
Suppression Distance Computation for Hierarchical

Clusterings

François Queyroi, Sergey Kirgizov

To cite this version:

François Queyroi, Sergey Kirgizov. Suppression Distance Computation for Hierarchical Clus-
terings. 2014. <hal-00996090v3>

HAL Id: hal-00996090

https://hal.archives-ouvertes.fr/hal-00996090v3

Submitted on 21 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00996090v3

Suppression Distance Computation for Hierarchical
Clusterings

François Queyroi∗, Sergey Kirgizov∗

Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005
CNRS, UMR 7606, LIP6, F-75005, Paris, France

Abstract

We discuss the computation of a distance between two hierarchical clusterings
of the same set. It is defined as the minimum number of elements that have
to be removed so the remaining clusterings are equal. The problem of distance
computing was extensively studied for partitions. We prove it can be solved in
polynomial time in the case of hierarchies as it gives birth to a class of perfect
graphs. We also propose an algorithm based on recursively computing maximum
assignments.

Keywords: hierarchical partition, clustering, distance, graphs, vertex cover

1. Introduction

Decomposing a set into patterns of interest is a central problem in data anal-
ysis. Evaluating the distance between decompositions is an important task in
this context as it allows to study the behaviour of clustering algorithms or study
the evolution of a set of patterns over time. The situation where the detected
patterns do not overlap is called partitions. Measures based on edit distance [3]
or on mutual information [6] can be used to assess the distance between those
objects. The first corresponds to the minimum number of elements that need to
be moved from one group to another for the two partitions to be equal (called
transfer distance in [7]). It was used for practical applications in bioinformat-
ics [10]. Similar definitions can also applied to different kind of decompositions
e.g. with overlapping groups (called set covers).

This work focuses on hierarchical clusterings (also called hierarchies) in
which each group can be recursively decomposed into smaller groups. The
problem of distance definition between hierarchies is of interest as they can

∗Corresponding author
Email addresses: francois.queyroi@parisgeo.cnrs.fr (François Queyroi),

sergey.kirgizov@u-bourgogne.fr (Sergey Kirgizov)

Preprint submitted to Information Processing Letters April 14, 2015

be used to represent and study a system (such as complex networks [8]) at dif-
ferent scales. Comparing hierarchical clusterings is related to the comparison
of phylogenetic trees [9] in biology although those objects have typically more
constraints than the decompositions studied here.

We investigate the problem of finding the minimum number of elements to
be removed so that the remaining hierarchical clusterings are equal or, equiv-
alently, the size of of smallest subset of elements for which the decompositions
“disagree”. After having define the core concepts (Section 2), we will provide
two alternative proofs of the main claim (Section 3 and 4). The first links the
problem to a class of perfect graphs (generalizing the results of [3]) since the
difference between hierarchies can be encoded into a graph (called the difference
graph) with specific characteristics. The second provides a polynomial algorithm
to compute the distance between hierarchical clusterings. Both approaches are
based on similar observations (Lemmas 2 and 3). Section 5 provides concluding
remarks and directions for future work.

2. Definitions

We assume we have a set S of elements of finite cardinality. A hierarchy
H = (H1, H2, . . . ,Hk) is a finite multiset of non-empty subsets of S such that if
there exist two groups H1, H2 ∈ H such that if H1∩H2 6= ∅ then either H1 ⊆ H2

or H2 ⊆ H1. The relation of inclusion between the sets defines a partial ordered
set. It can be represented in a forest fashion, the roots of each tree being the
sets that are not include in any other group.

Let Ni(H) denotes the i-th level of H i.e. the groups sitting at depth i in
this forest. Notice it is still well defined if H contains repeated groups. A level
Ni(H) is a partition since it does not contain overlapping sets. The depth of a
hierarchy d(H) is the maximum depth of its groups. We define as H[S′] the
sub-hierarchy induced by S′ ⊆ S as the non-empty sets of {S′ ∩Hi}1≤i≤k. It is
the hierarchical clustering of S′ obtained after the removal of every elements of
{S \ S′} in each group of H (discarding empty sets).

Definition 1. (Suppression Distance) Let H1 and H2 be two hierarchies of
S. The suppression distance ds is defined as

ds(H1,H2) = min
S′⊆S
{|S′| : H1[S \ S′] = H2[S \ S′]}

A set S′ such that H1[S \ S′] = H2[S \ S′] is called a suppression set.

Theorem 1. The function ds is a metric.

Proof. The non-negativity, identity and symmetry properties are straightfor-
ward for ds. Moreover, this distance respects the triangular inequality. Consider

2

three hierarchies H1,H2 and H3. Let Sij ⊆ S be a minimum suppression set
for (Hi,Hj). Since S12 ∪ S23 is also a suppression set for (H1,H3), we have:

|S13| ≤ |S12 ∪ S23| ≤ |S12|+ |S23|
ds(H1,H3) ≤ ds(H1,H2) + ds(H2,H3)

3. Existence of a polynomial-time solution

We give here a non-constructive proof for the existence of a polynomial time
algorithm. It generalizes the results of Gusfield [3] on the equivalence between
this problem and the minimum vertex cover problem on perfect graphs. The
difference between hierarchies can be encoded in a difference graph (Definition
2). Finding a suppression set for two hierarchies is equivalent to find a minimum
vertex cover in this graph (Theorem 2). Since, this graph is perfect [5] (Theorem
3), it exists a polynomial time algorithm to solve this problem.

Definition 2. (Difference Graph) Let H1 and H2 be two hierarchies of a set
S. We call G(H1,H2) = (S,E) the difference graph of (H1,H2) 1 with

E = {(s1, s2) ∈ S2 : |H1[{s1, s2}]| 6= |H2[{s1, s2}]|}

This graph can contain self-loops.

Two elements of S are connected iff they do not appear in the same number
of groups together in both hierarchies. An example of hierarchies and their
difference graph can be found in Figure 1.

abc def

ab c

ab c

H1

N1

N2

N3

a

b

c

d

e

f

G(H1,H2)

abcdef

ac b

a c b

H2

Figure 1: Example of two hierarchies H1,H2 of a set S = {a, b, c, d, e, f} and their differ-
ence graph G(H1,H2). The levels of H1 are N1(H1) = {{a, b, c}, {d, e, f}} and N2(H1) =
{{a, b}, {c}}. We have dS(H1,H2) = 3 with the suppression set S′ = {a, b, c}.

Lemma 1. Given G = (S,E) the difference graph of (H1,H2) and S′ ⊆ S, the
induced subgraph G[S′] is the difference graph of (H1[S′],H2[S′]).

1To simplify notations, G will sometimes be used instead of G(H1,H2).

3

Proof. Let G′ = G(H1[S′],H2[S′]). First, notice that V (G′) = V (G[S′]) by
definition. Second, we have E(G′) = E(G[S′]). Indeed, for i ∈ {1, 2}, the
number of groups where {s1, s2} ∈ S′2 appear together is equal in Hi and Hi[S

′]
by definition of induced hierarchy. Therefore, we have E(G′) = {(s1, s2) ∈
S′2, |H1[{s1, s2}]| 6= |H2[{s1, s2}]|} which is also equal to E(G[S′]) by definition
of induced subgraph.

Theorem 2. ds(H1,H2) is equal to the size of the minimum vertex cover of
G(H1,H2).

Proof. Let G = G(H1,H2). We show first that E(G) = ∅ ⇔ H1 = H2.

1. (H1 = H2)⇒ (E(G) = ∅) by definition of difference graph.

2. (E(G) = ∅)⇒ (H1 = H2)

(a) d(H1) = d(H2) = d since G contains no self-loops by hypothesis.
Every s ∈ S belongs to the same number of sets in both hierarchies
and d(H) = maxs∈S |H[{s}]|.

(b) G =
⋃d

i=1 G(Ni(H1), Ni(H2)) since all elements in S belong to at
most one group at a given level by definition of hierarchy. Indeed,
let (a, b) ∈ S2 such that |H1[{a, b}]| = i and |H2[{a, b}]| = j, if i < j
then both G(Ni+1(H1), Ni+1(H2)) and G contain the edge (a, b), if
i = j then neither any of the G(Ni(H1), Ni(H2)) nor G contain the
edge (a, b).

(c) H1 = H2 iff Ni(H1) = Ni(H2) for all i ∈ [1, d] since H =
⋃d

i=1 Ni(H)
and any H ∈ H only belongs to one level Ni(H) by definition of level.

(d) By contradiction, assuming E(G) = ∅ andH1 6= H2, it exists i ∈ [1, d]
such that Ni(H1) 6= Ni(H2). In this case, G(Ni(H1), Ni(H2)) should
contain at least one edge as the difference graph of two partitions
(Lemma 3.1 of [3]). This contradicts the hypothesis E(G) = ∅.

We show now that a minimum suppression set for (H1,H2) is also a minimum
vertex cover of G. Since (E(G) = ∅) ⇔ (H1 = H2) and according to Lemma
1, for S′ ⊆ S, we have H1[S′] = H2[S′] iff E(G[S′]) = ∅. The subset S \ S′ is
therefore a vertex cover of G by definition.

We assume for the rest of the paper that each element of S belongs to the
same number of sets in both hierarchies. Indeed, if it is not the case, the ele-
ments that appear in a different number of groups are part of every suppression
sets (equivalently, they will have self-loops and belong to every minimum vertex
covers of G). Those elements can be found in polynomial time. If G(H1,H2)
contains no self-loops then H1 and H2 have the same depth d.

We use now the edge function p : E(G) → N to encode the first level at
which (a, b) ∈ E belongs to a group of H1 but not H2 (or the opposite). We
denote by Gi the subgraph of G formed by the edges {e ∈ E, p(e) ≥ i}. Notice
we have G1 = G. In Fig. 1, p(e) = 1 for the thin edges and p(e) = 2 for the tick
edges. Observe that subsets of elements connected with edges of values 2 (e.g.

4

{a, b, c}) belongs to the same group at the first level of H1 and H2. Moreover,
those subsets are either disconnected or fully pairwise connected (for example,
{a, b, c} and d form a K3,1 when looking only at thin edges). Those observations
are generalized in Lemmas 2 and 3.

Lemma 2. Let S′ ⊆ S and i > 1, if Gi[S
′] is connected then, at a given lower

level j < i, it exists two unique groups H1 ∈ Nj(H1) and H2 ∈ Nj(H2) such
that S′ ⊆ H1 and S′ ⊆ H2

Proof. Assume Gi[S
′] is a connected subgraph but it exists two non-overlapping

subsets A and B of S′ with (A∪B) = S′ such that A and B either (1) belong to
the same group in Nj(H1) but not in Nj(H2) (2) do not belong to same group in
Nj(H1) and Nj(H2). By definition of hierarchy, A and B can be split at most
one time. Therefore both cases are impossible otherwise the edges between
(A,B) would (1) have a value of j (2) have a value lower than j or form an
empty set (j = 0). This contradicts our hypothesis since we assume A ∪B is a
connected component of Gi.

Lemma 3. Let S′ ⊆ S and i > 0 such that Gi[S
′] is connected, if there exist

u 6∈ S′ and v ∈ S′ such that (u, v) ∈ E and p(u, v) = j < i then ∀w ∈ S′, we
have (u,w) ∈ E with p(u,w) = j.

Proof. According to Lemma 2, the elements in S′ belong to the same groups of
depth lower than i in both hierarchies. If it exists u 6∈ S′ such that (u, v) ∈ E
and p(u, v) = j < i then there is a group at depth j in H1 (or H2) that contains
(u ∪ S′) and a group at depth j in H2 (or H1) that contains S′ but not u.

Theorem 3. Let H1,H1 be two hierarchies of finite depth of a set S, computing
ds(H1,H1) can be done in polynomial time.

Proof. First, the difference graph G can be computed in polynomial time.
Let Ψd(S) = {(H1,H2) : d(H1) = d(H2) = d ∧ ∀s ∈ S, |H1[{s}]| = |H2[{s}]|},
the pairs of hierarchies of depth d where each element appears in the same
number of groups. We show that, for any S, the difference graph G of any pair
in Ψd(S) is a perfect graph by induction over d.

1. Basis. For d = 1, Ψ1(S) corresponds to pairs of partitions and the graph
G is therefore perfect (Theorem 3.4 of [3]).

2. Inductive step. Assuming it is true for d we show it is also true for d + 1.
Let (H1,H2) ∈ Ψd+1(S) and G = G(H1,H2). We denote by G̃ the graph
obtained by contraction of the edges of G2 (i.e. with p(e) ≥ 2) in G.
The vertices set of G̃ is S̃. According to Lemma 2, elements within the
same connected components of G2 belong to the same group in the first
level. Thus, G̃ = G(P̃1, P̃2) where (P̃1, P̃2) ∈ Ψ1(S̃) are obtained via the
fusion of each maximal connected components of G2 into a new element

5

in the partitions (N1(H1), N1(H2)) ∈ Ψ1(S)2. Therefore, G̃ is perfect as
the difference graph of a pair of Ψ1(S̃).

According to Lemma 3, the graph G can be recovered from G̃ by deleting
each u ∈ S̃ and replacing them by their corresponding connected compo-
nent S′ of G2, connecting each v ∈ S′ to the vertices previously adjacent
to u in G̃ (the operation is called substitution of u by S′). Note that G̃ is
perfect and every connected subgraphs of G2 is perfect as the difference
graph of pairs in Ψd(S′) (by hypothesis). Therefore, G is also perfect
since it can be obtained after substituting perfects graphs for vertices of
a perfect graph (Theorem 1 of [5], p. 255).

By Theorem 2, the distance ds(H1,H1) is equal to the size of the minimum
vertex cover of G. In our case, G is perfect, so the minimum vertex cover can
be computed in polynomial time.

4. An Algorithm based on recursive maximum assignment

The minimum vertex cover problem can be solved in polynomial time for
perfect graphs using the generic ellipsoid method [2]. This method is however
not very practical. We therefore propose a combinatorial algorithm for comput-
ing the suppression distance based on observations made in the previous section
(Lemma 3). We prove its correctness (Theorem 4) using the fact that a mini-
mum vertex cover G2 (see previous section) is a subset of the minimum vertex
cover of G (Lemma 4).

We start by discussing the case of partitions (P1,P2). The distance ds(P1,P2)
can be computed by solving a maximum assignment problem based on the size
of intersections between all pairs of groups in P1 and P2 using the Hungarian
algorithm [4]. The resulting complexity is O((|P1|+ |P2|)3 + |S|).

As explained in the proof of Theorem 2, two hierarchies are equal iff the
pairs {(Ni(H1), Ni(H2))}1≤i≤d are all pairwise equals. However, finding a sup-
pression set S′ using a greedy “level-by-level” approach (either top-down or
bottom-up) may not lead to an optimal solution. Consider the example given in
Fig. 1 where ds(H1,H2) = 3, a top-down approach may fail since either {a, b, c}
or {d, e, f} can be chosen at level 1 to be part of S′. But choosing {d, e, f} would
lead to a distance of 4. Alternatively, consider the sub-hierarchies induced by
the set {a, b, c}, a bottom-top approach may also fail since either a or b can
belong to S′ at the last level. Choosing b would lead to a distance of 2 whereas
ds(H1[{a, b, c}],H2[{a, b, c}]) = 1.

2In Fig. 1, the maximal connected component {a, b, c} of G2 is associated to a new element
abc. G̃ is a star whose vertices are S̃ = {abc, d, e, f} with center abc (the fusion of {a, b, c}).
The corresponding flat partitions are P̃1 = {{abc}, {d, e, f}} and P̃2 = {{abc, d, e, f}}

6

Algorithm 1: MSS(H1,H2)

Input: H1,H2 two hierarchies of a set S
Output: S′ ⊆ S a minimum suppression set

1 if H1 = H2 = ∅ then
2 return ∅
3 end
4 S′ ← ∅
5 for C ∈ {C1 ∩ C2 : C1 ∈ N1(H1), C2 ∈ N1(H2)} do
6 S′ ← S′ ∪MSS(H1[C]− C,H2[C]− C)
7 end
8 return S′ ∪ flatMSS(N1(H1[S \ S′]), N1(H2[S \ S′]))

Algorithm 1 can be used to compute a minimum suppression set (MSS) for
two hierarchies. It recursively computes a suppression set for two sub-hierarchies
whose elements belong to the same groups at the current level. The set
{C1 ∩ C2 : C1 ∈ P1, C2 ∈ P2} contains the maximal subsets of S that are in
the same group in both partitions P1 and P2. The function flatMSS (P1,P2)
returns a minimum suppression set for partitions (P1,P2). The intuition behind
Algorithm 1, is that if the set S′ constructed at line 6 is a minimum suppression
set for the sub-hierarchies then it is a subset of an optimal solution for (H1,H2)
(Lemma 4). Theorem 4 shows it is actually the case.

Lemma 4. Let G = (S,E) be the difference graph of two hierarchies of S, any
minimum vertex cover of Gi is a subset of a minimum vertex cover of Gi−1.

Proof. Let C be a minimum vertex cover of Gi, S′ be a maximal connected
component of Gi. The set C ′ = (S′∩C) is a minimum vertex cover of Gi−1[S′].
According to Lemma 3, the edge cut (S′, S′′) forms a complete bipartite graph
where S′′ is the set of vertices in (S \S′) connected to S′. The minimum vertex
cover of Gi−1 should contain either all S′ or all (S′′ ∪ C ′). Therefore, C ′ is a
subset of the cover in both cases. Since it is true for the minimum cover of every
maximal connected components of Gi, the set C is a subset a minimum vertex
cover of Gi−1.

Theorem 4. For two hierarchies H1,H2 of a set S, MSS(H1,H2) is a minimum
suppression set for (H1,H2).

Proof. Termination: The hierarchies are of finite depth d and the recursive call
is used on two sub-hierarchies of depth d − 1 (the “root” group is removed in
both hierarchies in line 6). The condition in line 1 is always met since we assume
elements of S appears the same number of sets in both hierarchies.

Correctness: Non-empty sets of {C1 ∩ C2 : C1 ∈ N1(H1), C2 ∈ N1(H2)}
correspond to either independent or maximal connected components of G2.
Assume that at the end of the loop 5–7, the set S′ is the union of the elements
to be removed so that those sub-hierarchies are equal. According to Lemma 4, S′

7

is a subset of a minimum suppression set between (H1,H2). A possible solution
is therefore the union of S′ and a suppression set of H1[S \ S′] and H2[S \ S′].
The latter can be found only looking at the first level of both hierarchies. We
can show the assumption on S′ to be true by induction since the Algorithm will
return a minimum suppression set if (H1,H2) are partitions.

We briefly discuss the complexity of Algorithm 1 in terms of |S| and the
size of the hierarchies |H2| and |H2|. The groups intersections (line 5) can be
computed in O(|S| + |N1(H1)||N1(H2)|) using an appropriate data structure.
There are at most |N1(H1)||N1(H2)| non-empty intersections.
Let Cj be the subsets of S for which the algorithm is used at depth j, it is
the union of all intersections computed at depth j − 1 during the algorithm
execution (when j > 1). For C ∈ Cj , the number of required operations is
O((|Nj(H1[C])|+ |Nj(H2[C])|)3 + |C|) due to the computation of flatMSS (line
8). For i ∈ {1, 2}, ∑

C∈Cj

|Nj(Hi[C])| ≤ |Nj(H1)||Nj(H2)|

since, for j > 1, each group in Nj(H1) (resp. Nj(H2)) can intersect with at
most |Nj−1(H2)| (resp. |Nj−1(H1)|) groups. Therefore, we have

d∑
j=1

∑
C∈Cj

(|Nj(H1[C])|+ |Nj(H2[C])|)3 ≤
d∑

j=1

8|Nj(H1)|3|Nj(H2)|3

≤ 8|H1|3|H2|3

where d = d(H1) = d(H2). Moreover, for j ∈ [1, d],
∑

C∈Cj |C| ≤ |S|. The time

complexity of Algorithm 1 is therefore O(|H1|3|H2|3 + d|S|).

5. Conclusion and Future Work

We introduced a generalisation of suppression distance, defined for parti-
tions, to hierarchical clusterings. Algorithm 1 is polynomial in term of hierar-
chies sizes and the number of elements being clustered. Although the number
of groups seems to be a limitation, we believe this method is efficient in practice
since it recursively removes partial solutions from the hierarchies (which is not
taken into account in the complexity analysis).

Hierarchies are a subclass of set covers i.e. a collections of (overlapping)
subsets of S. The same definition of distance can be used. In this case, find-
ing a minimum suppression set is equivalent to the maximum common sub-
hypergraph problem, which is NP-hard [1]. The same vertex cover technique
could not be directly applied to the most general set covers. However, it might
be potentially useful for other similar structures with nested objects like hier-
archies.

8

The suppression distance is a simplistic form of edit distance (minimum
number of element transfers from one group to another). Both concepts are
equivalent for partitions but it is not the case for hierarchical clusterings since
the transfer of an element from a group can violate the inclusion constraint.
The suppression distance can however be seen as a lower bound in this case.
We want to investigate possible definitions of edit distances for hierarchies (e.g.
with transfers that respect the hierarchy constraints) and their computation
based on the results presented in this paper.

References

[1] Bunke, H., Dickinson, P., Kraetzl, M., Neuhaus, M., Stettler, M., 2008.
Matching of hypergraphs—algorithms, applications, and experiments. In:
Applied Pattern Recognition. Springer, pp. 131–154.

[2] Grötschel, M., Lovász, L., Schrijver, A., 1993. Stable sets in graphs. In:
Geometric Algorithms and Combinatorial Optimization. Springer, pp. 272–
303.

[3] Gusfield, D., 2002. Partition-distance: A problem and class of perfect
graphs arising in clustering. Information Processing Letters 82 (3), 159–
164.

[4] Kuhn, H. W., 1955. The hungarian method for the assignment problem.
Naval research logistics quarterly 2 (1-2), 83–97.

[5] Lovász, L., 1972. Normal hypergraphs and the perfect graph conjecture.
Discrete Mathematics 2 (3), 253–267.

[6] Meilă, M., 2003. Comparing clusterings by the variation of information. In:
Learning theory and kernel machines. Springer, pp. 173–187.

[7] Porumbel, D. C., Hao, J. K., Kuntz, P., 2011. An efficient algorithm for
computing the distance between close partitions. Discrete Applied Mathe-
matics 159 (1), 53–59.

[8] Queyroi, F., Delest, M., Fédou, J.-M., Melançon, G., 2014. Assessing the
quality of multilevel graph clustering. Data Mining and Knowledge Discov-
ery 28 (4), 1107–1128.

[9] Robinson, D., Foulds, L. R., 1981. Comparison of phylogenetic trees. Math-
ematical Biosciences 53 (1), 131–147.

[10] Sheikh, S. I., Berger-Wolf, T. Y., Khokhar, A. A., Caballero, I. C., Ashley,
M. V., Chaovalitwongse, W., Chou, C.-A., DasGupta, B., 2010. Combina-
torial reconstruction of half-sibling groups from microsatellite data. Journal
of bioinformatics and computational biology 8 (02), 337–356.

9

	Introduction
	Definitions
	Existence of a polynomial-time solution
	An Algorithm based on recursive maximum assignment
	Conclusion and Future Work

