •      |                                                                                          |
| $v_i = v$  |                                                                                          |
| • • •      |                                                                                          |
| Vn         | l                                                                                        |
|            | Identifier<br>$V_1$<br>$V_2$<br>$V_3$<br>$V_4$<br>$V_4$<br>$V_i = V$<br>$\dots$<br>$V_n$ |



- mpacting-label
- $\ell(v_1)$
- $\ell(v_2)$
- $\ell(v_3)$
- $\ell(v_4)$
- $\ell(v)$

• • •

 $\ell(\mathbf{v}_n)$ 

• • •

- Moreover, in its vicinity routing table, node U stores the colours of the nodes.
- The memory used for label sharing is #labels/#colors, for example it can be:

 $n/\sqrt{n} = \sqrt{n}$ 













• Every node U stores two types of entries:





- Every node U stores two types of entries:
  - Next-hop and color of nodes in its vicinity ball, ie.,  $\tilde{O}(\sqrt{n})$  entries.





- Every node U stores two types of entries:
  - Next-hop and color of nodes in its vicinity ball, ie.,  $\tilde{O}(\sqrt{n})$  entries.
  - Compact routing labels of nodes whose hash value is blue, ie.,  $\tilde{O}(\sqrt{n})$  entries.





- Every node U stores two types of entries:
  - Next-hop and color of nodes in its vicinity ball, ie.,  $\tilde{O}(\sqrt{n})$  entries.
  - Compact routing labels of nodes whose hash value is blue, ie.,  $\tilde{O}(\sqrt{n})$  entries.
- Therefore, the total memory per node is  $\tilde{O}(\sqrt{n})$

)





### • Hyp.: d(u,v) = 1



![](_page_87_Picture_2.jpeg)

### Hyp.: d(u,v) = 1 $\Rightarrow \text{Radius} \leq 1$

![](_page_88_Figure_1.jpeg)

![](_page_88_Picture_2.jpeg)

Hyp.: d(u,v) = 1
⇒ Radius ≤ 1

$$d(v,L_v) \leq d(v,L_u) \leq 2$$

![](_page_89_Figure_1.jpeg)

![](_page_89_Picture_2.jpeg)

- Hyp.: d(u,v) = 1 $\Rightarrow \text{Radius} \leq 1$
- ►  $d(v,L_v) \le d(v,L_u) \le 2$ •  $d(u,Lv) \le d(v,Lv)+d(u,v) \le 3$

![](_page_89_Picture_10.jpeg)

![](_page_90_Figure_1.jpeg)

![](_page_90_Picture_2.jpeg)

- Hyp.: d(u,v) = 1 $\blacktriangleright \Rightarrow \text{Radius} \leq 1$
- ►  $d(v,L_v) \le d(v,L_u) \le 2$ •  $d(u,Lv) \leq d(v,Lv)+d(u,v) \leq 3$

 $"u \rightarrow w \rightarrow u \rightarrow Lv \rightarrow v \leq 7"$ 

![](_page_90_Picture_10.jpeg)

![](_page_90_Picture_11.jpeg)

![](_page_91_Figure_1.jpeg)

![](_page_91_Picture_2.jpeg)

- Hyp.: d(u,v) = 1 $\blacktriangleright \Rightarrow \text{Radius} \leq 1$
- ►  $d(v,L_v) \le d(v,L_u) \le 2$
- ►  $d(u,Lv) \le d(v,Lv)+d(u,v) \le 3$
- $"u \rightarrow w \rightarrow u \rightarrow Lv \rightarrow v \leq 7"$
- Therefore the stretch is  $\leq 7$ .

![](_page_91_Picture_12.jpeg)

![](_page_91_Picture_13.jpeg)

![](_page_92_Picture_0.jpeg)

|                   | Stretch | Memory                    | Communication cost |
|-------------------|---------|---------------------------|--------------------|
| [AGM'08]          | 3 opti  | mal $\tilde{O}(\sqrt{n})$ | centralised        |
| [GGHI'13]         | 7       | $\tilde{O}(\sqrt{n})$     | O(m√n)             |
| my thesis         | 5       | $\tilde{O}(\sqrt{n})$     | O(m√n)             |
| To be done (hard) | 3       | $\tilde{O}(\sqrt{n})$     | o(mn)              |

- complexities.

# PERFORMANCES

If the route use the best landmark from  $\{L_{u}, L_{v}\}$  the stretch can be improved to 5.

This can even be done in a distributed way without any impact on the asymptotic

![](_page_92_Figure_8.jpeg)

# COMPACT ROUTING FOR INTERNET-LIKE GRAPHS

# **INTERNET-LIKE GRAPHS**

- Power-law degree distribution
  - Low diameter (also logarithmic)
  - Sparse graph (logarithmic average degree)
- Looks like a tree with a dense cluster as a root
- Mimicked by a synthetic graph model, called RPLG:
  - Random Power Law Graph
  - Parametrised by the power-law exponent, t

![](_page_94_Picture_9.jpeg)

# **INTERNET-LIKE GRAPHS** (RPLG)

### Power-law exponent t = 2.1

![](_page_95_Figure_2.jpeg)

![](_page_95_Figure_3.jpeg)

![](_page_95_Picture_5.jpeg)

# **MPROVING MEMORY PERFORMANCES**

![](_page_96_Picture_2.jpeg)

![](_page_96_Picture_5.jpeg)

![](_page_97_Picture_2.jpeg)

![](_page_97_Picture_4.jpeg)

![](_page_97_Figure_6.jpeg)

![](_page_98_Picture_2.jpeg)

![](_page_98_Picture_4.jpeg)

![](_page_98_Figure_6.jpeg)

![](_page_99_Picture_2.jpeg)

![](_page_99_Picture_4.jpeg)

![](_page_99_Figure_6.jpeg)

![](_page_100_Picture_2.jpeg)

![](_page_100_Picture_4.jpeg)

![](_page_100_Figure_6.jpeg)

![](_page_101_Picture_2.jpeg)

![](_page_101_Picture_4.jpeg)

![](_page_101_Figure_6.jpeg)

![](_page_102_Picture_2.jpeg)

![](_page_102_Picture_4.jpeg)

![](_page_102_Figure_6.jpeg)

We are actually very used in routing with these settings, lets think about this

- Low memory
- Low stretch
- Dense center
- Very sparse outside the center
- Most of the destinations are outside the center

![](_page_103_Picture_8.jpeg)

![](_page_103_Figure_12.jpeg)

# **MPROVING MEMORY PERFORMANCES**

about Public transportation

- Low memory New city "there's no one around and your phone is dead"\* Low stretch - Its holidays, you can't wait in transports Dense center - City center is easily accessible Very sparse outside the center - Suburban public transportation ...

- Most of the destinations are outside the center Every analogy limps ...

![](_page_104_Picture_8.jpeg)

How to use the structure to save some entries?

We are actually very used in routing with these settings, lets think

![](_page_105_Picture_2.jpeg)

![](_page_105_Picture_4.jpeg)

![](_page_105_Picture_6.jpeg)

# **IMPROVING MEMORY PERFORMANCES**

![](_page_106_Picture_2.jpeg)

![](_page_106_Figure_4.jpeg)

# **MPROVING MEMORY PERFORMANCES**

![](_page_107_Picture_2.jpeg)

![](_page_107_Figure_5.jpeg)
# **IMPROVING MEMORY PERFORMANCES**





## **MPROVING MEMORY PERFORMANCES**

#### How to use the structure to save some entries?

### What is the hash value of v?





# **IMPROVING MEMORY PERFORMANCES**





## **MPROVING MEMORY PERFORMANCES**

#### How to use the structure to save some entries?

What is the label of node v?  $\ell(v)$ 





## **IMPROVING MEMORY PERFORMANCES**

















### **THEORETICAL RESULTS**





### Compared to older results for similar settings on RPLG

| Memory                 |                            |  |  |  |
|------------------------|----------------------------|--|--|--|
| average                | maximum                    |  |  |  |
| $O(n^{1/(t-1)+t-3})$   | O(n <sup>1-1/(t-1)</sup> ) |  |  |  |
| O(n <sup>1/110</sup> ) | O(n <sup>1/11</sup> )      |  |  |  |
| $O(n^{(t-2)/(2t-3)})$  |                            |  |  |  |
| $O(n^{1/12})$          |                            |  |  |  |
| O(√n)                  | O(n)                       |  |  |  |

#### Upper bounds for t = 2.1

### IN DEPTH [CSWT'12] VS. [GGHI'15]

Theoretical comparison for various exponential values

- when t < 2.707 [GGHI'15] avg. memory is</p> smaller
- [CSTW'12]:
  - has a smaller theoretical max. memory
  - but is a labeled scheme!
- For small values of t, hidden constants may play an important role

What are the performances in practice?





|              | avg stretch                                          | memory                                                                              |                                                                                                                                                                                                      |  |
|--------------|------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|              |                                                      | average                                                                             | maximum                                                                                                                                                                                              |  |
| [AGMNT'08]   | 1.56                                                 | 396                                                                                 | 1 1 4 3                                                                                                                                                                                              |  |
| ed [CSTW'12] | 1.30                                                 | 55.2                                                                                | 580                                                                                                                                                                                                  |  |
| [TZLL'13]    | 1.24                                                 | 404                                                                                 | 1 877                                                                                                                                                                                                |  |
| [GGHI'15]    | 1.75                                                 | 6.47                                                                                | 228                                                                                                                                                                                                  |  |
|              | [AGMNT'08]<br>ed [CSTW'12]<br>[TZLL'13]<br>[GGHI'15] | avg stretch   [AGMNT'08] 1.56   ed [CSTW'12] 1.30   [TZLL'13] 1.24   [GGHI'15] 1.75 | avg stretch   me     avg stretch   average     average   average     average   1.56     average   396     addition   1.30     average   1.30     average   1.24     average   404     average   1.75 |  |

### EXPERIMENTAL RESULTS For an RPLG with t=2.1



|        | For an AS-graph 16K nodes |             |         |         |  |
|--------|---------------------------|-------------|---------|---------|--|
|        |                           | avg stretch | memory  |         |  |
|        |                           |             | average | maximum |  |
| Labele | [AGMNT'08]                | 1.74        | 465     | 1 261   |  |
|        | ed [CSTW'12]              | 1.18        | 24      | 687     |  |
|        | [TZLL'13]                 | 1.52        | 106     | 2 3 2 4 |  |
|        | [GGHI'15]                 | 1.59        | 4.05    | 415     |  |

### EXPERIMENTAL RESULTS



### FUTURE WORKS

- In sparse networks, for q=1/2, routing tables of size  $O(n^q)$ • communication cost is  $\tilde{O}(n^{1+q})$
- - can that be done for any q?
- Labeled = Name-independent? (True for stretch 3)\* ie., name-independent routing with stretch 2k+1 and memory  $O(n^{1/k})$
- Very compact routing schemes for internet-like graphs: "logarithmic memory is required for infinite scaling"

\*Disclaimer: No prize is offered for solving this.





MERCI