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ROAD MAP

» Models and results.
» How to build a compact routing scheme.

» Compact routing in internet-like graphs.



COMPACT ROUTING

What is compact routing, why does it exist ?



MOTIVATIONS FOR COMPACT ROUTING

» Routing in large scale networks
» having better scaling capabilities
» forward packets faster

» maintain routing tables up to date efficiently

»  May help to save energy
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MEMORY-STRETCH TRADEOFF

Route length (u,v) =5
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N Distance (u,v) = 4

Stretch (u,v) = 5/4

MEMORY STRETCH
# entries stored per node maximal stretch over all pairs
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DISTRIBUTED ROUTING

/ \ Partial knowledge of

the graph (local)
' A = need of communication
_ to compute routing tables
H -

COMMUNICATION COST

# of small* messages exchanged

*polylogarithmic in the size of the network



COMPACT ROUTING

Stretch

+ Communication cost

+ Memory

.......
4

v 6-‘ ‘
» Increased latency » Forwarding packets faster » Cost efficient
» Increased energy » Saving energy maintenance

consumption » Saving energy



NAME-INDEPENDENT VS. LABELED

» Two models are considered for nodes naming (addresses)
» Name-independent routing: use arbitrary routing addresses

» Labeled routing: the designer chooses nodes’ names



NAME-INDEPENDENT VS. LABELED

The short answer

Name independent routing
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NAME-INDEPENDENT VS. LABELED

The short answer

Name independent routing

Query route to « A »

F, 1 C, 2 E, 3 D, 4 A, 5 B, 6

Labeled routing %

Query route to « A, 5 »




lower bounds

TRADEOFFS (NAME-INDEPENDENT)

[AGM’064d]

Stretch

< 2k+1

Memory

Q(n”k)

Communication cost

any



lower bounds

TRADEOFFS (NAME-INDEPENDENT)

[AGM’064d]

[GGHI'13]

Stretch

< 2k+1

1

Memory
Q(n”k)

any

Communication cost



lower bounds

upper bounds

TRADEOFFS (NAME-INDEPENDENT)

[AGM’064d]

[GGHI'13]
BFS-tree

Stretch

< 2k+1

1
1

Memory

Q(n”k)

Communication cost



lower bounds

upper bounds

TRADEOFFS (NAME-INDEPENDENT)

[AGM’064d]

[GGHI'13]
BFS-tree

Stretch

< 2k+1

1
1

< 3

optimal

Memory
Q(n”k)

any

O(n)

QQ(n)

Communication cost



lower bounds

upper bounds

TRADEOFFS (NAME-INDEPENDENT)

[AGM’064d]

[GGHI'13]

BFS-tree
[AR’93]

Stretch

< 2k+1

1

1
1

< 3

optimal

Memory

Q(n”k)

QQ(n)

Communication cost



lower bounds

upper bounds

TRADEOFFS (NAME-INDEPENDENT)

[AGM’064d]

[GGHI'13]
BFS-tree
[AR'93]

[AGM’06b]

Stretch

< 2k+1

1

< 3

optimal

Memory
Q(n”k)
any
O(n)
O(n)
O(n”k)

QQ(n)

Communication cost

any

Q(n?)
O(nm)
O(n?)

centralised



lower bounds

upper bounds

TRADEOFFS (NAME-INDEPENDENT)

[AGM’064d]

[GGHI'13]

BFS-tree
[AR'93]
[AGM’06b]
[AGM’08]

Stretch

Memory

Communication cost

any

Q(n?)

O(nm)

O(n?)
centralised

centralised



lower bounds

upper bounds

TRADEOFFS (NAME-INDEPENDENT)

[AGM’064d]

[GGHI'13]

BFS-tree
[AR'93]
[AGM’06b]
[AGM’08]

Stretch

< 2k+1

<3
<5

optimal

optimal

Memory

Communication cost

any

Q(n?)

O(nm)

O(n?)
centralised

centralised



lower bounds

upper bounds

TRADEOFFS (NAME-INDEPENDENT)

Stretch Memory Communication cost
<3 Q(n)
[AGM’'064d] < 2k+1 - Q(n'/k) Q) any
[GGHI'13] 1 any Q(n?)
BFS-tree 1 optimal O(n) O(nm)
[AR’93] 1 O(n) O(n?)
[AGM’06b] O(k) O(n'/%) centralised
[AGM’08] 3 optimal O@Hn) centralised
[SGF+10] 7 O(n) NC.



lower bounds

upper bounds

TRADEOFFS (NAME-INDEPENDENT)

[AGM’064d]

[GGHI'13]

BFS-tree
[AR'93]
[AGM’06b]
[AGM’08]
[SGF+10]
[GGHI’'13]

Stretch

< 2k+1

<3
<5

optimal

optimal

Communication cost

any

Q(n?)

O(nm)

O(n?)
centralised

centralised
NC.

O(myn)



TRADEOFFS (NAME-INDEPENDENT)

lower bounds

upper bounds

Stretch Memory Communication cost
, <3 Q(n)
[AGM’'064d] < 2k+1 - Q(n'/k) Q) any
[GGHI'13] 1 any Q(n?)
BFS-tree 1 optimal O(nm)
[AR’93] 1 O(n2)
[AGM’06b] O(k) O(n'/%) centralised
[AGM’08] 3 optimal ONW centralised
[SGF+10] 7 NC.
[GGHI'13] 7 O(mvn)
my thesis 5 O(myn)
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HOW TO BUILD A ROUTING
SCHEME

PART | : Labeled Compact Routing in Trees



LABELED COMPACT ROUTING IN TREES

Two candidates

» | will not talk about the difference, they have very similar performances:
»  “Thorup-Zwick” [TZ'01]
»  “Fraigniaud-Gavoille” [FG'01]

» Achieve labeled compact routing in rooted trees with:
» Memory space: O(log? n)*
» Stretch: 1
>

*[FG’01] actually have a O(log? n/loglog n) memory space



LABELED COMPACT ROUTING IN TREES

Fraignaud-Gavoille - Heavy child

» GOAL, for every node u:

» compute the compact routing label
¢(u) which represent path from v tor
in the tree.

» First step, heavy children nodes: ‘

» in the example the heavy child is
always the rightmost one.
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LABELED COMPACT ROUTING IN TREES

Fraignaud-Gavoille - Nodes names

path r a b ¢ u
path* r * * ¢
cpath_u | r 2 C 1
b_u 1 0 1 0

Finally we set the name of node u to
¢(u) = (u, cpath_u, b_u)




LABELED COMPACT ROUTING IN TREES

Fraignaud-Gavoille - Routing tables

» Routing tables are very small, every
node stores two entries:

» link to the parent
» link to the heavy child

» Routing is based on “prefix
comparisons” of the source and
destination labels.




LABELED COMPACT ROUTING IN TREES

Fraignaud-Gavoille - Routing algorithm (roughly)

cpath_u [ 2 C ]
@(U) b u | O | O
cpath_v r 3
@(V) b v | 0

Routing:

* b_u is not a prefix of b_v = £(v) is not a descendent

* route toward parent of £(u) (info. in routing table)
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LABELED COMPACT ROUTING IN TREES

Fraignaud-Gavoille - Routing algorithm (roughly)

@(U”) Cpath u r

@(U”)

—
O W] |I© IO

cpath_v r
K(V) b_v 1

Routing:
* {(u”) is almost a prefix of £(v)

* cpath_u"[-1] < cpath_v[-1]
therefore ¢(v) is a descendent of ¢(u”’)

* since b_v ends with O, £(v) is in the heavy side,

* route using the routing table of ¢(u”)




LABELED COMPACT ROUTING IN TREES

Fraignaud-Gavoille - Routing algorithm (roughly)

cpath_w r 3
C(V) 0
3




LABELED COMPACT ROUTING IN TREES

Fraignaud-Gavoille - Routing algorithm (roughly)

cpath_w r
£(v) :

b w

cpath_v

Z(W) b v

Routing:
o similarly as before, but in this case the routing
information is retrieved in the cpath of £(v).




LABELED COMPACT ROUTING IN TREES

Fraignaud-Gavoille - Labels size

» Now we know that routing can be achieved giving nodes labels, with
two routing entries per node.

» But what about the nodes names (labels) sizes?



LABELED COMPACT ROUTING IN TREES

Fraignaud-Gavoille - Labels size
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Fraignaud-Gavoille - Labels size

path r a b

C u

path* r* * c %
cpath_u | r 2 C 1
b_u 1 0 1 0

» Size of path can be n.
»  What about cpath size?
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Fraignaud-Gavoille - Labels size
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» By definition, path* stars are grouped if they are consecutive,
therefore the number of O’s in b_u is also bounded by log n.



LABELED COMPACT ROUTING IN TREES

Fraignaud-Gavoille - Labels size

path r a b ¢ u
path* r* * c %
cpath_u | r 2 C 1
b_u 1 0 1 0

» Size of path can be n.
»  What about cpath size?

» What is the maximum number of 1’s in b_u? #of non-heavy children?
(clue: the worst-case-tree is the binary one, why?)

» By definition, path* stars are grouped if they are consecutive,
therefore the number of O’s in b_u is also bounded by log n.

» Every item in cpath is of size O(log n) (either a length or a node id),
therefore, the total size of £(u) is O(log? n).



LABELED COMPACT ROUTING IN TREES

Two candidates

» Performances of [FG'01] for rooted trees:
»  Memory space: O(log? n)
»  Stretch: 1 (shortest path)

» Labeled scheme




HOW TO BUILD A ROUTING
SCHEME

PART Il : Labeled compact routing for general graphs
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» Using “reference node(s)”

» we call them, Landmark(s)
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USING [FG’O1] TO DESIGN UNIVERSAL
COMPACT ROUTING SCHEMES

{(U)

» In atree, with [FG’'01], we can
do shortest path with constant
memory in the labeled model.

» But not every graph is a tree ...
is unbounded !!

.
.
.
|
| |
| |
stretch(u ~ v) -
|
]
N
" » The stretch can be unbounded.
v
S
IS

» Solution: use “vicinity balls”

A\



USING [FG’O1] TO DESIGN UNIVERSAL
COMPACT ROUTING SCHEMES

» For nodes closer than L e.g., £(v), use
classical shortest path routing

» For others e.g., ¢(v’), use [FG'01]
routing

» This way the stretch is bounded by 3.

» But ... vicinity balls can be huge, and
so as the routing tables size.
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LABELED COMPACT ROUTING SCHEME

For Vn landmarks nodes:

> Memory: O(\n)
»  Stretch: 3 at most
»  Similar to the scheme by Thorup & Zwick [TZ'01]



HOW TO BUILD A ROUTING
SCHEME

PART Il : From Labeled to Name-independent routing



LABELED COMPACT ROUTING SCHEME

For Vn landmarks nodes:

> Memory: O(\n)
»  Stretch: 3 at most
»  Similar to the scheme by Thorup & Zwick [TZ'01]



LABELED COMPACT ROUTING SCHEME

For Vn landmarks nodes:

> Memory: O(Vn)
»  Stretch: 3 at most
»  Similar to the scheme by Thorup & Zwick [TZ'01]



NAME-INDEPENDENT VS. LABELED

How to adapt this algorithm in the name-independent model ?

When routing from U to v, if £(u) and £(V) can be retrieved then we
are done.

1. every node U could store its own label £(U) (constant memory)

2. every node U cannot store every destination label
otherwise memory would me O(n).

The routing label £(V) can be retrieved using local collaboration
amongst vicinity nodes.
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NAME-INDEPENDENT VS. LABELED

Vicinity label-sharing

all n labels

|dentifier co.mpact-
routing-label

V1 (V1)
V2 (v2) hash
\E e(v3) function
V4 e(V4)

Vi=V e(Vv)
Vn Z(Vn)

|dentifier

compact-
routing-label

e(v2)
e(v3)
e(vi)

compact-
routing-label

(V1)
e(V4)
¢(Vo)




NAME-INDEPENDENT VS. LABELED

Vicinity label-sharing

U6
all n IabEIS Compqcf-
- 1 |dentifier ,
. compact- routing-label
|dentifier , | 9
routing-label Vo £(vo)
V1 e(v1) V3 e(v3)
= Eiv2) hash Vi e(vi)
V3 €(vs) function u
V4 e(V4) t
Identifier | OMPICr
Vi =\ e(v) routing-label
V1 e(v1)
Vn @(Vn) V4 e(V4)
Vo ¢(Vo)
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How to adapt this algorithm in the name-independent model ?

|dentifier co.mpact-
routing-label
V1 (V1)
V2 (v2)
V3 e(v3)
V4 e(V4)
Vi=V (V)
Vn Z(Vn)




NAME-INDEPENDENT VS. LABELED

How to adapt this algorithm in the name-independent model ?

|dentifier

compact-
routing-label

4

Moreover, in its vicinity
routing table, node U stores
the colours of the nodes.



NAME-INDEPENDENT VS. LABELED

How to adapt this algorithm in the name-independent model ?

|dentifier Co.mpqct- S
routing-label » Moreover, in its vicinity
V7 (V1) routing table, node U stores
Vo £(v>) the colours of the nodes.
V3 e(v3)
V4 £(V.4) » The memory used for label
sharing is #labels/#colors, for
Vie v d\'/) example it can be:
n/n = \n
Vi e(Vn)




NAME-INDEPENDENT VS. LABELED

Routing

@
@
Hash value
of Vis |}
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NAME-INDEPENDENT VS. LABELED

Memory

» Every node U stores two types of entries:

_— » Next-hop and color of nodes in its vicinity

ball, ie., O(\n) entries.

» Compact routing labels of nodes whose
hash value is blue, ie., O(\n) entries.

» Therefore, the total memory per node is O(Vn)
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Stretch factor

» Hyp.: d{u,v) =1

» = Radius £ 1

» d(v,Ly) £ d(v,L) £ 2
» d(u,Lv) < d(v,Lv)+d(u,v) £3

» “U~~w~u~Lv~>v<7”




NAME-INDEPENDENT VS. LABELED

Stretch factor

Hyp.: d(u,v) =1
= Radius £ 1

d(v,Ly) < d(v,L,) £ 2
d(u,Lv) < d(v,Lv)+d(u,v) £ 3

“U~w-~u~>Lv~>v<7”
Therefore the stretch is < 7.



PERFORMANCES

Stretch Memory Communication cost
[AGM’08] 3 optimal O(\n) centralised
> o
my thesis 5 O(n) O(mn)
To be done (hard) 3 O(n) o(mn)

» If the route use the best landmark from {L,, L/} the stretch can be improved to 5.

» This can even be done in a distributed way without any impact on the asymptotic
complexities.



COMPACT ROUTING FOR
INTERNET-LIKE GRAPHS



INTERNET-LIKE GRAPHS

» Power-law degree distribution
» Sparse graph (logarithmic average degree)

» Low diameter (also logarithmic)
» Looks like a tree with a dense cluster as a root

» Mimicked by a synthetic graph model, called RPLG:
»  Random Power Law Graph

» Parametrised by the power-law exponent, t




INTERNET-LIKE GRAPHS

(RPLG)

degree distribution

10000

# nodes

1000 F

Power-law exponent

100 T

= 2.

t

10 F

degree
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IMPROVING MEMORY PERFORMANCES .

How to use the structure to save some entries?

» We are actually very used in routing with these settings, lets think
about this

» Low memory

» Low stretch

» Dense center

» Very sparse outside the center

» Most of the destinations are outside the center



IMPROVING MEMORY PERFORMANCES

How to use the structure to save some entries?

» We are actually very used in routing with these settings, lets think
about Public transportation

» Low memory - New city “there’s no one around and your phone is dead”*
» Low stretch - Its holidays, you can’t wait in transports

» Dense center - City center is easily accessible

» Very sparse outside the center - Suburban public transportation ...

» Most of the destinations are outside the center - Every analogy limps ...

*Rob Cantor



IMPROVING MEMORY PERFORMANCES

How to use the structure to save some entries?

Oy

City center

Suburbs

4




IMPROVING MEMORY PERFORMANCES

How to use the structure to save some entries?

S

.



IMPROVING MEMORY PERFORMANCES

How to use the structure to save some entries?

| am lost, lets go U
to the center.

Vv




IMPROVING MEMORY PERFORMANCES

How to use the structure to save some entries?

o

.

U



IMPROVING MEMORY PERFORMANCES

How to use the structure to save some entries?

What is the hash

value of v@




IMPROVING MEMORY PERFORMANCES

How to use the structure to save some entries?

)

.

U



IMPROVING MEMORY PERFORMANCES

How to use the structure to save some entries?

What is the label of

node v?

((Vv)




IMPROVING MEMORY PERFORMANCES

How to use the structure to save some entries?




IMPROVING MEMORY PERFORMANCES

How to use the structure to save some entries?

S

4

U



IMPROVING MEMORY PERFORMANCES

How to use the structure to save some entries?

S,

.
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Labeled

[GGHI'15]

[CSTW'12]

[TZLL'13]

THEORETICAL RESULTS

Compared to older results for similar settings on RPLG

Stretch

>0

Memory
average maximum
O(n/t1+t3) O(n!-1/tN)
O(n'/110) O(n'/11)

O(ﬂ (t—2)/(2t—3))

O(n'12)
O(n) O(n)

Upper bounds fort = 2.1




IN DEPTH [CSWT'12] vs. [GGHI'15]

Theoretical comparison for various exponential values

0.5

» when t<2.707 [GGHI'15] avg. memory is [GG+] max.

0.4 [GG+] avg.
[CSWT'12]

smaller

» [CSTW'12]:

. 0.3
» has a smaller theoretical max. memory

» butis a labeled scheme!

0.2

Number of entries nf(t)

» For small values of t, hidden constants may
play an important role 0.

What are the performances in practice?

2 2.2 2.4 2.6 2.8 3
Power law exponent t



EXPERIMENTAL RESULTS

For an RPLG with t=2.1

avg stretch memory -------------------------
average maximum
[AGMNT'08] 1.56 396 1143
Labeled| [CSTW'12] 1.30 55.2 580
[TZLL'13] 1.24 404 1877
[GGHI'15] 1.75 6.47 228




EXPERIMENTAL RESULTS

For an AS-graph 16K nodes

avg stretch memory -------------------------
average maximum
[AGMNT'08] 1.74 465 1 26T
Labeled| [CSTW'12] 1.18 24 637
[TZLL'13] 1.52 106 2 324
[GGHI'15] 1.59 4.05 415




FUTURE WORKS

» In sparse networks, for q=1/2, routing tables of size O(nd)
» communication cost is O(n'*)

» can that be done for any (2

» Labeled = Name-independent? (True for stretch 3)*

» ie., name-independent routing with
stretch 2k+1 and memory O(n'/%)

» Very compact routing schemes for internet-like graphs:

»  “logarithmic memory is required for infinite scaling”

*Disclaimer: No prize is offered for solving this.



MERCI



