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Abstract—Most current models of the internet rely on knowl-
edge of the degree distribution of its core routers, which plays a
key role for simulation purposes. In practice, this distribution
is usually observed directly on maps known to be partial,
biased and erroneous. This raises serious concerns on the true
knowledge one may have of this key property. Here, we design an
original measurement approach targeting reliable estimation of
the degree distribution of core routers, without resorting to any
map. It consists in sampling random core routers and precisely
estimate their degree thanks to probes sent from many distributed
monitors. We run and assess a large-scale measurement following
this approach, carefully controlling and correcting bias and
errors encountered in practice. The estimate we obtain is much
more reliable than previous knowledge, and it shows that the true
degree distribution is very different from all current assumptions.

I. INTRODUCTION

The internet has become a crucial infrastructure sustaining

our social, economic, cultural and scientific lives at both local

and worldwide scales. Despite this, due to its history, its de-

centralized nature and its mere complexity, our understanding

of its global structure remains very limited. In particular, it is

now clear that precise knowledge of its components (devices,

connections, protocols, etc) is not sufficient to understand its

global structure. As a consequence, much effort is nowadays

devoted to measurements of the internet, aimed at shedding

light on these features [1], [2], [3], [4], [5].

One of the main approaches consists in modeling the inter-

net as a graph where nodes are ASes, routers, end-hosts, and/or

other devices, and links are physical connections, AS peering,

IP neighborhood, etc. One then conducts measurements based

typically on traceroute, BGP and/or anti-aliasing in order to

build maps of the internet [2], [6], [7], [1]. These maps are

partial views of the corresponding graphs, and the underlying

object is not always clearly defined [8]. In addition, such

maps may be biased by the measurement procedure [9], [10],

[11], [12], [13], [14]. They contain indeed much erroneous

data, due for instance to silent routers, dynamic routing (load

balancing in particular), incorrect anti-aliasing [15], [16], [17].

This means that the properties of obtained maps may differ

very significantly from the properties of the true graph, in a

way that is extremely difficult to assess and correct.

We explore here a completely new approach, based on

the idea that one does not need a map to estimate a given

property of interest. Instead, we propose to design and perform

a measurement procedure targeting the estimation of a specific

property. The challenge is then to ensure that the measurement

succeeds in giving a reliable estimate.

We focus on the degree distribution of core routers, i.e. the

fraction of core routers with k links for any k. The links we

consider here are the physical links of the router, identified

by its IP interfaces. We design a measurement procedure able

to reliably estimate this distribution. We then develop tools

needed to run it, and perform a large-scale measurement from

hundreds of monitors distributed in the internet. We obtain

this way an estimate of the degree distribution of routers

that is much more reliable than previous knowledge, without

resorting to a map at any stage.

This paper is organized as follows. First, we present our

approach in Section II and explore its theoretical relevance

through simulations in Section III. Then we detail the key

elements of the practical implementation: the selection and

assessment of a monitor set in Section IV, the sampling of

random targets and the selection of relevant ones in Section V,

and the derivation of an unbiased estimate from the measure-

ment in Section VI. We finally run our practical measurement

in Section VII, we present obtained results in Section VIII,

and we assess them in Section VIII.

II. OUR APPROACH

Let us consider an IP address t, which we call target, and

let us denote by r(t) the node (router or end-host) to which t

belongs. RFCs [18] and [19] state that when a monitor m sends

an UDP packet with destination t on an unallocated port, then

r(t) should answer with an ICMP Destination Unreachable

(Code 3/Port unreachable) packet to m. An important detail

is that the source of this ICMP packet is in principle the IP

address of the interface i by which r(t) sent it (see Fig. 1).

Let us temporarily assume that r(t) implements this feature

correctly (we handle other cases below). Now consider a set

M of monitors which all send such a probe towards IP address

t. If for each interface i of r(t) there is a monitor m in M

to which r(t) answers using i, then one obtains the set of all

interfaces of r(t), and so its degree. This constitutes our basicISBN 978-3-901882-58-6 c© 2014 IFIP
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Fig. 1. Monitor m sends a UDP packet with destination address t on an
unallocated port; the node r(t) answers with an ICMP packet with source
address i, and thus m discovers interface i of r(t).

r(t′)

r(t)

Fig. 2. Left: a set of monitors (the squared nodes) send probes towards a
target IP address t and obtain the four interfaces of router r(t). Right: the
same monitors send probes towards another target t′ but miss most interfaces
of r(t′).

measurement primitive 1: 1) from each monitor of a set M , we

send a UDP packet to an unallocated port of target IP address

t and 2) we collect the set M(t) of all IP addresses used by

r(t) to answer to monitors in M .

Depending on the target t and on the set of monitors M

this measurement primitive may succeed or fail to discover all

interfaces of r(t). In particular, one has to distinguish between

two drastically different kinds of targets: 1) the target node

r(t) is in the core internet, see Fig. 2 (left) or 2) the target

node r(t) is in the border, see Fig. 2 (right). This distinction

deserves more attention.

Given a graph, let us consider the following pruning process:

iteratively remove all nodes having degree one until there

remains no such nodes. We consider border nodes as being

the ones removed when this process is applied to the physical

internet topology. Core routers are the others. They necessarily

have more than one interface linking them to another core

routers, and we call such interfaces core interfaces. We call

border interfaces all other interfaces, core degree (resp. border

degree) of a node its number of core (resp. border) interfaces,

and we call branching points the core routers that have at

least one border interface. For instance, in Fig. 2, r(t) is a

core router, r(t′) is a border node, and the black node directly

linked to r(t′) is at the same time a core router and a branching

point.

As illustrated in Fig. 2 (right), when the target address

belongs to a border node our measurement primitive misses

most of its interfaces, and most likely discovers only the

interface directed towards the core. This is not an issue here,

as we focus on core routers, which form the key part of the

1This is the converse of a classical anti-aliasing technique, aimed at
identifying IP addresses belonging to a same node in a given set of IP
addresses, see Section X.

network. We will see in Section V how to decide whether a

target address belongs to a border node or not.

The situation regarding core interfaces of core routers is

quite different. Indeed, such interfaces are not only used to

communicate locally with a part of the border; in principle,

they route traffic toward a non-negligible part of the internet,

and one may therefore expect that a reasonably large and

well distributed set M of monitors discovers them. Of course,

this highly depends on the considered set of monitors and on

the topology of the network. This is investigated in depth in

Sections III and IV.

In summary, we expect a good enough set of monitors M to

be able to discover all or almost all core interfaces of any core

router, leading to an estimate of its degree in the core internet

topology. Now if we consider a set T of targets sampled

uniformly at random, independently from their degrees (which

is discussed in Sections VI and V), then the distribution of

degrees observed in T is an estimate of the degree distribution

of core routers (which is more and more accurate as T grows).

Finally, our method to estimate the degree distribution of

internet core routers consists in four steps:

1) obtain a large and well distributed set M of monitors,

2) build a large set T of random target addresses belonging

to core routers,

3) estimate the degree of r(t) for each target t in T using

our measurement primitive,

4) derive from this our estimate of the degree distribution.

III. PROOF OF CONCEPT

Before putting our approach into practice, we first assess

it using simulations in this section. Assuming that we are

able to build appropriate sets of monitors and targets, the key

questions we want to answer are: what is the risk that our

estimate of a node’s degree is different from its real degree,

and how many monitors do we need to have an accurate

estimate of the degree distribution?

To investigate this, we have conducted simulations as fol-

lows (see [20] for more details): we considered different kinds

of artificial graphs to model the topology; we used as monitors

random nodes with degree one (representing end-hosts); and

we used all core targets (i.e. nodes in the graph obtained by

iteratively removing degree-one nodes). We then assumed that

each target answers to probes from each monitor using one

(randomly chosen) of its interface that starts a shortest path

from the target to the monitor. We used two different kinds

of topologies: one with Poisson degree distribution, which is

a typical homogeneous distribution, and one with a power-

law degree distribution, which is a typical heterogeneous

distribution. These two kinds of distributions are considered

as extreme cases for what the actual degree distribution may

be.

Fig. 3 shows the results of the simulations for Poisson and

power-law graphs of 2.5 million nodes. Fig. 3(a) presents

the degree distribution observed with respectively 12, 25,

50, 100, 200, 400 and 800 monitors. As one could expect,

with 12 monitors the degree distribution is poorly estimated
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Fig. 3. Simulations with different number of monitors (12, 25, 50, 100, 200, 400 and 800) over graphs of 2.5 ∗ 106 nodes whose degree distribution follows
either a Poisson law with average degree 25 or a power law with exponent 2.1.

in the two cases. Nevertheless, it is remarkable that, even

with this poor level of quality, the nature of the distribution

(i.e. homogeneous or heterogeneous) appears clearly. When

the number of monitors increases, so does the quality of the

observed degree distribution.

With 200 monitors in particular, the observed and the real

distributions become visually indistinguishable in the homoge-

neous case (left). For the heterogeneous case (right), one can

observe a cut-off for very large degrees. As we mentioned

previously, this comes from the limitation of our method we

identified a priori: the observed degree cannot exceed the

number of monitors, and more generally, the estimate becomes

inaccurate for targets whose degree is close to the number of

monitors. On the other hand, for reasonably low-degree targets,

lets say up to 20, the observed distribution and the real one

are visually indistinguishable with 200 monitors.

These last statements are strengthened by the plots on

Fig. 3(b) which shows the scatter plot of real degree (on the

x-axis) and observed degree (on the y-axis) for all targets

and for the two kinds of topologies. We can see that with

200 monitors, the estimate degree of all nodes is quite close

to its real degree for the Poisson graphs, thus proving that

our method performs very well on this kind of topology. As

regards power-law graphs, we can see that using 200 monitors,

the estimate degree of low-degree nodes is quite close to the

real one. More than 95% of degree-2 nodes are correctly

observed and this proportion drops to 85% when considering

all nodes whose degree is lower than 10. This shows that, for

this type of nodes at least, our method performs also very well

on power-law graphs.

Therefore, the only limitation of our method in this the-

oretical setup seems to be the estimation of the degree of

high-degree nodes in power-law graphs. Indeed, an intrinsic

limitation of our method is that we cannot obtain a degree

estimate larger than the number of monitor |M |. However,

this limitation has to be put in perspective as Fig. 3(b) shows

that, even if poorly estimated, they still cannot be confused

with low-degree nodes. Whatever the number of monitors,

the worst estimation (lower point on the y-axis) increases as

the real degree increases. With 200 monitors for instance, the

worst estimate of a node with degree higher than 1000 is 136.

In conclusion, both for Poisson graphs and power-law

graphs, the nature and the shape of the degree distribution

are correctly observed even with a low number of monitors.

In addition, the observed distribution quickly converges to the

real one when the number of monitors grows. The real degree

of low-degree nodes is correctly observed (also true for high-

degree nodes in the homogeneous case), and a high-degree

node is never observed as a low-degree node.

These remarks will turn out to be crucial in Section VIII.

However, the reader may wonder if these results still hold

for graphs of different sizes and with different parameters,

average degree for Poisson graphs and exponent for power-

law graphs. These questions were investigated in [20], as well

as the influence of some other parameters of the simulations. It

turns out that the conclusions we derive here are still valid for

different sizes and parameters. In particular, [20] shows that

the size of the graph has very little importance, if any, for the

quality of the observation with a given number of monitors.

Then, the conclusion obtained by simulations on graphs of a

few millions of nodes still holds for graphs of the size of the

internet.

IV. MONITORS

Our method relies on the use of a large set M of monitors

distributed in the internet. It is crucial that this set is large

enough since the accuracy of the estimation of the degrees of

targets highly depends on this number (see Section III). On

the other hand, having several monitors in the same location

(typically having the same branching point) has limited in-

terest: it is probable that most targets use the same interface

to answer probes coming from these monitors (see Fig. 4).

Assessing the quality of a given set M of monitors (regarding

our measurement goals) is therefore crucial, and we propose

here three different and complementary approaches to do so.

A. Colocated monitors

First notice that any monitor m may in principle be able to

identify its branching point (i.e. the branching point between

itself and core nodes, see Section II). Indeed, suppose that

m iteratively sends k packets to k random IP addresses (for
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Fig. 4. Three monitors, m1, m2 and m3 are actually colocated, and therefore
they may observe a unique interface for any given target router r(i). They
are redundant regarding the quality of the measurement.

a given integer k) with increasing TTLs: the first k packets

are sent with TTL 1, the k next packets with TTL 2, and so

on. Thanks to the ICMP Time-Exceeded packets issued by

the nodes at distance t from m (we discuss below the case

of machines that do not send such packets), for each value t

of the TTL m discovers a set of interfaces at distance t from

m. We denote this set of interfaces by it(m). Let us denote

by d(m) the smallest t such that |it(m)| > 1: d(m) is the

first TTL at which m discovers more than just one interface.

We have by definition |id(m)(m)| > 1 and |ij(m)| = 1 for all

j < d(m). Then, the (unique) interface seen by m with TTL

d(m)− 1, i.e. the unique element of id(m)(m)) is an interface

of its branching point. See for instance the case of monitor

m1 in Fig. 4, for which d(m1) = 3.

Now, let us consider two monitors m and m′ such that

id(m)(m) = id(m′)(m
′). In other words, the first time m

and m′ see several interfaces they see the exact same ones.

Then certainly having both m and m′ in the monitor set

has little interest for our measurements: m and m′ enter

in the core internet through very close routers (probably

through the same branching point, see Fig. 4) 2. We say that

such monitors are colocated. The number of non-colocated

monitors in M is a key value for estimating the quality of

M : it basically represents the number of significantly different

locations hosting monitors in M .

In the scheme we just described, we ignored machines that

do not send ICMP Time-Exceeded packets. Because of them,

we may erroneously decide that some monitors are colocated;

this means that we under-estimate the quality of our monitor

set, which has no important consequence in our context: the

quality is only under-estimated. Similarly, it is possible that

two monitors m and m′ have different branching points but

satisfy id(m)(m) = id(m′)(m
′). Again, this would make us

under-estimate the quality of the monitor set and therefore we

may safely ignore this. Conversely, some monitors m and m′

may have different but similar sets id(m)(m) and id(m′)(m
′),

indicating that they are not colocated but located close from

each other. It may be interesting to use this for a more subtle

assessment of the level of distribution of monitors, but we

2Notice that this does not mean that such monitors have no interest at all
and should be discarded: they may lead to observation of different interfaces
of the target, in particular if it implements per-destination load-balancing [17].

leave this for further work.

B. Diversity of views

In the approach above, we estimate an intrinsic quality

of a monitor set M as the number of different locations

hosting a monitor. A complementary view is obtained by

evaluating the quality of a measurement from M towards

targets in a set T . For instance, one may evaluate the quality

of M as the number of distinct interfaces observed from M :

Q0(M) =
∑

t∈T |M(t)|. Clearly, if Q0(M
′) > Q0(M) then

M ′ may be considered as better than M . More subtle quality

functions may be defined. In particular, it is interesting to

take into account the fact that interfaces of low-degree routers

are easier to observe than the ones of high-degree routers.

This leads to the quality function Q1(M) =
∑

t∈T |M(t)|d(t)
where d(t) stands for the degree of target router r(t). Of course

we do not have the value of d(t) and approximate it using the

results of our measurements.

Given a quality function Q like the ones above, one may

assess the impact of the addition of a new monitor m to the

current monitor set, by calculating Q(M) and Q(M ∪ {m}).
Ideally, one wants to maximize Q to collect the most accurate

set of observed interfaces while keeping M as small as

possible to prevent redundant measurements (which may be

costly).

In practice, we will want to assess a given monitor set M ,

and to do so we will start from an empty monitor set and

compute the expected quality improvement when monitors are

added one by one, in a random order. The quality is expected

to grow with the number of monitors, and then to reach a

steady or almost steady regime meaning that adding more

monitors would not improve the measurement significantly. Of

course, if many monitors are colocated (for instance, if they

are all at the same location), the quality will have precisely this

behavior (as adding more monitors at the same location does

not significantly improve the measurement). This is why this

quality function approach is complementary to the colocation-

based one: we will perform first the colocation and then

plot the behavior of the quality function when non-colocated

monitors are added, see Section IX-A.

C. Convergence of observations

Last but not least, a clear way to assess the quality of a

given monitor set regarding our measurements objectives is

to directly observe how the observed fraction pk of routers of

degree k converges when the number of monitors grows, for all

k. Here again, we expect these fractions to converge rapidly

to a steady value, which is our final estimate. This would

indicate that the last monitors we added were not necessary,

and thus that we obtain an accurate view. For the same reasons

as above, this is complementary to colocation analysis.

V. TARGETS

Being able to sample a core router uniformly at random in

the internet 3 would help us much, but there is no direct way

3Uniformly at random means that all possible elements are sampled with
the same probability.
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Fig. 5. If we target an interface i that belongs to a border router r(i) then our
measurements may see more than one interface for r(i). However, only one
of them does not belong to B(M), as displayed in this picture: all interfaces
of B(M) are marked with a small dash.

to do so. Instead, it is trivial to get IP addresses uniformly

at random, as they are nothing but 32 bit integers. Of course,

sampling such a random integer does not necessarily give a

relevant IP address with regards to our measurement needs: it

may for instance belong to an end-host or a router that does

not answer our probes.

In this section, we show how to sample uniformly at random

an interface of an internet core router that correctly answers

our probes, which we call a correct core router. From this

sampling, which is not a uniform sampling of core routers

themselves but only of the interfaces of some of them, we

show in Section VI how to estimate the degree distribution of

all internet core routers.

First notice that a core router may give incorrect answers

to our probes. In particular, it may give no answer at all, or

it may always answer using the same interface independently

of the monitor 4. In these cases, our measurement procedure

discovers zero or one interface for the corresponding target.

Instead, if the target address belongs to a correct core router,

our measurements see at least two of its interfaces (as long as

monitors are reasonably well distributed). Therefore, we are

able to distinguish between correct core routers and other core

routers.

There is no reason to assume that the degree of core routers

is correlated to whether they answer correctly to our probes or

not. Indeed, low-degree core routers may a priori misbehave

as well as high-degree ones, and conversely. As a consequence,

the degree distribution of correct core routers is the same as

the degree distribution of all core routers. We therefore focus

on correct core routers here.

Let us now consider the IP address i corresponding to a

32 bit integer sampled uniformly at random. If it belongs to

a known class of reserved addresses [21], if it belongs to no

machine in the internet, if it belongs to a machine that does not

answer to our probes, or if it belongs to an end-host, then our

measurements see only one or zero interface for it: |M(i)| ≤ 1.

As a consequence, we are able to distinguish between these

cases and the one where i belongs to a correct core router.

If the target address i belongs to a border router r(i), then

4Of course, more intricate behaviors are also possible, but they are very
unlikely [16] and we ignore them here.

in most cases (see Fig. 2 (right)) our measurements see only

one interface. In some cases, though, we may see more than

just one interface, see Fig. 5. Indeed, let us denote by B(M)
the set of all interfaces seen between monitors in M and the

core internet in the process described in Section IV-A: with

the notations of this section, B(M) = ∪m∈M ∪k<d(m) ik(m).
By construction, all IP addresses in B(M) belong to border

routers, and they are all such interfaces one may observe from

monitors in M , see Fig. 5. Conversely, if the target address

belongs to a border router, then this router may have interfaces

in B(M), and these interfaces are seen from monitors in M .

The key point here is that, our measurements see only one

interface not in B(M) for such routers. Therefore, we are

able to distinguish them from correct core routers (for which

we observe at least two interfaces not in B(M)).
In summary, we build target sets as follows. We sample

random 32 bit integers and select the corresponding IP address

i if and only if probes to i lead to observation of at least two

interface not in B(M). Such an IP address is called a valid

target. It is sampled uniformly at random among interfaces of

correct core internet routers.

VI. BIAS CORRECTION

The procedure described in previous section samples uni-

formly at random IP addresses of interfaces of correct core

routers, which we assume to be representative of all core

routers. However, it does not sample uniformly at random

correct core routers themselves: one has k possibilities to

sample a router with k interfaces, so high-degree routers

appear with probability higher than low-degree ones. More

precisely, the probability to sample a router is proportional

to its degree k, and so the observed fraction p′k of routers

sampled with this bias having degree k is proportional to k

times the fraction pk of routers sampled uniformly at random

with degree k: p′k ∼ k · pk. As a consequence, we obtain:

pk =
p′k
k

·
1

∑
i>1

p′

i

i

where the second term is nothing but a normalization constant

to ensure that
∑

k pk = 1.

We may therefore use this formula to infer the true degree

distribution pk from the observed one p′k. However, p′k is the

fraction of core routers with k core interfaces: our measure-

ments see the core interfaces of core routers, not their border

interfaces (see Section II). We therefore have to ensure that

the target generation procedure described in previous section

samples core interfaces (of core routers) uniformly at random.

To obtain this, we discard targets that turn out to be border

interfaces. We detect them as follows: they are not observed

during our measurements except if they belong to B(M). In

other words, a target interface i of a correct core router is a

border interface if and only if i 6∈ M(i) or i ∈ B(M).
Finally, in addition to the sampling procedure described in

Section V, we discard these targets. We then get from the

other targets the value of p′k and infer the unbiased pk using

the formula above.



Notice that the sampling bias towards high-degree routers

has an important benefit. Indeed, we expect high-degree

routers to be relatively rare (which will be confirmed by our

measurements, see Section VIII) and thus we may miss them.

Uniform sampling would indeed lead to a probability pk to

sample a router with degree k, but with our biased sampling

this probability is proportional to k · pk, and thus higher for

high-degree routers. This leads to a better estimate of pk when

k is large, while for small values of k the quality of the

estimate is ensured by the prevalence of low-degree routers.

VII. MEASUREMENT

We present in this section a practical measurement we

conducted following our approach. We describe the whole

procedure step by step, as well as the obtained dataset.

We first built an initial target set by sending (from a machine

in our lab) a probe to the IP addresses corresponding to

32 bit integers sampled uniformly at random. We stopped

this process when we obtained correct answers (i.e. ICMP

Destination Unreachable (Code 3/Port unreachable)) from 3

millions such targets (we considered that no answer would

arrive after 1 minute). This took approximately 10 hours.

Our initial monitor set was composed of the approximately

700 machines of the PlanetLab platform [4], which is a

distributed infrastructure provided to researchers typically to

conduct network measurements. Some of these potential mon-

itors are colocated and some do not fit our requirements (they

have very poor connections, for instance, or they belong to

networks that filter ICMP packets). We will handle these issues

below.

Given these initial target and monitor sets, we uploaded

our measurement tools and the target set to each monitor

and remotely asked them to send a probe to each target

(in a random order to avoid situations where targets would

receive many probes in a short period of time). This lasted

approximately 4 hours (and so each target received at most

700 probes during this period). In order to explore the stability

of our measurements, we repeated this operation three times

in a row. The whole measurement (building the target set and

probing each of them from each monitor three times) took

less than 24 hours, with a very reasonable load for targets and

monitors. At this stage, we obtained for each target its answers

to the probes from all monitors (repeated three times), which

we gathered onto a local machine for analysis.

Some targets and some monitors behaved incorrectly. For

instance, some targets sent several answers for a unique probe.

Others answered to a few monitors only, probably because of

shutdowns during measurements, very low ICMP rate limiting,

or other specific reasons. Conversely, some monitors received

surprisingly few answers, probably due to a very poor local

connections, shutdowns, or to the fact that PlanetLab machines

may be overloaded (they are shared by numerous users). To

avoid potential noise due to these anomalous behaviors, we

first discarded targets giving multiple answers to a probe.

We then observed for each monitor the number of targets

that answered its probes, and conversely for each target the
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Fig. 6. Left (resp. right): for each number x on the horizontal axis, we plot
the number of targets (resp. monitors) that sent (resp. received) at least x

answers to our probes, for each of our three measurements.

1-st 2-nd 3-rd

Nb running monitors 619 625 622
Nb answering targets 2849740 2734548 2699642
Nb targets answering incorrectly 10150 9842 11048
Nb monitors receiving answers
from less than 80% of targets

198 183 180

Nb targets answering to less than
80% of monitors

590605 527346 544252

Nb targets t such that t 6∈ M(t) 2634226 2519320 2484483
Nb interfaces in B(M) 1040 1107 1097
Nb targets with only one interface
not in B(M)

2842481 2727422 2692135

Final number of targets 5593 5623 5619

TABLE I
KEY POST-PROCESSING STEPS FOR OUR THREE MEASUREMENTS.

number of monitors that received answers from it, see Fig. 6.

These plots show that most monitors received answers from

most targets, as we expected. To ensure that we only keep

relevant data, we discarded monitors that received answers to

less than 80% of their probes, and conversely all targets that

sent answers to less than 80% of probes; this represents a

minority of all monitors and targets, see Table I.

Following the requirements of our method, we then built the

set B(M) of border interface seen from our monitors and we

discarded all targets t such that t is not in the set of interfaces

used bt r(t) to answer probes (i.e. t 6∈ M(t)) or t is a border

interface (t ∈ B(M)), see Sections V and VI. Finally, we

discarded all targets having only one interface not in B(M)
(which, as explained in Section V, do not belong to correct

core routers).

We give the precise numbers encountered during the whole

process for our three measurements in Table I.

We finally obtain for each of our three measurements

approximately 5600 targets belonging to correct core routers.

The key output of our measurements is the observed degree

of these routers, from which we will estimate the degree

distribution of internet core routers in the next section.

VIII. RESULTS

The degree distributions observed from our three measure-

ments, after bias correction following the formula of Sec-

tion VI, are given in Table II. We plot the inverse cumulative

distributions in Fig. 7.

First notice that results from each measurements are very

similar, which confirms that our results are stable in this setup.

Obtained distributions show clearly that low-degree core

routers are prevalent: approximately 75% of them have degree



deg 1-st 2-nd 3-rd

2 0.74770 0.74371 0.75214
3 0.19434 0.19838 0.19258
4 0.02727 0.02727 0.02585
5 0.01551 0.01588 0.01486
6 0.00708 0.00640 0.00644
7 0.00206 0.00224 0.00230
8 0.00175 0.00196 0.00147
9 0.00127 0.00131 0.00145

10 0.00057 0.00044 0.00052
11 0.00056 0.00052 0.00047
12 0.00040 0.00044 0.00047
13 0.00020 0.00023 0.00017
14 0.00025 0.00031 0.00031
15 0.00032 0.00009 0.00017

deg 1-st 2-nd 3-rd

16 0.00014 0.00025 0.00024
17 0.00023 0.00018 0.00015
18 0.00007 0.00007 0.00007
19 0.00007 0.00009 0.00009
20 0.00002 0.00000 0.00002
21 0.00008 0.00015 0.00008
22 0.00006 0.00000 0.00004
23 0.00000 0.00000 0.00002
24 0.00002 0.00000 0.00002
25 0.00000 0.00005 0.00002
26 0.00000 0.00002 0.00002
27 0.00002 0.00000 0.00002
28 0.00000 0.00002 0.00000
29 0.00002 0.00000 0.00001

TABLE II
THE DEGREE DISTRIBUTIONS OBTAINED FROM OUR THREE

MEASUREMENTS (AFTER BIAS CORRECTION): FOR EACH DEGREE k, WE

GIVE THE ESTIMATED FRACTION pk OF CORE ROUTERS WITH DEGREE k.
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Fig. 7. Inverse cumulative degree distribution obtained from our three
measurements, after bias correction: for each value x on the horizontal axis,
we plot the fraction of core routers having degree higher than or equal to x

(log-log scale).

2 only, and almost 20% have degree 3. This is not surprising,

as we observe core interfaces only: these routers certainly have

other interfaces connected to border routers and/or end-hosts.

The number of interfaces they use to actually route traffic in

the core internet, however, is very low.

Instead, some core routers have much larger degrees, and

the highest one we observe is 29. We may possibly miss a

few interfaces of this router but, as explained above, there is

little chance that the true largest degree is much higher: we

perform measurements from a much larger number of monitors

and so the fact that observed degrees are bounded by this

number plays no role. Of course, core routers with degree

significantly higher than 29 may exist, and they probably

do. There is however none in our random target set and we

therefore expect them to be extremely rare (which is reinforced

by the sampling bias towards high-degree routers explained at

the end of Section VI).

Going further, we observe that the first values of the

obtained distribution (pk for k < 10) are reasonably well fitted

by a power-law (a straight line in the log-log plot of Figure 7).

After that, the distribution decreases less rapidly and finally it

experiences a sharp decrease. The first values are the ones that

our method estimates best, and so one may ask if the obtained

distribution is compatible with a power-law. As highest degree

may be under-estimated, this may even be in accordance with

the shape of the whole obtained distribution.

In order to explore this question, we compute the range

of power-law exponents compatible with the first values (the

most reliable ones). We obtain α ∈ [3.8; 4.4]. Beyond the

actual numerical value of the exponent, this discards the usual

assumption of an exponent close to 2 and this shows that

if the true degree distribution is a power-law, it is hardly

dinstinguishable from an exponential decrease in practice [22]

even for a system the size of the internet.

Finally, although fully characterizing the degree distribution

for large values of the degree remains to be done, our

measurement shows that it significantly differs from classical

assumptions: it is very heterogeneous but it experiences a

much sharper decrease compatible with power-law exponents

between 3.8 and 4.4.

IX. ASSESSMENT OF RESULTS

In this section, we explore two approaches to assess the

quality and robustness of our results. We first study the

quality of our monitor set following the methods described

in Section IV. We then run simulations similar to the ones in

Section III to show that our results are self-consistent.

A. Quality of the monitor set

As explained in Section IV-A, the distributed nature of

our monitor set is a key feature for our measurements. We

therefore ran the procedure described in this section to iden-

tify classes of colocated monitors, which provide basically

redundant information. We obtained 203 different classes,

each containing in average 2.11 monitors. This is consistent

with the fact that each institution involved in PlanetLab often

contributes with several monitors located at the same place.

Examination of the DNS names of monitors belonging to

a same class confirmed this: they typically match the same

*.domain.tld pattern.

Once colocated monitors are identified, we investigate the

diversity of views obtained from various locations, as ex-

plained in Section IV-B: we first estimate the quality of the

monitor set when only one colocation class is used, then

two colocation classes, etc, until all colocation classes (and

thus all monitors) are used. We add colocation classes in a

random order and average the obtained quality. The result

is displayed in Fig. 8 (left). As expected, for both quality

functions, the quality increases sharply at the beginning and

rapidly converges. This indicates that adding more monitors

at more locations would not improve the results much, and so

that our monitor set and the number of locations hosting them

are reasonable.

In order to deepen this, we examine the impact of adding

more monitors at more locations on the observed fraction pk
of core routers with degree k (which is what we are interested

in), as discussed in Section IV-C. We add colocation classes

one by one like above and observe how pk evolves and obtain
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Fig. 8. Left: evolution of the quality of the monitor set when we add
colocation classes. Right: convergence of the fraction of routers of degree
k with the number of colocation classes.

Fig. 8. The estimates for small degrees rapidly converges,

which was expected as only few monitors (and locations) are

needed to observe them. Interestingly, only very few locations

(approximately 10) are needed to obtain an estimate of pk
for k < 5 with a 80% precision. Increasing the number of

monitors rapidly increases the quality of the estimate. Even for

large degrees, the estimate rapidly reaches a value comparable

to the final one, despite the fact that it only slowly converges

after that.

Finally, this work on the monitor set shows that we have

200 significantly different locations hosting monitors, and that

this is sufficient to ensure a reasonable quality for our results.

It is clear however that increasing the number of monitors

and the number of locations hosting them would increase both

accuracy and reliability of our estimates.

B. Simulation bootstrap

We demonstrated the relevance of our approach by simulat-

ing it on artificial graphs in Section III. In the lack of a better

knowledge, we used two extreme degree distributions: Poisson

and power-law ones. We conduct here similar simulations but

with the degree distribution obtained in Section VIII from our

measurements. We expect our method to be able to observe

this distribution accurately, otherwise the estimate we obtain

above would make little sense.

We built 5 random graphs of 1 million nodes 5 according to

each of the 3 measured distributions; these graphs represent

the core internet in our simulations. For each graph, we then

sampled 5 different sets of nodes at random to play the role

of monitors. This leads to 75 different simulations, for which

we tested sets of 12, 25, 50, 100, 200, 400 and 800 monitors.

As our monitors cannot be colocated in this framework (the

considered graphs have no border), the simulations most

similar to our PlanetLab measurements are the one with 200
monitors.

Fig. 9 (left) displays the degree distributions observed with

different sets of monitors. It shows that 200 monitors in

different locations is sufficient to observe the real degree

distribution, even if the fraction of high-degree nodes is less

accurate than others. The plot shows that the proportion of

small degree nodes is particularly well approximated: 95% of

5Remind that the size of the graph has little impact on the obtained results,
see Section III.
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Fig. 9. Assessment by simulations. Left: the observed degree distributions
with various numbers of monitors. Right: correlations between observed and
real degree with 200 monitors (one dot per node and median).

all nodes with degree less than or equal to 10 are observed

with their real degree with 200 monitors.

We deepen this by studying how close the observed degree

of a node is to its real degree, see Fig. 9 (right). This figure

confirms that our method succeeds in measuring the degree of

specific nodes. In particular, the median value remains close to

the real one, even for the highest degrees. Moreover, even for

the highest degrees, the estimated degree is never far from the

real one. For instance, 18 has been the worst estimate made

for a 29-degree node; 17 for a 27-degree one and 18 for a 24-

degree one. Given the fact that these are worst cases and that

we cannot over-estimate a degree, such errors remain quite

low.

In conclusion, simulations of our method are in accordance

with our empirical measurements: the global degree distri-

bution (which is our focus here) observed in simulations is

consistent with the real one, and the estimate of the degree of

specific nodes is very accurate as long as their degree is not

too high. Increasing the number of monitors would provide

better estimates of the fraction of high-degree nodes, without

drastically changing our conclusions.

X. RELATED WORK

The physical and IP-level internet topologies are extensively

studied since the seminal papers of Pansiot et al. [23] and

Faloutsos et al. [24]. The most classical approach consists in

building maps from traceroute-like measurements. However,

several studies have shown that obtained maps are intrinsically

biased [10], [11], [9], [25], [12], [13], [14], [8], and even that

traceroute outputs are unreliable [17], [26], [8]. The hope that

increasing the size and quality of maps would overcome these

issues has led to much effort, but the situation remains far

from satisfactory [9], [27], [14].

Conducting precise measurements of the degree of random

nodes to obtain a reliable estimate of the degree distribution

was first suggested in [10]. We explored the possibility to

do so at IP level in [28] but we only partly succeeded and

we conducted thorough simulations in [20]. Property-driven

network measurement are also developed in other contexts, in

particular Online Social Networks (OSNs) and P2P overlays.

Our work is also closely related to alias resolution (which

plays a key role in the building of maps): while we seek all



(unknown) interfaces of a given router identified by one of its

interfaces, alias resolution aims at identifying in a given set

of interfaces the ones that belong to a same router [29], [30],

[15], [16]. Probes similar to ours are used in this context, in

particular by the iffinder tool [31], as well as other techniques.

Our use of such probes was clearly inspired by these works.

Finally, important efforts are devoted to the deployment

of large and distributed measurements infrastructures, which

are crucial for this field of research [1], [2], [3], [4], [5].

Some of them distribute monitoring capabilities at a huge scale

(typically onto thousands of end-hosts) and so are particularly

promising for us [5], [2].

XI. CONCLUSION AND DISCUSSION

In this work, we have obtained an estimate of the degree

distribution of internet core routers in a rigorous way, which

makes it much more reliable than previous estimates obtained

from maps. To do so, we focused on the measurement of

this property rather than the collection of a large (but still

partial, biased and erroneous) map of the whole internet. This

made it possible to design, implement and run a measurement

grounded on reasonable and well identified assumptions.

Our method also has the advantage that various assessments

of its results are possible. Here, in addition to the repeated

measurements, we assessed the results using variations of

the monitor set and simulations. Exploring other assessment

approaches would increase their reliability. In particular, one

may run various anti-aliasing techniques on the results of our

measurements in order to confirm that the different interfaces

we discover for a given target do belong to a same router. One

may also run our measurements on targets for which the true

degree is known, thus providing ground truth assessment.

In another direction, one may of course use larger sets of

targets in order to improve the accuracy of our estimate, in

particular regarding high-degree nodes. As the measurements

we presented took only 4 hours, doing so seems easy. Using

more and better distributed monitors would be another impor-

tant improvement. Up to our knowledge, the most promising

infrastructures for doing so are DIMES and RIPE Atlas

[2], [5]: they already provide thousands of well distributed

monitors which fit our measurement requirements.

Finally, let us notice that our measurement method is very

fast and induces only a small load both on monitors and

targets. This is an important feature, which makes it possible

to avoid bias due to dynamics during the measurement It

also opens the way to studies of the dynamics of the degree

distribution at an unprecedented time scale. Going further, one

may even observe the time evolution of router interfaces and

use this for better modeling of the internet and its dynamics.
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