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Clique number and chromatic number

Let G be a graph.

χ(G) denote the chromatic number of G , that is the smallest
integer k such that one can color G with k colors in such a
way that no two adjacent vertices receive the same color.

ω(G) denote the clique number of G , that is the size of a
maximum clique in G (that is a maximum set of pairwise
adjacent vertices).

ω(G) ≤ χ(G)



Subgraphs of graphs with large chromatic number

Subgraph : subgraph obtained by deleting edges or vertices.
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What can we say about the subgraphs of a graph with large
chromatic number ?

More precisely : if you fix a graph H and you give me a graph G
with sufficiently large chromatic number, can I ensure you that G
contains H as a subgraph ?

Example : Kn contains all graphs of order n as subgraphs.



Subgraphs of graphs with large chromatic number

Theorem (Erdős, 1959) : There exists graphs with arbitrarily
large chromatic number and girth.

Girth = length of a smallest cycle.

If a graph H has a cycle, then there exists a graph G with no copy
of H and arbitrarily large chromatic number.

Theorem : If χ(G) ≥ k, then G contains all trees T of order k as
a subgraph.

If all vertices of G have degree at least k − 1, then G contains all
trees of order k as a subgraph.

Proof : by induction on k.
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The oriented version

The chromatic number (resp. the clique number) of a digraph is
the chromatic number (resp. the clique number) of its underlying
graph.

What can we say about the subdigraphs of a digraph with large
chromatic number ?

Theorem (Burr, 1980) : If χ(D) ≥ (k − 1)2, then D contains all
trees of order k as subdigraphs.
Proof : by induction on k.

Conjecture (Burr, 1980) : if χ(D) ≥ 2k − 2, then D contains all
trees of order k as subdigraphs.
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Large chromatic number and induced subgraphs

Induce subgraph : subgraph obtained by deleting vertices.
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What can we say about the induced subgraphs of a graph with
large chromatic number ?

Let H be a graph. The class of graphs that do not contain H as an
induced subgraph is called Forb(H).

χ(Forb(H)) = maxG∈Forb(H)χ(G).

Question : For which graph H χ(Forb(H)) is bounded.



Large chromatic number and induced subgraphs

Induced subgraphs of cliques are cliques and

there exists graphs with large chromatic number and girth.

So for any graphs H, χ(Forb(H)) = +∞.

What if no big cliques ?

Conjecture (Gyárfás, 1975 ; Sumner, 1981) : For every integer k
and tree T , χ(Forb(T ,Kk)) is bounded.

In other words, if G ∈ Forb(T ), then its chromatic number cannot
be too big compared to its chromatic number.
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The Gyárfas-Sumner Conjecture

A class of graphs C is χ-bounded if there exists a function f such
that for all G ∈ C, χ(G) ≤ f (ω(G)).

Conjecture (Gyárfás, 1975 ; Sumner, 1981) : for every tree T ,
Forb(T ) is χ-bounded.

Some partial results :

Forb(Pk) is χ-bounded (Gyárfas, 1980),

Forb(Sk) is χ-bounded (Gyárfas, 1980),

Forb(T ) is χ-bounded, for trees of radius 2 (Kierstead and
Penrice, 1994)

Forb∗(T ) is χ-bounded (Scott).
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The oriented case

Question : for which oriented tree T is Forb(T ) χ-bounded ?
i.e. for all D ∈ Forb(T ), there is a function f such that
χ(D) ≤ f (ω(D)).

Tournament = orientation of a complete graph.

tt(D) = order of a largest transitive tournament in D.

Theorem (Erdős, Moser, 1964) : for any tournament T ,
tt(T ) ≥ log(|V (T )|) + 1.

So Forb(T ) is χ-bounded is equivalent to :
there is a function g such that χ(D) ≤ g(tt(D)) for all
D ∈ Forb(T ).
for all integers k, χ(Forb(T ,TTk)) is bounded.



Forbidding oriented paths

Theorem (Gyárfas, 1987) : for any integer k, Forb(Pk ,Kk) is
bounded.

What about oriented paths ?



Forbidding oriented paths

Theorem (Gyárfas, 1987) : for any integer k, Forb(Pk ,Kk) is
bounded.

What about oriented paths ?



Forbidding oriented paths
Four ways to orient P3 :

P+(3)

P+(2, 1)

P−(2, 1)

P+(1, 1, 1)

Observe that

Forb(P3) = Forb(P+(3),P+(2, 1),P−(2, 1),P+(1, 1, 1))



Forbidding two induced oriented paths of length 3

Theorem :
(a) Forb(P+(3),P+(2, 1)) is χ-bounded.
(b) Forb(P+(3),P−(2, 1)) is χ-bounded.
(c) Forb(P+(3),P+(1, 1, 1)) is χ-bounded.

Proof : (a), (b), (c) : No odd hole.

Theorem (Scott and Seymour, 2014) :
Odd-hole-free graphs are χ-bounded.

What about Forb(P+(1, 1, 1),P+(2, 1),P−(2, 1)) ?



Forbidding an induced oriented path of length 3

Theorem :

χ(Forb(TT3,
−→
C 3,P+(3))) = +∞.

χ(Forb(TT3,
−→
C 3,P+(1, 1, 1))) = +∞.

χ(Forb(TT3,
−→
C 3,P+(2, 1)) = 3.

χ(Forb(TT3,P+(2, 1))) = 4.

If
−→
Pk contains P+(3) or P+(1, 1, 1), then Forb(

−→
P k) is not

χ-bounded.

Question : Are Forb(P+(2, 2)) and Forb(P+(1, 2, 1)) χ-bounded ?



χ(Forb(
−→
C k≥3,TT3,C(3, 1),C(2, 2),P+(1, 1, 1))) = +∞

Line-digraph of D, L(D) :
V (L(D)) = A(D) and A(L(D)) = {(uv , vw))|uv , vw ∈ A(D)}.

Theorem : for any graph D,
L(D) ∈ forb(TT3,C(3, 1),C(2, 2),P+(1, 1, 1)).

Theorem : (Poljak and Rödl, 1981) χ(L(D)) ≥ log(χ(D))

L(TTn) ∈ forb(
−→
C k≥3,TT3,C(3, 1),C(2, 2),P+(1, 1, 1)) and

χ(L(TTn)) ≥ log(n).



χ(Forb({
−→
C k≥3,TT3,P+(3)})) = +∞.

By induction on k, we construct Dk ∈ Forb({
−→
C 3,TT3,P+(3)})

such that χ(Dk) = k.

S(v) = {u : there is (v , u)-dipath of even length}
= {u : there is a (v,u)-path of length 2}

Dk+1 obtained from Dk as follows :
Take k copies D1

k , . . .Dk
k of Dk .

For every (v1, . . . , vk) with vi ∈ V (Di
k) :

add a new vertex x = x(v1, . . . , vk) ;

for all 1 ≤ i ≤ k, add all arcs from S(vi) to x .



Forbidding oriented stars

Theorem (Gyárfas) : for all k, Forb(St ,Kk) ≤ R(t, k).

Proof. If D ∈ Forb(Sk), then all vertices have degree less than
R(k, ω(D).

The Ramsey number R(t, k) is the minimum number such that all
graphs on R(t, k) vertices either have a stable set of size t or a
clique of size k.



Theorem : Forb(S0,k) is χ-bounded.

Proof. Ramsey.

Theorem : χ(Forb(TT3,
−→
C 3,Si ,j)) ≤ 2i + 2j − 2.

Theorem : χ(Forb(TT3,Si ,j)) is bounded.

Conjecture : for all integers k, χ(Forb(Si ,j ,TTk) is bounded.
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