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Peer to Peer architecture

Troe B

Internet
= =
Node Node

All peers act as both clients and servers
o Any node can initiate a connection
o Provide and consume data

No centralized data source

Superpeer network (Gnutella 0.6, KaZaA, Skype)
emerges as most widely used network



Superpeer Topologies

Two Layer Topologies in certain networks like Skype, Gnutella

Top Layer --- Resourceful nodes (Superpeers)
o High Bandwidth, Storage Space, Computational Power

o Provides Search, Indexing and Storage Services to the nodes in the
network

Bottom Layer --- Ordinary nodes

Image Sources: techblessing.com and Lua et al.
Comp. Comm. 31(3), 2008



‘ Dynamics in superpeer networks

/‘ ==) Node joins through

M bootstrapping protocol
\/

Node leaves the

‘ E==D Node removal network due to churn
L and attack
‘ Node initiated Rewiring of links




Superpeer networks

Topology of the superpeer networks are modeled by

degree distribution p,

o p, specifies the fraction of nodes having degree k
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Degree
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o Small fraction of nodes are superpeers and rest are peers
o Can be modeled using bimodal degree distribution



. IEEE INFOCOM 2013
Resear Ch Q uestion (Mini conference)

Why does bootstrapping protocol result in bimodal
distribution in superpeer networks?

Literature shows that preferential attachment of nodes
results scale free network

a Inclusion of the ‘fitness’ and ‘rewiring of links’” do not
changes the nature

o But superpeer networks (Gnutella, Skype) exhibit bimodal
degree distribution

How does the bootstrapping affects network topology

Can this understanding may help the design engineers to
improve p2p networks?



R IEEE INFOCOM 2010, IEEE INFOCOM 2013
Outline (Mini conference)

Modeling the bootstrapping protocols

Development of an analytical framework to explain the
appearance of bimodal network

Investigating the effect of various bootstrapping parameters on
network topology (fraction of superpeers etc.)

Study of the Gnutella network in light of the developed formalism



Modeling the bootstrapping protocols

Each node joins the network with
o Node weight (processing power, storage space etc)
o Finite bandwidth (determines the cutoff degree)

Newly arriving peers

o Preferentially attach to known powerful peers (via Webcache)

o ‘Powerful’ node is defined by the ‘node weight” and current ‘node degree’
o Random connections also exist (parameterized by &)

Model

o Preferential as well as Random attachment by the nodes
0 Attachment Probability o« (K + &), w
k = Degree of the existing node
¢ = randomness parameters
w= node weight



. . IEEE INFOCOM 2010
Bootstrapping Constraints

Concept of cutoff degree

Bandwidth constraints of the nodes

Implication
o A node can take at most k. number of connections
a Further connection request will be rejected



Concept of finite bandwidth/cutoff
degree

Cutoff degree of a node is k_
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o o IEEE INFOCOM 2010
Bootstrapping Constraints

Concept of cutoff degree

Two different assumptions
Simple : All the nodes join with same cutoff degree
K

C

Realistic : Nodes join with individual cutoff degree.
0 Qi fraction of nodes joins with cutoff degree kc(j).

All nodes join with degree - m



What do we aim to observe?

Effect of bootstrapping parameters
o ¢ (randomness factor)

o w (resource)

o k. (cutoff degree)

a m (joining degree)

On the network topology
Fraction of superpeers p,.
Fraction of lowest degree nodes p,, and
Prominence of superpeers

Denoted as Superpeer Demarcation Ratio (SDR)=p, /(P 1)



bevelopment of the analytical framework

Joining of a node results
a the shift in the k degree nodes to (k+1)
a The shift in the (k-1) degree nodes to k

Number of ‘/
Number of nodes of Number of nodes of
nodes of degree degree k at degree k+1 at t
(k-1) at t t+1

|nflux outflux
—>




‘ The Degree Distribution

= When a new node arrives

P, - probability that a node is of degree k

Asymptotically -- DD,y R DD, > Pyn+1 ® Pin ® Py




The Degree Distribution

= Let 6,..,.,= average no. of nodes that changes from degree k
to k+1. Then

o ANy = Oskrr = Okr5k




' The Degtee Distribution,  n.ccr.
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The Degree Distribution (Approx)
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The Degree Distribution
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The Degree Distribution
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Validation: Impact of epsilon

' —— £=0 (Low € Theory)
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Approximation for low € matches well with simulation for e=0
o Does not fit well with €=20

Approximation for high € matches well with simulation for e=20

For all simulations number of nodes is 5000



Validation: Impact of epsilon
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Many m degree peers receive connections, results m m==) m+1, m+2, etc

For all simulations number of nodes is 5000



Probability (pk)
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Probability (pk)

Impact of epsilon
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For all simulations number of nodes is 5000



The Degree Distribution
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Impact of € on SDR (SP demarcation)
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Impact of €on SDR
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Impact of €on SDR
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What do we aim to observe?

Effect of bootstrapping parameters

a

Q
Q
Q

& (randomness factor)
w (resource)

k. (cutoff degree)

m (lowest degree)

On the network topology

Fraction of superpeers p,

Fraction of lowest degree nodes p,, and

Prominence of superpeers

f,, fraction of nodes of
weight w

Denoted as Superpeer Demarcation Ratio (SDR)=p, /(P 1)




Impact of node weight (w)

0 Consider a bimodal weight distribution

IEEE INFOCOM 2010

4 nodes join with two weights w,; and w, with individual fraction fw, and fw,.

d We take w;=10, fw;=0.8. w, varied from 10 to 3000.
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Observations (1)

1.

2.

Initial increase in w, increases the amount of
superpeers (pk.) rapidly.

After a certain threshold, pk. stabilizes

Observations (2) - Inset

1.
2.

Initial increase in fw, increases p,..

After reaching maximum value (p,.*), Pyc
decreases

Existence of optimum fw,, (fw,*)



Impact of node weight

Some suggestions to the network engineers

» Resource (w) of a machine can be exploited only upto a point
= Enhancing resource (w) is not always cost effective to
Increase the number of superpeers

= Putting many high resource machines (f,,) in the network can in
fact be detrimental

= May reduce the superpeer fraction



Nodes joining with individual cutoff degree

Different users have different capacity
-- Dial-up, leased line, mobile broadband, DSL

Model

Probability that node j joins with cutoff degree k.(j) is Qi) ; K(min) < k() <
k.(max)



Different cut-off degrees
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Case study : Gnutella

Experiment performed based on the real world network data

Gnutella network snapshot obtained from the Multimedia
and Internetworking research group, University of Oregon,
USA

Size of the network 131,869 nodes

Compare the theoretical degree distribution with real trace



Case study : Gnutella
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TEEE INFOCOM 2013
Role of Webcache (Mini conference)

Finite Size Caches (new nodes contact Webcache)
o Limited information availability about the superpeers
Implication

Information about only a small fraction of nodes (mostly of
high degree) are stored and propagated

Peers having low degrees do not receive connections from
the incoming peers

o Most of the low degree nodes remain in the low degree

o Subsequently the amount of low degree nodes in the
Gnutella network is less than the theoretical calculated
value



Revisit the bootstrapping protocol

m=2
= A newly arriving peer initially contacts m'=3
a WebCache
= The Webcache provides a list of M k=6
peers.
= The peer contacts m < M peers and
attempts to connect to them
= A peer on receiving a connection 1
request accepts the request if it has &
not reached its cutoff degree °
7
3 (&)
6

WebCache

39



. . IEEE INFOCOM 2013
MOdel finite Slzed Webcache (Mini conference)

Assumptions
Nodes having degree > m’(m< k. will ALWAYS be in cache
Prob. that a node having degree kK (m<k<m') will be in cache is y

We model the web cache with tuple {y, m’}

Average number of k degree nodes in the web cache acquires links from incoming node
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Degree Distribution with Web Caches
a2

Atm m- m+e+¢f,
, ¢fc k —(gf.+1)
When m< k< m D~ O (E)
! 7/Cm,(m’+8—1)
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All terms except k are constant
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Two regimes in Degree
distribution

1. One at m< kK < m' (y independent)
2. Other at m'< k < k_.(y dependent)

Effect of y on the Degree Distribution

Simulations Parameters
¢ =0, In inset ¢=50
em’=7, m=2, k=25

In low y, webcache is populated by high degree
nodes

Nodes in this region aggressively accept new
links and move to pk.

Decreasing v, fractions p,, and p,. both
increases

The depth of the pit in the in region m'< k <
k.increases with the decrease in y

Polarization effect



Effect of m' on the Degree Distribution

0.04 w

Simulations Parameters 00351
e=0 0.03-
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Degree Distribution with Web Caches

At m

When m< k< m’
When k = m’
When m< k< k.

When k=k_

Substituting m’=m and m’=kc
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Effect of m' on the Degree Distribution
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= Effect of m'on p,,.
= For m=mor m=k_, superpeer fraction p,.remains same (irrespective of v)

= For m<m<k_, there exists an optimal value of m’for which p,_is
maximum




Effect of m' on the Degree Distribution
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Application of the model: Gnutella Networks
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Gnutella Network Data Size
Data Size 100,000 nodes (2012) ol
Data Size 1,31,869 nodes (2004) o

Best fit observed for o
v=0.42, m=15 (2012)
vy=0.37 and m'=18 (2004)

Webcache is mainly populated by the high ¢
degree nodes (>15) 3
Only 40% of low degree nodes present in §
cache 1 <k <15 g
Variable cutoff degrees (Inset)

Data Obtained at II'T Kharagpur

Distribution

Cutoff Degree (kc)

10

Degree (k)

= Model
o Empirical
10° 10’ 10
Degree (k)
‘IOOQ -~ Gnutella snapshot
E's - Theoretically calculated degree distribution
107"
10°
107%
107k
107k
—6
10 ' ;
10° 10" 10°

10°



Conclusion

Closed form quantitative relationships between
Various bootstrapping parameters and the emergent network
properties like
Fraction of Superpeers
SDR
Obtain certain insights
Increasing randomness in connections increases connection
uniformity of superpeers
Resource optimization (weight)
Increasing webcache size (m’) not necessarily increase fraction

of superpeers
Optimum point



Thank you

Contact: bivas@cse.iitkgp.ernet.in
Complex Network Research Group (CNeRG)
CSE, IIT Kharagpur, India
http://cse.iitkgp.ac.in/resgrp/cnerg/



