Emergence of Superpeer Networks: A New Perspective

Bivas Mitra

Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur, India

Peer to Peer architecture

- All peers act as both clients and servers
 Any node can initiate a connection
 Provide and consume data
- No centralized data source
- Superpeer network (Gnutella 0.6, KaZaA, Skype) emerges as most widely used network

Superpeer Topologies

Two Layer Topologies in certain networks like Skype, Gnutella

Top Layer --- Resourceful nodes (Superpeers)

- High Bandwidth, Storage Space, Computational Power
- Provides Search, Indexing and Storage Services to the nodes in the network
- Bottom Layer --- Ordinary nodes

Image Sources: techblessing.com and Lua et al.

Dynamics in superpeer networks

Superpeer networks

- Topology of the superpeer networks are modeled by degree distribution p_k
 - \square p_k specifies the fraction of nodes having degree k

Degree distribution of Gnutella

- Superpeer network
 - Small fraction of nodes are superpeers and rest are peers
 - Can be modeled using bimodal degree distribution

Research Question

IEEE INFOCOM 2013 (Mini conference)

- Why does bootstrapping protocol result in bimodal distribution in superpeer networks?
- Literature shows that preferential attachment of nodes results scale free network
 - Inclusion of the `fitness' and `rewiring of links' do not changes the nature
 - But superpeer networks (Gnutella, Skype) exhibit bimodal degree distribution
- **How** does the bootstrapping affects network topology
- Can this understanding may help the design engineers to improve p2p networks?

Outline

IEEE INFOCOM 2010, IEEE INFOCOM 2013 (Mini conference)

- Modeling the bootstrapping protocols
- Development of an analytical framework to explain the appearance of bimodal network

- Investigating the effect of various bootstrapping parameters on network topology (fraction of superpeers etc.)
- Study of the Gnutella network in light of the developed formalism

Modeling the bootstrapping protocols

- Each node joins the network with
 - Node weight (processing power, storage space etc)
 - Finite bandwidth (determines the cutoff degree)
- Newly arriving peers
 - Preferentially attach to known powerful peers (via Webcache)
 - Powerful' node is defined by the 'node weight' and current 'node degree'
 - Random connections also exist (parameterized by ε)
- Model
 - Preferential as well as Random attachment by the nodes

□ Attachment Probability ∞ (*k* + ε), w

- k = Degree of the existing node
- ε = randomness parameters
- w= node weight

IEEE INFOCOM 2010

Bootstrapping Constraints Concept of cutoff degree

- Bandwidth constraints of the nodes
- Implication
 - A node can take at most k_c number of connections
 - Further connection request will be rejected

Concept of finite bandwidth/cutoff degree

Cutoff degree of a node is k_c

IEEE INFOCOM 2010

Bootstrapping Constraints Concept of cutoff degree

- Two different assumptions
- Simple : All the nodes join with same cutoff degree
 k_c
- Realistic : Nodes join with individual cutoff degree.
 q_{kc(j)} fraction of nodes joins with cutoff degree kc(j).
- All nodes join with degree m

What do we aim to observe?

Effect of bootstrapping parameters

- $\Box \varepsilon$ (randomness factor)
- w (resource)
- k_c (cutoff degree)
- m (joining degree)
- On the network topology
 - Fraction of superpeers p_{kc}
 - Fraction of lowest degree nodes p_m and
 - Prominence of superpeers
 - Denoted as Superpeer Demarcation Ratio (SDR)= $p_{kd}/(p_{kc}-1)$

Development of the analytical framework

Joining of a node results

- the shift in the k degree nodes to (k+1)
- □ The shift in the (k-1) degree nodes to k

The Degree Distribution

When a new node arrives

p_k - **probability that a node is of degree k**

Asymptotically --
$$DD_{(n+1)} \approx DD_n \rightarrow \mathbf{p}_{k,n+1} \approx \mathbf{p}_{k,n} \approx \mathbf{p}_k$$

The Degree Distribution

 Let δ_{k->k+1} = average no. of nodes that changes from degree k to k+1. Then

$$\bullet \Delta n_k = \delta_{k - > k + 1} - \delta_{k - 1 - > k}$$

The Degree Distribution_m,

 $m < k < k_c$

k_c

Rate equation at k = m

 $\delta_{k-1 \to k} = 1 \text{ and } \delta_{k \to k+1} = \frac{(k+\epsilon)p_k}{\xi f},$

 $\Delta n_k = \delta_{k-1 \to k} - \delta_{k \to k+1}, \qquad p_m = \frac{\xi f}{m + \epsilon + \xi f}.$

Rate equation at $k = k_c$ $\delta_{k \to k+1} = 0$ and $\delta_{k-1 \to k} = \frac{(k+\epsilon-1)p_{k-1}}{\xi f}$,

$$\Delta n_k = \delta_{k-1 \to k} - \delta_{k \to k+1}, \qquad p_{k_c} = \frac{(k_c + \epsilon - 1)p_{k_c-1}}{\xi f}$$

Rate equation at $m < k < k_c$

$$\begin{split} \Delta n_k &= \delta_{k-1 \to k} - \delta_{k \to k+1}, \qquad p_k = \frac{k + \epsilon - 1}{k + \epsilon + \xi f} p_{k-1}. \\ p_k \text{ heavily depends on Beta} \\ \text{function B(a,b)} & \swarrow & \mathcal{E} \end{split} \qquad p_k = \frac{(k + \epsilon - 1)(k + \epsilon - 2) \cdots (m + \epsilon) p_m}{(k + \epsilon + \xi f)(k + \epsilon + \xi f - 1) \cdots (m + \epsilon + \xi f + 1)} \\ &= C_1 \frac{B(k, \epsilon + \xi f + 1)}{B(k, \epsilon)}. \end{split}$$

The Degree Distribution (Approx)
For
$$m < k < k_c$$
 $P_k = \frac{k+\varepsilon-1}{k+\varepsilon+\xi f}P_{k-1}$ and $P_{k_c} = \frac{k_c+\varepsilon-1}{\xi f}P_{k_{c-1}}$
• Low values of ε ($\varepsilon << k_c$)
 $p_m = \frac{\xi f}{m+\varepsilon+\xi f}$
• When $m < k < k_c$
 $p_k \approx \frac{\xi f}{m+\varepsilon+\xi f}m^{\xi f+1}k^{-(\xi f+1)}$
• When $k=k_c$
 $P_{k_c} \approx m^{\xi f}k^{-\xi f}$
• When $k = k_c$
 $p_{k_c} \approx m^{\xi f}k^{-\xi f}$
• When $k = k_c$
 $p_{k_c} = \frac{C}{\xi f}(k+\varepsilon-1)^{-\xi f}e^{-\frac{(\xi f+1)(\xi f+0.5)}{k+\varepsilon-1}}$

The Degree Distribution

The Degree Distribution

For m < k < k_c
$$P_{k} = \frac{k + \varepsilon - 1}{k + \varepsilon + \xi f} P_{k-1}$$
 and $P_{k_{c}} = \frac{k_{c} + \varepsilon - 1}{\xi f} P_{k_{c}-1}$
• Low values of ε (ε << k_{c})
 $P_{m} = \frac{\xi f}{m + \varepsilon + \xi f}$
• Higher values of ε
 $P_{m} = \frac{\xi f}{m + \varepsilon + \xi f}$ Deviates from power law
• When $m < k < k_{c}$
 $p_{k} \approx \frac{\xi f}{m + \varepsilon + \xi f} m^{\xi f + 1} k^{-(\xi f + 1)}$
• When $k = k_{c}$
 $p_{k_{c}} \approx m^{\xi f} k^{-\xi f}$ Power law
 $p_{k_{c}} \approx m^{\xi f} k^{-\xi f}$ Power law

- Approximation for low ε matches well with simulation for $\varepsilon=0$
 - Does not fit well with $\epsilon=20$
- Approximation for high ε matches well with simulation for $\varepsilon = 20$

Many m degree peers receive connections, results m m+1, m+2, etc

Impact of epsilon on p_m and p_{kc}

- Increase in ε reduces both p_m and p_{kc}
- The fraction of intermediate degree node increases

The Degree Distribution

For
$$m < k < k_c$$
 $p_k = \frac{k + \varepsilon - 1}{k + \varepsilon + \xi} p_{k-1}$ $p_{k_c} = \frac{k_c + \varepsilon - 1}{\xi f} p_{k_{c-1}}$

Low values of
$$\varepsilon$$
 ($\varepsilon << k_c$)
 $p_m = \frac{\xi f}{m + \varepsilon + \xi f}$
 $when $m < k < k_c$
 $p_k \approx \frac{\xi f}{m + \varepsilon + \xi f} m^{\xi f + 1} k^{-(\xi f + 1)}$
 $when k = k_{\xi,\varepsilon}$
 $p_k \approx m^{\xi f} k^{\xi,\varepsilon}$
 $p_k \approx m^{\xi f + 1} k^{-(\xi f + 1)}$
 $p_k = C(k + \varepsilon)^{-(\xi f + 1)} e^{-\frac{(\xi f + 1)(\xi f + 0.5)}{k + \varepsilon}}$
 $p_k = C(k + \varepsilon)^{-(\xi f + 1)} e^{-\frac{(\xi f + 1)(\xi f + 0.5)}{k + \varepsilon}}$
 $p_k = \frac{\xi f}{\xi f} (k + \varepsilon - 1)^{-\xi f} e^{-\frac{(\xi f + 1)(\xi f + 0.5)}{k + \varepsilon - 1}}$$

Impact of E on SDR (SP demarcation)

Impact of *E* on SDR

We have

$$\frac{p_{k_c}}{p_{k_c^{-1}}} = \frac{m}{f} \frac{k_c - 2m - 1}{2m + \varepsilon} + 1$$

- Thus with increasing epsilonSDR decreases if
 - (k_c-2m-1)/(2m+ ε) >0
 SDR increases if (inset)
 - $(k_c 2m 1)/(2m + \varepsilon) < 0$
- Thus when $k_c < 2m+1$
 - SDR increases with ε

Impact of *E* on SDR

Range of SDR is bounded

Impact of k_c and m on superpeers

k_c=50 ε=0

The fraction of superpeers (*p_{kc}*)
Decreases with increasing values of *k_c*

$$p_{k_c} \approx m^{\xi f} k^{-\xi f}$$

Ratio SDR= $\frac{p_{k_c}}{p_{k_c-1}}$ increases

k_c

Impact of k_c and m

k_c=50 ε=0

The fraction of superpeers (*p_{kc}*)
Increases with increasing values of *m*

$$p_{k_c} \approx m^{\xi f} k^{-\xi f}$$

The fraction of low degree peers (p_m)
Gets high value for low m

$$\lim_{\epsilon \to 0} p_m = \frac{\xi f}{m + \epsilon + \xi f} = \frac{\xi f}{m + \xi f}$$

- The fraction of superpeers (p_{kc})
 - Decreases with increasing values of k_c
 - Increases with increasing values of *m*
- The SDR
 - Increases with increasing values of both m and k_c

What do we aim to observe?

Effect of bootstrapping parameters

- $\Box \varepsilon$ (randomness factor)
- w (resource)
- k_c (cutoff degree)
- m (lowest degree)
- On the network topology
 - Fraction of superpeers *p_{kc}*
 - Fraction of lowest degree nodes *p_m* and
 - Prominence of superpeers
 - Denoted as Superpeer Demarcation Ratio (SDR)= $p_{kd}/(p_{kc}-1)$

f_w fraction of nodes of weight w

Impact of node weight (w)

Consider a bimodal weight distribution

 \Box nodes join with two weights w₁ and w₂ with individual fraction fw₁ and fw₂.

 \Box We take w₁=10, fw₁=0.8. w₂ varied from 10 to 3000.

Observations (1)

1. Initial increase in w₂ increases the amount of superpeers (pk_c) rapidly.

IEEE INFOCOM 2010

- 2. After a certain threshold, pk_c stabilizes **Observations (2) Inset**
- 1. Initial increase in fw_2 increases p_{kc} .
- 2. After reaching maximum value $(p_{kc}^{*}), p_{kc}$ decreases
- 3. Existence of optimum $fw_2(fw_2^*)$

Impact of node weight

Some suggestions to the network engineers

- Resource (w) of a machine can be exploited only upto a point
 - Enhancing resource (w) is not always cost effective to increase the number of superpeers
- Putting many high resource machines (f_{w2}) in the network can in fact be detrimental
 - May reduce the superpeer fraction

Nodes joining with individual cutoff degree

Different users have different capacity

-- Dial-up, leased line, mobile broadband, DSL

Model

Probability that node j joins with cutoff degree $k_c(j)$ is $q_{kc(j)}$; $k_c(min) \leq k_c(j) \leq k_c(max)$

Different cut-off degrees

Nodes joined
with cut-off
degrees 20, 30, 40
& 50

Each with a probability 0.25

Spikes at each cut-off degrees
Power-law between each cut-off degrees

Case study : Gnutella

- Experiment performed based on the real world network data
- Gnutella network snapshot obtained from the Multimedia and Internetworking research group, University of Oregon, USA
- Size of the network 131,869 nodes
- Compare the theoretical degree distribution with real trace

Case study : Gnutella

Deviation specially for the low-middle degree nodes

Role of Webcache

IEEE INFOCOM 2013 (Mini conference)

- Finite Size Caches (new nodes contact Webcache)
 - Limited information availability about the superpeers
- Implication
 - Information about only a small fraction of nodes (mostly of high degree) are stored and propagated

- Peers having low degrees do not receive connections from the incoming peers
 - Most of the low degree nodes remain in the low degree
 - Subsequently the amount of low degree nodes in the Gnutella network is less than the theoretical calculated value

Revisit the bootstrapping protocol

- A newly arriving peer initially contacts a WebCache
- The Webcache provides a list of *M* peers.
- The peer contacts *m* < *M* peers and attempts to connect to them
- A peer on receiving a connection request accepts the request if it has not reached its cutoff degree

Model finite sized Webcache (Mini conference)

- Assumptions
 - Nodes having degree $\geq m'(m' < k_c)$ will ALWAYS be in cache
 - Prob. that a node having degree k(m < k < m') will be in cache is γ
- We model the web cache with tuple $\{\gamma, m'\}$

Average number of k degree nodes in the web cache acquires links from incoming node

$$\delta_{k \to k+1} = \frac{\gamma(k+\epsilon)p_k}{\xi_c f_c},$$

We take

$$\xi_c = \frac{1}{m} \left(\sum_{k=m}^{m'-1} \gamma(k+\epsilon) p_k + \sum_{k=m'}^{k_c} (k+\epsilon) p_k \right).$$

 $\frac{\xi_c}{\gamma}$ as ϕ

Assume low epsilon

$$f_c = 1 - \frac{(k_c + \epsilon)p_{k_c}}{\sum_{k=m}^{m'-1} \gamma(k+\epsilon)p_k + \sum_{k=m'}^{k_c} (k+\epsilon)p_k}$$

Degree Distribution with Web Caches

When $k = k_c$

$$p_{m} = \frac{\varphi f_{c}}{m + \varepsilon + \phi f_{c}}$$

$$p_{k} \approx \frac{\phi f_{c}}{m(\phi f_{c} + 1)} \left(\frac{k}{m}\right)^{-(\phi f_{c} + 1)}$$

$$\chi C_{c} (m' + \varepsilon - 1)$$

фf

$$p_{m'} = \frac{\gamma C_{m'}(m' + \varepsilon - 1)}{m' + \varepsilon + \xi_c f_c}$$

• When
$$m' < k < k_c$$

When
$$m' < k < k_c$$

 $p_{k} \approx \frac{\gamma C_{m'}(m' + \varepsilon - 1)}{m'(\varepsilon + \xi_{c} f_{c})} \left(\frac{k}{m'}\right)^{-(\xi_{c} f_{c} + 1)}$ $p_{k} \approx \frac{\gamma C_{m'}(m' + \varepsilon - 1)}{\xi f} \left(\frac{k}{m'}\right)^{-\xi_{c}f_{c}}$

All terms except k are constant

Effect of γ on the Degree Distribution

Simulations Parameters

 $\epsilon = 0$ m'=7, m=2, k_c=25

Effect on
$$p_m$$

 $p_m = \frac{\phi f_c}{m + \varepsilon + \phi f_c}$

$$p_m \text{ deceases slowly with } \gamma$$
with γ
Since $\phi f_c = \frac{1}{m} \left(\sum_{k=m}^{m'-1} (k+\epsilon) + \frac{1}{\gamma} \sum_{k=m'}^{k_c-1} (k+\epsilon) p_k \right)$

 ϕf_c decreases slowly with increasing γ

Effect of γ on the Degree Distribution

Two regimes in Degree distribution

- 1. One at $m \le k < m'$ (γ independent)
- 2. Other at $m' \leq k < k_c (\gamma \text{ dependent})$

Simulations Parameters

• ε = 0, In inset ε =50

•*m*'=7, *m*=2, *k_c*=25

- In low γ, webcache is populated by high degree nodes
- Nodes in this region aggressively accept new links and move to pk_c
- Decreasing γ, fractions p_m and p_{kc} both increases
- The depth of the pit in the in region $m' \le k < k_c$ increases with the decrease in γ

Polarization effect

Effect of m' on the Degree Distribution

Degree Distribution with Web Caches

When $k = k_c$

• When
$$m' < k < k_c$$

 $p_m = \frac{\phi f_c}{m + \varepsilon + \phi f_c}$

$$p_{k} \approx \frac{\phi f_{c}}{m(\phi f_{c}+1)} \left(\frac{k}{m}\right)^{-(\phi f_{c}+1)}$$
$$p_{m'} = \frac{\gamma C_{m'}(m'+\varepsilon-1)}{m'+\varepsilon+\xi_{c}f_{c}}$$

$$p_{k} \approx \frac{\gamma C_{m'}(m' + \varepsilon - 1)}{m'(\varepsilon + \xi_{c} f_{c})} \left(\frac{k}{m'}\right)^{-(\xi_{c} f_{c} + 1)}$$
$$p_{k} \approx \frac{\gamma C_{m'}(m' + \varepsilon - 1)}{\xi_{c} f_{c}} \left(\frac{k}{m'}\right)^{-\xi_{c} f_{c}}$$

Substituting m'=m and m'=kc

$$p_{k_c} \approx m^{\xi f} k^{-\xi f}$$

Effect of m' on the Degree Distribution

• Effect of m' on p_{kc}

- For m'=m or $m'=k_c$, superpeer fraction p_{kc} remains same (irrespective of γ)
- For m<m'<k_c, there exists an optimal value of m' for which p_{kc} is maximum

Effect of m' on the Degree Distribution

Application of the model: Gnutella Networks

- Gnutella Network Data Size
 - Data Size 100,000 nodes (2012)
 - Data Size 1,31,869 nodes (2004)
- Best fit observed for
 - □ γ=0.42, *m*′=15 (2012)
 - γ=0.37 and m'=18 (2004)
 - Webcache is mainly populated by the high degree nodes (>15)
 - Only 40% of low degree nodes present in cache $(1 \le k \le 15)$
- Variable cutoff degrees (Inset)

Conclusion

- Closed form quantitative relationships between
 - Various bootstrapping parameters and the emergent network properties like
 - Fraction of Superpeers
 - SDR
- Obtain certain insights
 - Increasing randomness in connections increases connection uniformity of superpeers
 - Resource optimization (weight)
 - Increasing webcache size (m') not necessarily increase fraction of superpeers
 - Optimum point

Thank you

Contact: bivas@cse.iitkgp.ernet.in Complex Network Research Group (CNeRG) CSE, IIT Kharagpur, India http://cse.iitkgp.ac.in/resgrp/cnerg/