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Abstract—For a long time now, researchers have worked on Co ¢

defining different metrics able to characterize the importance b o d b d
of nodes in networks. Among them,centrality measures have
proved to be pertinent as they relate the position of a node in the
structure to its ability to diffuse an information efficiently. The
case of dynamic networks, in which nodes and links appear and
disappear over time, led the community to propose extensions of
those classical measures. Yet, they do not investigate the fabiat t=1 =2
the network structure evolves and that node importance may
evolve accordingly. In the present paper, we propose temporal c C
extensions of notions of centrality, which take into account the
paths existing at any given time, in order to study the time be d b d
evolution of nodes’ importance in dynamic networks. We apply
this to two datasets and show that the importance of nodes does
indeed vary greatly with time. We also show that in some cases it ae e a ® e
might be meaningless to try to identify nodes that are consistently
important over time, thus strengthening the interest of tempora

extensions of centrality measures. t=3 =4

Keywords—centrality, network dynamics, temporal paths, node Fig. 1. A small example of a dynamic network. The links existindime
importance t = 1 are shown on the top left corner, the ones existing &t2 in the top
right corner, and so on.

I. INTRODUCTION

Scientists studying complex networks have been interested [N this case, it becomes necessary to consider paths that are
for a long time in the question of evaluating the importante o Not instantaneous but instead are spread between a beginnin
a node. This has lead to the introduction of several measureé)d an ending time, while respecting the network dynamics.
of importance, such as for instance degree, closeness &uch atemporalpath follows links that happen one after the
betweenness centrality, Katz centrality, or PageRank. other (see Section IlI for a rigorous definition).

Most centrality measures are based on the study of paths In this case, our key argument is that paths change during
in the network: a node will be important for instance if the network time span, and thus the importance of nodes
the paths from it to other nodes are short, or if it lies onvaries. Consider indeed the toy example of Figure 1. Thidlsma
shortest paths between many pairs of nodes. One motivatidtetwork composed of five nodes evolves during four distinct
for this is that links can act as a dissemination mediurfime steps. One can see that, intuitively, the importancedg
for some phenomena occurring on the network. For instanck is much stronger at timé = 1 than at timet = 3. Indeed,
individuals can exchange information when they commueicat at time¢ = 1 it forms a bridge between nodeand nodes;, d
or a message can be forwarded from computer to computé@de, thanks to the links that exist at time= 2.

until it reaches its destination. Several works have introduced extensions of centrality

Researchers have acknowledged for some time that nefotions for the case of dynamic networks. However, most of
works are dynamic in nature: nodes and links come and go witfhese works consider only paths starting at the beginning of
time. This has led to a stream of works aiming at understandinthe dataset; they obain in this way a single figure for node
and modelling these dynamics. In particular in the case ofentrality, representative only of what happens at veryyear
centrality, some works have been concerned with efficientljimes. Other works consider paths throughout the dataset ti
updating the centrality values of the nodes when a changg&pan, but still consider that node importance can be reprege
occurs in the network. In many cases however, the time scaley a single figure rather than by a time-evolving metric.
at which the network evolves is the same as the one at which Though it is quite straightforward to extend these metrics

a dissemination phenomena may occur on the network. Thig, ey to consider the time evolution of node centrality, n

IS t_h_e case for instance yvhen a disease propagates amopyg up to our knowledge has attempted to study this question
individuals when they are in contact, or when an information

is disseminated by email messages. In this paper, we study a natural extension of the closeness



centrality to the case where paths may start at any time glurin ~ Nicosiaet al. [8] introduce notions of temporal closeness
the network’s time span. This temporal closeness chaiaeter and betweenness centralities. Their definition of a shippizth
the importance of any nodat any given timeWe study two  however considers only paths whose starting point is at the

datasets and observe that: beginning of a dataset’s time span.
1) node importanceloesvary with time, and therefore Some propositions acknowledge that the distances between
capturing the global importance of a node with annodes, and therefore nodes’ importance, vary with time [9],
aggregate value m|ght be mis|eading; [10], [11], [6] . However, in practice they still represerhtet

2) in some cases the dynamic of the network is such thatarying importance of a node by a single value that is sugpose
it is meaningless to identify nodes more importantt0 represent its overall importance throughout the network
than others; in other cases, temporal closeness maglobal time span.

help identifying a node consistently important for the - geyeral papers introduce and study a variant of the Katz
whole network time span; centrality [12], [13]. Among those, Lermast al. [14] ac-
knowledge the fact that node importance may evolve with
This work is organized as follows. First we present thetime, but no systematic study is performed. Moreover, the
existing work related to the notion of centrality in statieda introduced metric is dependant on parameters defining what
dynamic networks (Section Il) before providing the defons  are considered as relevant path lengths and path durations,
necessary to the present study (Section Ill). Then we ptesewhich complicates the analysis.
the two datasets (Section 1V) on which we apply the proposed
metrics and present the obtained results (Section V). lyjnal
we conclude the paper with some perspectives (Section VI).

Finally, Cotseet al.[15] notice that not all time instants are
equivalent in a dynamic network, and introduce the notion of
time centrality this is a measure of how fast a dissemination
Il RELATED WORK process can reach a sigr_lificant portion of the nodes at a given
' time t. However, this notion does not analyze the importance
Many papers have studied the importance of nodesatic  of individual nodes in the dissemination process, whichus o
networks, i.e. networks that don’t evolve with time. Amohgt goal in this paper.
metrics that have been introduced, one may cite the degree ce
trality, closeness centrality [1], betweenness cenyr§lif and
the Katz centrality [3]. Closeness and betweenness cimntral
are based on the shortest paths, while the Katz centrakgsta
into account the paths of all lengths between two nodes.

All in all, and to the best of our knowledge, if many
papers acknowledge the fact that the temporal evolution of
networks impact the value of centrality measures and p®pos
variations of standard metrics to account for the dynamics,
no paper propose a complete and systematic study of the
Some papers who have studied dynamic networks havevolution of centrality measures for all nodes and all time
been concerned with efficiently computing the static cdityra steps of the network’s evolution. Instead, they all propose
at all times. For instance, Kat al. [4] propose an algorithm average computations either over all nodes of the networks,
that, given the knowledge of the distances between all pairsither over all the network time span. We argue in this paper
of nodes and given a network change (edge appearance Wfat discarding either of those two aspects lead to severe
disappearance), computes the new distance values (whi¢hisunderstanding of the real nature of node’s importance in
allows the computation of distance-related centrality sneas) the context of dynamic networks
by updating the previous values rather than computing them
all from scratch again. This is relevant, e.g. in contextereh I1l. DEFINITIONS
the network evolves at a much slower scale than the one on

which disseminations take place. A dynamic networkG = (V,E) consists of a sel/

of nodes and a setE of timed links of the form(u,v,t)
However, in many contexts the dissemination phenomena/hereu,v € V andt is a timestamp. Throughout the paper

in the network happen on the same time scale as the netwoike consider networks as undirected, i.e. a link v,t) is

evolution. It then becomes necessary to consiggnporal  equivalent to a link(v, u, t).

paths [5], [6], i.e. link sequences that are time-respgctas i i i

opposed to paths composed of links that all exist at the same A temporal path in a dynamic network consists of:

time. For instance, in the dynamic network of Figure 4, there

is a temporal path from node to nodee going through the

link (a,b) att =1 and the link(b, e) at timet¢ = 2. e a sequence of links

Several definitions of temporal paths have been studied in (o, 0, to), (U1, v1, 1), - (U, Vs i)
the literature. Some of them can be computed more easily thag),ch that:
others. Whitbecket al. [7] propose an efficient algorithm to
approximate the existence of paths in the most difficult case 1) foralli,i =0..k — 1, u;11 = vs;
and show that the study of the notion of reachability, i.eicivh 2) foralli,i=0.k—1,¢ <tiy.
nodes can be reached from which ones, and at which times in 3) ¢y > tg;

the network’s time span, provides enlightening insight lo@ t ) )
network’s dynamics. We say that such a path is a path fram to v, starting

at timet,. Its duration is equal tot; — t,. We will say that

a starting timet,, and

Notions of centrality taking into account temporal paths
have also been introduced. 1We assume that the set of nodes does not evolve with time.




a path fromu to v starting at timet, is a shortest path if it and we define the temporal efficienéy(G) of networkG as
has the least duration among all paths franto v starting at  the average over all nodes of the temporal closeness atttime
time t,. We define the distance froma to v at timet¢ to be
the duration of a shortest path fromto v starting at timet,
and we denote it byl;(u,v). If there is no path from: to v
starting at timet, we consider thatl;(u,v) = oo.

Building upon this notion of efficiency, we can study
another metric that quantifies the impact a node has on a
network. The notion oflelta-centrality[17] characterizes how
much a given node (or group of nodes) impacts the efficiency.

Note that a path starting at timenight imply waiting times It is defined as the relative change of the network efficiency
at all nodes, including the first one, in the same way that avhen the considered node (or group of node) is removed from
person starting at a given time a train trip with connectionsthe network.
must wait for the train in the first station, and then at each

connecting station. Following this, we study the extension of the delta-

centrality to the dynamic case. Themporal delta-centrality
For example, in the dynamic network of Figure 1, there arenf a nodev at timet is defined by:

two temporal paths from to b starting at time = 2. The first

one consists of the single linfe, b, 2), and its duration is O; Ei(G) — Ei(G\v)

the second one consists of the linksd, 3) and(d, b,4) and E(G) 7

its duration is 2. The temporal distance framo b at time 2 \ynere?\ v is the network obtained frorG’ by removing node

is thereforeds (e, b) = 0. Note that the temporal distance from ' 4n4 all its adjacent links.

e to b at time 1 isd; (e, b) = 1: the temporal shortest path has

the same link sequence than the one starting-a® (it is the The program we used to compute the above metrics is

single link (e, b, 2)), but the starting time is different. Since available [18].

there is no temporal path fromto e starting at timet = 3,

ds(c,e) = 0. IV. DATA SETS

Several variants have been introduced in the literaturefmo  In order to study the behaviors of the metrics introduced
notably concerning the constraint < ¢;;;. Some variants above, we study two datasets that present different clearact
weaken it tot; < t¢;;1, while others strengthen it t6; <  istics and come from two very different contexts:
t;+1+ 6, whered is a parameter representing the time needed ] ]
to send a message along a link. The relevance of these wariant ¢ Rollernet [19]: this dataset was collected during a

depends on the context. See [7] for more details. Preliminar rollerblade tour in Paris in August 2006. The tour
work shows that this has little influence on the results. is a weekly event and gathers approximately 2500
. - i ) participants. Among these, 62 were equipped with
Itis Worth_notlcm_g that ourdef|r_1|t|on ofa_ldyna_lml_c network wireless sensors recording when they are at a com-
consists of links without a durat_lon. Again, this is (elet/qn munication distance from one another. The dataset
in some contexts (e.g., an email is sent at a precise time) therefore contains the proximity links between the
and_ less in others (a phone. call has an intrinsic duration). persons carrying the sensors. The total dataset duration
Notice howeve( that our notion of a tem.p.oral path can be is approximately 2 hours and 45 minutes (with a break
easily a_dapted in the latter case; the condm(_)n becomesatha of approximately 30 minutes).
path going through node at time¢; can continue to a node
v provided that there is a link betweenandv that ends after e Enron [20]: this dataset contains tR82 759 emails
t;. that 151 Enron employees exchanged during three
years. It records information on the senders, receivers,
We recall that the closeness of a nad@é a non-evolving and the moment they were sent. Note that by nature,
network is defined as [1]: the links are directed but for a fair comparison with
1 the Rollernet dataset, we treated them as undirected
; m, in the present study.

Before studying the importance of nodes (see next section),
it is enlightening to make some global observations rel&ved
The average of the closeness of all nodes has been defindlte dynamic of the networks.
as networkefficiency[16]2.

whered(u, v) is the classical graph distance.

To do so, we present in Figure 2 the fraction of pairs
Though some extensions of the closeness have been definefl nodes for which there is a temporal path starting at the

for the case of dynamic networks [11], [8], their goal is not beginning of the dataset and ending before tins a function

to take fully into account the fact that temporal distancasyv  of ¢. In other words, it represents the proportion of pairs of

according to the paths’ starting time. We therefore herendefi nodes that are reachable from one another at timesooner.

the temporal closeness of a nodet time+ as: Notice that, though the shapes of the plots are similar,ithe t
1 scales are very different: for Rollernet, all pairs of notiest
Ci(u) = Z do(w,0)’ are eventually connected are so within less than half an, hour
vt i.e. quite early in the dataset. For Enron, on the other hidd,

2There are several variants of the closeness in the litieratiepending on time scale is larger and we can see that less than 10% of the
a normalisation constant, and the efficiency depends of 8irece for both pairs Of, nodes are reachable from one another after one y.ear;
metrics this is a constant that does not vary with time, we usestimplest NEW pairs become reachable for the whole dataset duration,
version for the closeness which is the sum of the inversebeofiistances. and some paths only end very close to the end of the dataset.
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Fig. 2. Fraction of pairs of nodes for which there exists a terappath Fig. 3. Time-evolution of the temporal efficiency. Top: Raflet; Bottom:
starting at the beginning of the dataset and ending at tirae sooner, as a  Enron.
function of t. Top: Rollernet; Bottom: Enron.

25

This difference between the datasets does not come from g | |
an artifact at the beginning of Rollernet: we have obsertiad t
we can find short paths from any node to any other node at
almost any starting time (except close to the end). This seem 10 - |

15 1

to indicate that nodes will be overall less important in Roiet
than in Enron. Indeed, in the first case we may expect that a ST L» 1
given node’s closeness will be only marginally larger than a 0 : : : : :
other one’s, whereas in Enron we may expect tilhtpaths 0 0.5 1 15 2 2.5 3
to a given node must go through the same node, which will Time (hours)
then be quite important. Our observations in the next sectio 01
confirm this intuition.
0.01 | 1
V. RESULTS 0.001 | 1
We now present the results obtained using the different 0.0001 | ‘ U ’ 1
notions introduced in Section 11l on the two dynamic netveork 1605 [ //’ 1
presented above. -
1e-06 L L L L L

A. Temporal efficiency and temporal closeness over time 0 200 400 _ 600 800 1000 1200
Time (days)

Figure 3 presents the time evolution of the temporal effi-
ciency for each dataset. We can see that the value fluctuat€g. 4. Time-evolution of the temporal closeness of randomiysen nodes
widely for both of them. Notice that for Enron, even though in our datasets. Top: Rollernet; Bottom: Enron.
it fluctuates, the efficiency tends to increase with tim€his
is caused by the fact that, as shown previously, the number
of pairs that are reachable from one another increases withodes in our datasets. It appears clearly that the closafess
time throughout the dataset duration. The final collapseiste & node can be very bursty. Values vary on a wide range in
from the fact that, towards the end of the dataset, less asd leboth cases, and along several orders of magnitude in the case
temporal paths exist. of Enron. This burstiness makes the plots difficult to intetp

_ ) - _..and highlights our claim that the importance of a node varies
We expect that these fluctuations in the efficiency W'"greatly with time.

impact the individual nodes’ closeness.

However, the fact that a node’s closeness fluctuates with
r}ime does not mean that this node does not have a relatively
large (or small) closeness overall. To evaluate this, wednee

3Note that we used a log scale on the y-axis for this plot. Thékpepanning 0 compare the values between nodes. We do this in the next
several orders of magnitude make it unreadable with a linesle sc section.

Turning to the temporal closeness, we first present i
Figure 4 the time evolution of this metric for randomly chose
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Fig. 5. Time-evolution of the rank of randomly chosen nodesundatasets.  Fig. 6. Total duration for which rank is in the 25% lowest (s} vs total
Top: Rollernet; Bottom: Enron. duration for which rank is in the 25% highest (y-axis). ToplIRrnet; Bottom:
Enron.

B. On the relative importance of a node some times, at which it plays an important role in the network

In order to get a better sense of whether a node consistentlyonnectivity. The Rollernet node has no clear period within
has a large closeness with respect to other nodes, we paxteedvhich its rank is rather stable.
in the following way: for each time stefy we sorted all nodes
by increasing order of their temporal closeness at tinienis ~ C. On the global importance of some nodes
gives to each node a rank that varies with time: nadeas
rank 1 at timet if it has the lowest temporal closeness among
all nodes at timet, and rankn (wheren is the number of
nodes) if it has the highest temporal closeness.

In order to study all nodes in a more systematic manner,
we computed, for each node in each dataset, the total daratio
during which its rank was among the 25% lowest, and the total
duration during which its rank was among the 25% highest.

Figure 5 shows the time evolution of the ranks of the samé\Ne plot in Figure 6 these two quantities for each node for the
randomly chosen nodes as Figure 4. We can observe seveRbllernet (top) and Enron (bottom) case. Notice that thegpsha
things. First, as expected, there seems to be a correlatiaf the scatterplot is limited by the fact that the sum of both
between closeness and rank: at many times, the higher tlmordinates cannot exceed the dataset duration.
closeness, the higher the rank. However, this correlatorot
perfect: for the Enron node, for instance, there is a period o
increasing closeness between two peaks after t=800 dags. T
closeness at this time is larger than at times 0-600 dayshbut
corresponding rank is lower. We also observe an artefact fo
large times in the Enron case: we observe that the closene

drops to O after approximately 900 days; however the ran . ; >
increases during this period. This is due to the finite darati represents approximately half the dataset duration. Tesns

of the dataset. Since fewer and fewer temporal paths exﬁgat vr\l/ﬁor?gddea?;sse? gllj?gggx hllﬁhE%rr(I)?]Wh%\?vse?/gfszcEmgur?cr)]gg;
between pairs of nodes, the closeness of more and more no & ' ’

drops to zero (we observed the corresponding decrease in t e predominantly either in the _highest or Iowes_t 25% ranks
L . I;‘illurlng almost all the dataset’s time span, meaning thatthes

nodes consistently have a high (or low) temporal closeness
comparativelyto all other nodes.

In both datasets we observe that all nodes are not equiva-
ent: most nodes are in the top 25% ranks for a longer duration
an they are in the bottom 25%, or conversely. However, this
oes not happen with the same magnitude in both datasets. In
llernet, the maximum total duration for which a node is in
e top or bottom 25% ranks is approximately 1.5 hours, which

arbitrary.

Finally, we observe different behaviors between the Roller
net and the Enron nodes. While the Rollernet node’s ranléln
fluctuates between very low and high ranks (except at th%0

beginning of the trace), the Enron node’s rank is ratherlstab : :
L9 : ; : the rank was in the top (resp. bot) 25% for the longest period
for a significant part of the dataset's duration, beforetisigr of time, for each dataset. We plot the time evolution of these

fluctuating (but not as drastically as the Rollernet one). Innodes’ rank in Figures 7 (Rollernet) and 8 (Enron)
conclusion, neither of these nodes has a high or low closenes 9 '

globally. The Enron node has a low closeness for a significant Again, we observe different behaviors between the datasets
duration of the dataset, but still reaches very high ranks afor Rollernet, the longest duration a node is in the 25%

In order to deepen the study of whether some nodes play
overall important role in the network (or conversely, dnav
nsistently a low impact), we identfied the node for which



70 ; ; ; ; ; therefore drops to zero (but, as seen in Figure 4 it has then an

60 [ | arbitrary rank among all nodes with a null closeness). Harnev
50 | | it is quite interesting to observe that, while this node itvac
40 | its rank fluctuates a lot and often reaches very high ranks,
30 | meaning that it is among the most influential nodes at these
20 | times. In fact, this node spends slightly more than 15 mmute
10| in total among the 25% highest ranks, while being active only
0 ! ‘ ‘ ‘ ‘ 1h30 in total. Altogether, the conclusion for Rollernet ligtt
0 05 1 15 2 25 3 no node is globally important or unimportant for a long time;
Time (hours) global importance may not be a relevant notion for this ddtas

By contrast, the situation is quite different for the Enron
case. Although the rank of the node with the longest duration
in the highest ranks fluctuates with time (Figure 8, top), we
1 can observe that it consistently stays within the highe&b 50

1 ranks for approximately the first half of the dataset’s time

1 span. Moreover, even though its rank tends to decrease in the
J | second half, it never goes in the lowest 33% ranks. This node
is therefore globally important in the dataset.

0 0.5 1 15 2 25 3

Time (hours) In the same way, the node with the longest duration in the

lowest ranks (Figure 8, bottom) is consistently unimpdrtén

Fig. 7. Time evolution of the rank in the Rollernet dataset, tfee node IS.QUIte interesting to nOtlce.that there is a point at which
with the longest duration in the highest 25% ranks (top) dreirtode with  this node reaches a very high rank (rank 149 out of 151
the longest duration in the lowest 25% ranks (bottom). nodes). A manual study indicates that this node is actually
inactive for most of the dataset time span. Its only activity

160 : : : : : consists in exchanging two messages with the same node,
1%0 WWMMMWWW ‘w—h ] shortly before 1000 days. It is striking that these two links
130 | | are enough to bring this node to the third highest rank among
ﬁg r | 1 all nodes. This indicates that these links are very importan
100 | in the network, and/or that the network dynamics undergoes a
38 i particular event at this time. We leave the detailed ingasitbn
70 | of such phenomena to future work.
20 A —
0 200 400 600 800 1000 1200 D. Delta-centrality
Time (days)
160 In order to further study the importance of a node, we turn
140 | ] now to the temporal delta-centrality as defined in sectidn Il
120 | 1 which quantifies the impact of a node on the network.
138 | | We made the same systematic study for delta-centrality as
60 | | | the one we did for closeness: we computed the delta-cemgtrali
a0 | | for all nodes at each time step; then for each time-step we
20 b /J ) sorted the nodes by increasing order of the delta-centralit
0 : : thus ranking them from 1 (lowest temporal delta-centrility
0 200 400 600 800 1000 1200 to n (wheren is the number of nodes, for the highest delta-
Time (days) centrality).
Fig. 8. Time evolution of the rank in the Enron dataset, forribde with the Doing so, we observed that the temporal closeness is a very
longest duration in the highest 25% ranks (top) and the ndttete longest ~ good estimator for the delta-centralftyln general, the higher
duration in the lowest 25% ranks (bottom). the temporal closeness, the higher the temporal deltaatigyt

the rankings and their time evolution are also very close for
highest ranks is approximately 1 hour and 10 minutes, wlich imOSt nodes. In the same way, the duration a node's rank is
g PP y ' amont the highest (resp. lowest) 25% ranks for the temporal

a%?ggciqtgblsesf éhti‘lgtflﬁg E:Z?rg:r%trl%nnmr:ggeqstrzsnel}(t.ﬂg; % closeness is very highly correlated with the duration foiolth
v v ponding Y2 jts ranks is in the same range for the temporal delta-cetytral

alot (Figure 7 top) and never stays in the highest ranks guringi, e g jllustrates this. We observe that the correlatiares
a significant amount of time.

The case of the node with the most time in the lowest “*Note that the delta-centrality computation is much more codthn the

ranks is different (Figure 7 bottom). It has a very low rank closeness centrality, as the delta-centrality computatguires the computa-
. . .tion of all distances between all pairs of nodes, both in thgiral network
in approximately the second half of the dataset. Indees, thland in the network where the considered node has been rentbecgmporal

node is only a(_:tive. for the first half of the dataset, and doeg|oseness requires only to compute the distance from one tood# other
not have any link in the second half. Its temporal closenessodes.



% 1.6 p—— distance between two nodata given timeWe then proposed

S 14t bono"nﬁ 2202 . temporal extensions of two importance measures, the agsen

g 12+t Ly 1 centrality and the delta-centrality. Using these notiows,

=z 1r e, 1 studied two datasets coming from different contexts in orde

g 087 Lt TR 1 to investigate whether different network properties imghe

8 067 e e 1 observations.
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g 02t 1 Our observations can be summarized as follows:
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° 0 02 04 06 08 1 12 14 16 1) node importance varies with time: a given node may
Temp. closeness / time (days) be very important at one time, and not so important

2 1900 ‘ at another time; therefore it is not relevant to consider

S top 25% - ) . only aggregate values that summarize the importance

2 1000 I+ bottom 25% I ] of nodes on the whole network time span;

= 800 + s X 1 2) different datasets have different properties regarding

£ 600 f o, ’+ o 1 node importance; for one of our datsets, the im-

S a0l o ' | portance of all nodes fluctuates extremely rapidly

S 00 b e ] between high and low values; it is meaningless in

g o ST | | | this case to state that one nogie_ls more important

K3 0 200 400 600 800 1000 1200 than another, except for a very limited time span; for

our other dataset however, we find that some nodes
are consistently important (or unimportant) for the

Fig. 9. Correlation between duration spent in lowest 25% ighdst 25% whole ne_twork time $pa'.”? i
ranks for temporal closeness (x-axis) and temporal delt&alin (y-axis). 3) our StUd[eS have f_‘llghllgh.ted some specific nodes
Top: Rollernet; Bottom: Enron. with atypical behaviors; this suggests that temporal

centrality metrics could lead to methods for event
and/or anomalous behavior detection.

Temp. closeness / time (days)

strong in both cases, and even stronger in the case of thetowe _ ) )
ranks. Our work opens several interesting perspectives.

We performed a detailed comparison of the temporal close- _First, if the choice of two dataset stemming from very
ness and the temporal delta-centrality for individual repde different contexts strength_en the conclusions drawn frben t
and in particular for all nodes for which the correlation wasPresent study, we would like to apply the approach on more
the weakest. In such cases we observed in general that t§@taset involving dynamic networks. This would allow to con
corresponding nodes are not globally important or uningoart firm our findings and might help identify specific patterns of
nodes: their coordinates in the scatteplots of Figure 6 aréhe evolution of node’s importance that are context-depand

not very large. Moreover the time evolution of the rank for Following up on the precedent point, it would be very
both centrality metrics are very similar in most cases, eVeMnhteresting for many real applications to be able to detect
though the ranks are not exactly the same. In most cases, thgecific patterns in the evolution of centrality measurdss T
differences come from the fact that the rank is close to th§yoyld indeed allow to predict which nodes are likely to
25% limit for a significant duration. be important in the future, which turns out to be of key

For a very small number of nodes, however, we observed Bnportance for several applications, ranging from proteas
somewhat significant difference; in particular a few nogsit CoOmMMunication to recommendation systems.

to have a relative temporal delta-centrality that is higtem On a more formal perspective, our definition of closeness
their relative temporal closeness. Such nodes therefore hagf 5 nodew relies on the computation of the distances from

a high impact on paths (when they are removed, the networfy ) other nodes. This is particularly relevant in our @y
temporal efficiency decreases), without being particyleldse  \yhere we are concerned by the importance of a node in the
to other nodes. dissemination process: a node will be important if it carchea

These nodes therefore play a peculiar role in the networknany other nodes quickly. In other contexts however, the
and do not follow the general network behavior. We leave dmportance of a node may be more closely related to the
detailed study of the causes of this phenomenon, as well g&ct that the distanceom all other nodes tov are short.

the identification of such anomalous nodes, to future work. This may be the case for instance in Web graphs, in which the
importance of a page comes from the links towards it, not from

its outgoing links. Comparing these two notions of closenes
would lead to interesting insights.

Our central point in this paper is that temporal distances We have seen that some of our observations allow to detect
in dynamic networks may vary a lot with time; all distance- odes that have an atypical behaviour, and/or moments where
based centrality measures should therefore be considered mething unusual hgp ens in the n’etwork’s dvnamics. We
time-dependant, contrary to what has been mostly done in th% 9 : PP . 1y -

. ave observed this both when studying the time-evolution
litterature. o .
of the closeness of individual nodes, and when comparing

In order to investigate this, we studied the notion of tempo-different importance measures. This suggests that terhpora
ral pathwith a starting time and the corresponding notion of centrality measures are relevant metrics when trying tedaet

VI. CONCLUSION



anomalies in the network, which is a crucial question in[10]
many contexts [21]. In particular, it seems that nodes that a
important with respect to one metric but not to another have

a particularly interesting behavior. A systematic congani
of different metrics would therefore certainly lead to very
interesting insight about the considered dataset.

[11]

[12]

In the same way, we have seen that some links play
an extremely important role. It would be quite interesting
to define a reliable method for identifying important links.
On the one hand, this would lead to another approach for3]
event detection in the network, complementary to the one
sketched above. On the other hand, notions of link centralit
have been successfully used in the case of static networks
for community detection [22]. Using a notion of importance (14]
in a dynamic network for dynamic community detection is
therefore a promising idea.

Finally, there is yet no consensus on relevant generating]
models for dynamic networks. Since we have observed that
different networks have different properties regarding th
temporal closeness centrality, this is probably an impbrta [16]
ingredient to take into account when proposing a new model.
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