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Abstract—For a long time now, researchers have worked on
defining different metrics able to characterize the importance
of nodes in networks. Among them,centrality measures have
proved to be pertinent as they relate the position of a node in the
structure to its ability to diffuse an information efficiently. The
case of dynamic networks, in which nodes and links appear and
disappear over time, led the community to propose extensions of
those classical measures. Yet, they do not investigate the fact that
the network structure evolves and that node importance may
evolve accordingly. In the present paper, we propose temporal
extensions of notions of centrality, which take into account the
paths existing at any given time, in order to study the time
evolution of nodes’ importance in dynamic networks. We apply
this to two datasets and show that the importance of nodes does
indeed vary greatly with time. We also show that in some cases it
might be meaningless to try to identify nodes that are consistently
important over time, thus strengthening the interest of temporal
extensions of centrality measures.

Keywords—centrality, network dynamics, temporal paths, node
importance

I. I NTRODUCTION

Scientists studying complex networks have been interested
for a long time in the question of evaluating the importance of
a node. This has lead to the introduction of several measures
of importance, such as for instance degree, closeness or
betweenness centrality, Katz centrality, or PageRank.

Most centrality measures are based on the study of paths
in the network: a node will be important for instance if
the paths from it to other nodes are short, or if it lies on
shortest paths between many pairs of nodes. One motivation
for this is that links can act as a dissemination medium
for some phenomena occurring on the network. For instance
individuals can exchange information when they communicate,
or a message can be forwarded from computer to computer
until it reaches its destination.

Researchers have acknowledged for some time that net-
works are dynamic in nature: nodes and links come and go with
time. This has led to a stream of works aiming at understanding
and modelling these dynamics. In particular in the case of
centrality, some works have been concerned with efficiently
updating the centrality values of the nodes when a change
occurs in the network. In many cases however, the time scale
at which the network evolves is the same as the one at which
a dissemination phenomena may occur on the network. This
is the case for instance when a disease propagates among
individuals when they are in contact, or when an information
is disseminated by email messages.
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Fig. 1. A small example of a dynamic network. The links existing at time
t = 1 are shown on the top left corner, the ones existing att = 2 in the top
right corner, and so on.

In this case, it becomes necessary to consider paths that are
not instantaneous but instead are spread between a beginning
and an ending time, while respecting the network dynamics.
Such atemporalpath follows links that happen one after the
other (see Section III for a rigorous definition).

In this case, our key argument is that paths change during
the network time span, and thus the importance of nodes
varies. Consider indeed the toy example of Figure 1. This small
network composed of five nodes evolves during four distinct
time steps. One can see that, intuitively, the importance ofnode
b is much stronger at timet = 1 than at timet = 3. Indeed,
at timet = 1 it forms a bridge between nodea and nodesc, d
ande, thanks to the links that exist at timet = 2.

Several works have introduced extensions of centrality
notions for the case of dynamic networks. However, most of
these works consider only paths starting at the beginning of
the dataset; they obain in this way a single figure for node
centrality, representative only of what happens at very early
times. Other works consider paths throughout the dataset time
span, but still consider that node importance can be represented
by a single figure rather than by a time-evolving metric.

Though it is quite straightforward to extend these metrics
in order to consider the time evolution of node centrality, no
work up to our knowledge has attempted to study this question.

In this paper, we study a natural extension of the closeness
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centrality to the case where paths may start at any time during
the network’s time span. This temporal closeness characterizes
the importance of any nodeat any given time. We study two
datasets and observe that:

1) node importancedoesvary with time, and therefore
capturing the global importance of a node with an
aggregate value might be misleading;

2) in some cases the dynamic of the network is such that
it is meaningless to identify nodes more important
than others; in other cases, temporal closeness may
help identifying a node consistently important for the
whole network time span;

This work is organized as follows. First we present the
existing work related to the notion of centrality in static and
dynamic networks (Section II) before providing the definitions
necessary to the present study (Section III). Then we present
the two datasets (Section IV) on which we apply the proposed
metrics and present the obtained results (Section V). Finally,
we conclude the paper with some perspectives (Section VI).

II. RELATED WORK

Many papers have studied the importance of nodes instatic
networks, i.e. networks that don’t evolve with time. Among the
metrics that have been introduced, one may cite the degree cen-
trality, closeness centrality [1], betweenness centrality [2] and
the Katz centrality [3]. Closeness and betweenness centrality
are based on the shortest paths, while the Katz centrality takes
into account the paths of all lengths between two nodes.

Some papers who have studied dynamic networks have
been concerned with efficiently computing the static centrality
at all times. For instance, Kaset al. [4] propose an algorithm
that, given the knowledge of the distances between all pairs
of nodes and given a network change (edge appearance of
disappearance), computes the new distance values (which
allows the computation of distance-related centrality measures)
by updating the previous values rather than computing them
all from scratch again. This is relevant, e.g. in contexts where
the network evolves at a much slower scale than the one on
which disseminations take place.

However, in many contexts the dissemination phenomena
in the network happen on the same time scale as the network
evolution. It then becomes necessary to considertemporal
paths [5], [6], i.e. link sequences that are time-respecting, as
opposed to paths composed of links that all exist at the same
time. For instance, in the dynamic network of Figure 4, there
is a temporal path from nodea to nodee going through the
link (a, b) at t = 1 and the link(b, e) at time t = 2.

Several definitions of temporal paths have been studied in
the literature. Some of them can be computed more easily than
others. Whitbecket al. [7] propose an efficient algorithm to
approximate the existence of paths in the most difficult case,
and show that the study of the notion of reachability, i.e. which
nodes can be reached from which ones, and at which times in
the network’s time span, provides enlightening insight on the
network’s dynamics.

Notions of centrality taking into account temporal paths
have also been introduced.

Nicosia et al. [8] introduce notions of temporal closeness
and betweenness centralities. Their definition of a shortest path
however considers only paths whose starting point is at the
beginning of a dataset’s time span.

Some propositions acknowledge that the distances between
nodes, and therefore nodes’ importance, vary with time [9],
[10], [11], [6] . However, in practice they still represent the
varying importance of a node by a single value that is supposed
to represent its overall importance throughout the network
global time span.

Several papers introduce and study a variant of the Katz
centrality [12], [13]. Among those, Lermanet al. [14] ac-
knowledge the fact that node importance may evolve with
time, but no systematic study is performed. Moreover, the
introduced metric is dependant on parameters defining what
are considered as relevant path lengths and path durations,
which complicates the analysis.

Finally, Cotsaet al. [15] notice that not all time instants are
equivalent in a dynamic network, and introduce the notion of
time centrality; this is a measure of how fast a dissemination
process can reach a significant portion of the nodes at a given
time t. However, this notion does not analyze the importance
of individual nodes in the dissemination process, which is our
goal in this paper.

All in all, and to the best of our knowledge, if many
papers acknowledge the fact that the temporal evolution of
networks impact the value of centrality measures and propose
variations of standard metrics to account for the dynamics,
no paper propose a complete and systematic study of the
evolution of centrality measures for all nodes and all time
steps of the network’s evolution. Instead, they all propose
average computations either over all nodes of the networks,
either over all the network time span. We argue in this paper
that discarding either of those two aspects lead to severe
misunderstanding of the real nature of node’s importance in
the context of dynamic networks

III. D EFINITIONS

A dynamic networkG = (V,E) consists of a setV
of nodes1 and a setE of timed links of the form(u, v, t)
whereu, v ∈ V and t is a timestamp. Throughout the paper
we consider networks as undirected, i.e. a link(u, v, t) is
equivalent to a link(v, u, t).

A temporal path in a dynamic network consists of:

• a starting timets, and

• a sequence of links
(u0, v0, t0), (u1, v1, t1), . . . , (uk, vk, tk)

such that:

1) for all i, i = 0..k − 1, ui+1 = vi;
2) for all i, i = 0..k − 1, ti < ti+1.
3) t0 ≥ ts;

We say that such a path is a path fromu0 to vk starting
at time ts. Its duration is equal totk − ts. We will say that

1We assume that the set of nodes does not evolve with time.
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a path fromu to v starting at timets is a shortest path if it
has the least duration among all paths fromu to v starting at
time ts. We define the distance fromu to v at time t to be
the duration of a shortest path fromu to v starting at timet,
and we denote it bydt(u, v). If there is no path fromu to v
starting at timet, we consider thatdt(u, v) = ∞.

Note that a path starting at timet might imply waiting times
at all nodes, including the first one, in the same way that a
person starting at a given time a train trip with connections
must wait for the train in the first station, and then at each
connecting station.

For example, in the dynamic network of Figure 1, there are
two temporal paths frome to b starting at timet = 2. The first
one consists of the single link(e, b, 2), and its duration is 0;
the second one consists of the links(e, d, 3) and (d, b, 4) and
its duration is 2. The temporal distance frome to b at time 2
is therefored2(e, b) = 0. Note that the temporal distance from
e to b at time 1 isd1(e, b) = 1: the temporal shortest path has
the same link sequence than the one starting att = 2 (it is the
single link (e, b, 2)), but the starting time is different. Since
there is no temporal path fromc to e starting at timet = 3,
d3(c, e) = ∞.

Several variants have been introduced in the literature, most
notably concerning the constraintti < ti+1. Some variants
weaken it toti ≤ ti+1, while others strengthen it toti ≤
ti+1 + δ, whereδ is a parameter representing the time needed
to send a message along a link. The relevance of these variants
depends on the context. See [7] for more details. Preliminary
work shows that this has little influence on the results.

It is worth noticing that our definition of a dynamic network
consists of links without a duration. Again, this is relevant
in some contexts (e.g., an email is sent at a precise time)
and less in others (a phone call has an intrinsic duration).
Notice however that our notion of a temporal path can be
easily adapted in the latter case; the condition becomes that a
path going through nodeu at time ti can continue to a node
v provided that there is a link betweenu andv that ends after
ti.

We recall that the closeness of a nodeu in a non-evolving
network is defined as [1]:

∑

v 6=u

1

d(u, v)
,

whered(u, v) is the classical graph distance.

The average of the closeness of all nodes has been defined
as networkefficiency[16] 2.

Though some extensions of the closeness have been defined
for the case of dynamic networks [11], [8], their goal is not
to take fully into account the fact that temporal distances vary
according to the paths’ starting time. We therefore here define
the temporal closeness of a nodeu at time t as:

Ct(u) =
∑

v 6=u

1

dt(u, v)
,

2There are several variants of the closeness in the litterature, depending on
a normalisation constant, and the efficiency depends of this.Since for both
metrics this is a constant that does not vary with time, we use the simplest
version for the closeness which is the sum of the inverses of the distances.

and we define the temporal efficiencyEt(G) of networkG as
the average over all nodes of the temporal closeness at timet.

Building upon this notion of efficiency, we can study
another metric that quantifies the impact a node has on a
network. The notion ofdelta-centrality[17] characterizes how
much a given node (or group of nodes) impacts the efficiency.
It is defined as the relative change of the network efficiency
when the considered node (or group of node) is removed from
the network.

Following this, we study the extension of the delta-
centrality to the dynamic case. Thetemporal delta-centrality
of a nodev at time t is defined by:

Et(G)− Et(G\v)

Et(G)
,

whereG\v is the network obtained fromG by removing node
v and all its adjacent links.

The program we used to compute the above metrics is
available [18].

IV. DATA SETS

In order to study the behaviors of the metrics introduced
above, we study two datasets that present different character-
istics and come from two very different contexts:

• Rollernet [19]: this dataset was collected during a
rollerblade tour in Paris in August 2006. The tour
is a weekly event and gathers approximately 2500
participants. Among these, 62 were equipped with
wireless sensors recording when they are at a com-
munication distance from one another. The dataset
therefore contains the proximity links between the
persons carrying the sensors. The total dataset duration
is approximately 2 hours and 45 minutes (with a break
of approximately 30 minutes).

• Enron [20]: this dataset contains the252 759 emails
that 151 Enron employees exchanged during three
years. It records information on the senders, receivers,
and the moment they were sent. Note that by nature,
the links are directed but for a fair comparison with
the Rollernet dataset, we treated them as undirected
in the present study.

Before studying the importance of nodes (see next section),
it is enlightening to make some global observations relatedto
the dynamic of the networks.

To do so, we present in Figure 2 the fraction of pairs
of nodes for which there is a temporal path starting at the
beginning of the dataset and ending before timet, as a function
of t. In other words, it represents the proportion of pairs of
nodes that are reachable from one another at timet or sooner.
Notice that, though the shapes of the plots are similar, the time
scales are very different: for Rollernet, all pairs of nodesthat
are eventually connected are so within less than half an hour,
i.e. quite early in the dataset. For Enron, on the other hand,the
time scale is larger and we can see that less than 10% of the
pairs of nodes are reachable from one another after one year;
new pairs become reachable for the whole dataset duration,
and some paths only end very close to the end of the dataset.
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Fig. 2. Fraction of pairs of nodes for which there exists a temporal path
starting at the beginning of the dataset and ending at timet or sooner, as a
function of t. Top: Rollernet; Bottom: Enron.

This difference between the datasets does not come from
an artifact at the beginning of Rollernet: we have observed that
we can find short paths from any node to any other node at
almost any starting time (except close to the end). This seems
to indicate that nodes will be overall less important in Rollernet
than in Enron. Indeed, in the first case we may expect that a
given node’s closeness will be only marginally larger than an
other one’s, whereas in Enron we may expect thatall paths
to a given node must go through the same node, which will
then be quite important. Our observations in the next section
confirm this intuition.

V. RESULTS

We now present the results obtained using the different
notions introduced in Section III on the two dynamic networks
presented above.

A. Temporal efficiency and temporal closeness over time

Figure 3 presents the time evolution of the temporal effi-
ciency for each dataset. We can see that the value fluctuates
widely for both of them. Notice that for Enron, even though
it fluctuates, the efficiency tends to increase with time3. This
is caused by the fact that, as shown previously, the number
of pairs that are reachable from one another increases with
time throughout the dataset duration. The final collapse stems
from the fact that, towards the end of the dataset, less and less
temporal paths exist.

We expect that these fluctuations in the efficiency will
impact the individual nodes’ closeness.

Turning to the temporal closeness, we first present in
Figure 4 the time evolution of this metric for randomly chosen

3Note that we used a log scale on the y-axis for this plot. The peaks spanning
several orders of magnitude make it unreadable with a linear scale.
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Fig. 3. Time-evolution of the temporal efficiency. Top: Rollernet; Bottom:
Enron.
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Fig. 4. Time-evolution of the temporal closeness of randomly chosen nodes
in our datasets. Top: Rollernet; Bottom: Enron.

nodes in our datasets. It appears clearly that the closenessof
a node can be very bursty. Values vary on a wide range in
both cases, and along several orders of magnitude in the case
of Enron. This burstiness makes the plots difficult to interpret,
and highlights our claim that the importance of a node varies
greatly with time.

However, the fact that a node’s closeness fluctuates with
time does not mean that this node does not have a relatively
large (or small) closeness overall. To evaluate this, we need
to compare the values between nodes. We do this in the next
section.
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B. On the relative importance of a node

In order to get a better sense of whether a node consistently
has a large closeness with respect to other nodes, we proceeded
in the following way: for each time stept, we sorted all nodes
by increasing order of their temporal closeness at timet. This
gives to each node a rank that varies with time: nodex has
rank 1 at timet if it has the lowest temporal closeness among
all nodes at timet, and rankn (wheren is the number of
nodes) if it has the highest temporal closeness.

Figure 5 shows the time evolution of the ranks of the same
randomly chosen nodes as Figure 4. We can observe several
things. First, as expected, there seems to be a correlation
between closeness and rank: at many times, the higher the
closeness, the higher the rank. However, this correlation is not
perfect: for the Enron node, for instance, there is a period of
increasing closeness between two peaks after t=800 days. The
closeness at this time is larger than at times 0-600 days, butthe
corresponding rank is lower. We also observe an artefact for
large times in the Enron case: we observe that the closeness
drops to 0 after approximately 900 days; however the rank
increases during this period. This is due to the finite duration
of the dataset. Since fewer and fewer temporal paths exist
between pairs of nodes, the closeness of more and more nodes
drops to zero (we observed the corresponding decrease in the
efficiency in Figure 3). The rank among those nodes is then
arbitrary.

Finally, we observe different behaviors between the Roller-
net and the Enron nodes. While the Rollernet node’s rank
fluctuates between very low and high ranks (except at the
beginning of the trace), the Enron node’s rank is rather stable
for a significant part of the dataset’s duration, before starting
fluctuating (but not as drastically as the Rollernet one). In
conclusion, neither of these nodes has a high or low closeness
globally. The Enron node has a low closeness for a significant
duration of the dataset, but still reaches very high ranks at
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Fig. 6. Total duration for which rank is in the 25% lowest (x-axis) vs total
duration for which rank is in the 25% highest (y-axis). Top: Rollernet; Bottom:
Enron.

some times, at which it plays an important role in the network
connectivity. The Rollernet node has no clear period within
which its rank is rather stable.

C. On the global importance of some nodes

In order to study all nodes in a more systematic manner,
we computed, for each node in each dataset, the total duration
during which its rank was among the 25% lowest, and the total
duration during which its rank was among the 25% highest.
We plot in Figure 6 these two quantities for each node for the
Rollernet (top) and Enron (bottom) case. Notice that the shape
of the scatterplot is limited by the fact that the sum of both
coordinates cannot exceed the dataset duration.

In both datasets we observe that all nodes are not equiva-
lent: most nodes are in the top 25% ranks for a longer duration
than they are in the bottom 25%, or conversely. However, this
does not happen with the same magnitude in both datasets. In
Rollernet, the maximum total duration for which a node is in
the top or bottom 25% ranks is approximately 1.5 hours, which
represents approximately half the dataset duration. This means
that no node has a globally high or low closeness throughout
the whole dataset duration. In Enron however, some nodes
are predominantly either in the highest or lowest 25% ranks
during almost all the dataset’s time span, meaning that these
nodes consistently have a high (or low) temporal closeness
comparativelyto all other nodes.

In order to deepen the study of whether some nodes play
an overall important role in the network (or conversely, have
consistently a low impact), we identfied the node for which
the rank was in the top (resp. bot) 25% for the longest period
of time, for each dataset. We plot the time evolution of these
nodes’ rank in Figures 7 (Rollernet) and 8 (Enron).

Again, we observe different behaviors between the datasets.
For Rollernet, the longest duration a node is in the 25%
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highest ranks is approximately 1 hour and 10 minutes, which is
significantly less than half the duration of the dataset. We can
moreover observe that the corresponding node’s rank fluctuates
a lot (Figure 7 top) and never stays in the highest ranks during
a significant amount of time.

The case of the node with the most time in the lowest
ranks is different (Figure 7 bottom). It has a very low rank
in approximately the second half of the dataset. Indeed, this
node is only active for the first half of the dataset, and does
not have any link in the second half. Its temporal closeness

therefore drops to zero (but, as seen in Figure 4 it has then an
arbitrary rank among all nodes with a null closeness). However,
it is quite interesting to observe that, while this node is active,
its rank fluctuates a lot and often reaches very high ranks,
meaning that it is among the most influential nodes at these
times. In fact, this node spends slightly more than 15 minutes
in total among the 25% highest ranks, while being active only
1h30 in total. Altogether, the conclusion for Rollernet is that
no node is globally important or unimportant for a long time;
global importance may not be a relevant notion for this dataset.

By contrast, the situation is quite different for the Enron
case. Although the rank of the node with the longest duration
in the highest ranks fluctuates with time (Figure 8, top), we
can observe that it consistently stays within the highest 50%
ranks for approximately the first half of the dataset’s time
span. Moreover, even though its rank tends to decrease in the
second half, it never goes in the lowest 33% ranks. This node
is therefore globally important in the dataset.

In the same way, the node with the longest duration in the
lowest ranks (Figure 8, bottom) is consistently unimportant. It
is quite interesting to notice that there is a point at which
this node reaches a very high rank (rank 149 out of 151
nodes). A manual study indicates that this node is actually
inactive for most of the dataset time span. Its only activity
consists in exchanging two messages with the same node,
shortly before 1 000 days. It is striking that these two links
are enough to bring this node to the third highest rank among
all nodes. This indicates that these links are very important
in the network, and/or that the network dynamics undergoes a
particular event at this time. We leave the detailed investigation
of such phenomena to future work.

D. Delta-centrality

In order to further study the importance of a node, we turn
now to the temporal delta-centrality as defined in section III,
which quantifies the impact of a node on the network.

We made the same systematic study for delta-centrality as
the one we did for closeness: we computed the delta-centrality
for all nodes at each time step; then for each time-step we
sorted the nodes by increasing order of the delta-centrality,
thus ranking them from 1 (lowest temporal delta-centrality)
to n (wheren is the number of nodes, for the highest delta-
centrality).

Doing so, we observed that the temporal closeness is a very
good estimator for the delta-centrality4. In general, the higher
the temporal closeness, the higher the temporal delta-centrality;
the rankings and their time evolution are also very close for
most nodes. In the same way, the duration a node’s rank is
amont the highest (resp. lowest) 25% ranks for the temporal
closeness is very highly correlated with the duration for which
its ranks is in the same range for the temporal delta-centrality.
Figure 9 illustrates this. We observe that the correlationsare

4Note that the delta-centrality computation is much more costlythan the
closeness centrality, as the delta-centrality computationrequires the computa-
tion of all distances between all pairs of nodes, both in the original network
and in the network where the considered node has been removed;the temporal
closeness requires only to compute the distance from one nodeto all other
nodes.
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ranks for temporal closeness (x-axis) and temporal delta-centrality (y-axis).
Top: Rollernet; Bottom: Enron.

strong in both cases, and even stronger in the case of the lowest
ranks.

We performed a detailed comparison of the temporal close-
ness and the temporal delta-centrality for individual nodes,
and in particular for all nodes for which the correlation was
the weakest. In such cases we observed in general that the
corresponding nodes are not globally important or unimportant
nodes: their coordinates in the scatteplots of Figure 6 are
not very large. Moreover the time evolution of the rank for
both centrality metrics are very similar in most cases, even
though the ranks are not exactly the same. In most cases, the
differences come from the fact that the rank is close to the
25% limit for a significant duration.

For a very small number of nodes, however, we observed a
somewhat significant difference; in particular a few nodes tend
to have a relative temporal delta-centrality that is higherthan
their relative temporal closeness. Such nodes therefore have
a high impact on paths (when they are removed, the network
temporal efficiency decreases), without being particularly close
to other nodes.

These nodes therefore play a peculiar role in the network,
and do not follow the general network behavior. We leave a
detailed study of the causes of this phenomenon, as well as
the identification of such anomalous nodes, to future work.

VI. CONCLUSION

Our central point in this paper is that temporal distances
in dynamic networks may vary a lot with time; all distance-
based centrality measures should therefore be considered as
time-dependant, contrary to what has been mostly done in the
litterature.

In order to investigate this, we studied the notion of tempo-
ral pathwith a starting time, and the corresponding notion of

distance between two nodesat a given time. We then proposed
temporal extensions of two importance measures, the closeness
centrality and the delta-centrality. Using these notions,we
studied two datasets coming from different contexts in order
to investigate whether different network properties impact the
observations.

Our observations can be summarized as follows:

1) node importance varies with time: a given node may
be very important at one time, and not so important
at another time; therefore it is not relevant to consider
only aggregate values that summarize the importance
of nodes on the whole network time span;

2) different datasets have different properties regarding
node importance; for one of our datsets, the im-
portance of all nodes fluctuates extremely rapidly
between high and low values; it is meaningless in
this case to state that one node is more important
than another, except for a very limited time span; for
our other dataset however, we find that some nodes
are consistently important (or unimportant) for the
whole network time span;

3) our studies have highlighted some specific nodes
with atypical behaviors; this suggests that temporal
centrality metrics could lead to methods for event
and/or anomalous behavior detection.

Our work opens several interesting perspectives.

First, if the choice of two dataset stemming from very
different contexts strengthen the conclusions drawn from the
present study, we would like to apply the approach on more
dataset involving dynamic networks. This would allow to con-
firm our findings and might help identify specific patterns of
the evolution of node’s importance that are context-dependant.

Following up on the precedent point, it would be very
interesting for many real applications to be able to detect
specific patterns in the evolution of centrality measures. This
would indeed allow to predict which nodes are likely to
be important in the future, which turns out to be of key
importance for several applications, ranging from protocols of
communication to recommendation systems.

On a more formal perspective, our definition of closeness
of a nodev relies on the computation of the distances fromv
to all other nodes. This is particularly relevant in our context,
where we are concerned by the importance of a node in the
dissemination process: a node will be important if it can reach
many other nodes quickly. In other contexts however, the
importance of a nodev may be more closely related to the
fact that the distancesfrom all other nodes tov are short.
This may be the case for instance in Web graphs, in which the
importance of a page comes from the links towards it, not from
its outgoing links. Comparing these two notions of closeness
would lead to interesting insights.

We have seen that some of our observations allow to detect
nodes that have an atypical behaviour, and/or moments where
something unusual happens in the network’s dynamics. We
have observed this both when studying the time-evolution
of the closeness of individual nodes, and when comparing
different importance measures. This suggests that temporal
centrality measures are relevant metrics when trying to detect
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anomalies in the network, which is a crucial question in
many contexts [21]. In particular, it seems that nodes that are
important with respect to one metric but not to another have
a particularly interesting behavior. A systematic comparison
of different metrics would therefore certainly lead to very
interesting insight about the considered dataset.

In the same way, we have seen that some links play
an extremely important role. It would be quite interesting
to define a reliable method for identifying important links.
On the one hand, this would lead to another approach for
event detection in the network, complementary to the one
sketched above. On the other hand, notions of link centrality
have been successfully used in the case of static networks
for community detection [22]. Using a notion of importance
in a dynamic network for dynamic community detection is
therefore a promising idea.

Finally, there is yet no consensus on relevant generative
models for dynamic networks. Since we have observed that
different networks have different properties regarding the
temporal closeness centrality, this is probably an important
ingredient to take into account when proposing a new model.
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