# Network analysis with the stochastic block model (using variational approximations)

S. Robin

INRA / AgroParisTech







LIP6, February 2015, Paris

### Outline

- State-space models for networks (inc. SBM)
- Variational inference (inc. SBM)
- Extensions of SBM
- (Variational) Bayesian model averaging
- Towards W-graphs
- Goodness-of-fit using network motif

# Heterogeneity in interaction networks

### Understanding network structure

Networks describe interactions between entities.

Observed networks display heterogeneous topologies, that one would like to decipher and better understand.

# Understanding network structure

Networks describe interactions between entities.

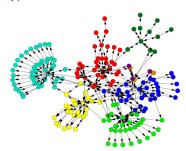
Observed networks display heterogeneous topologies, that one would like to decipher and better understand.

#### Dolphine social network.



[Newman and Girvan (2004)]

#### Hyperlink network.



# Modeling network heterogeneity

Latent variable models allow to capture the underlying structure of a network (see review [Matias and R. (2014)]).

# Modeling network heterogeneity

Latent variable models allow to capture the underlying structure of a network (see review [Matias and R. (2014)]).

General setting for binary graphs. [Bollobás et al. (2007)]:

• A latent (unobserved) variable  $Z_i$  is associated with each node:

$$\{Z_i\}$$
 iid  $\sim \pi$ 

• Edges  $Y_{ij} = \mathbb{I}\{i \sim j\}$  are independent conditionally to the  $Z_i$ 's:

$$\{Y_{ij}\}$$
 independent  $|\{Z_i\}: \Pr\{Y_{ij}=1\} = \gamma(Z_i,Z_j)$ 

# Modeling network heterogeneity

Latent variable models allow to capture the underlying structure of a network (see review [Matias and R. (2014)]).

#### General setting for binary graphs. [Bollobás et al. (2007)]:

• A latent (unobserved) variable  $Z_i$  is associated with each node:

$$\{Z_i\}$$
 iid  $\sim \pi$ 

• Edges  $Y_{ij} = \mathbb{I}\{i \sim j\}$  are independent conditionally to the  $Z_i$ 's:

$$\{Y_{ij}\}$$
 independent  $|\{Z_i\}: \Pr\{Y_{ij}=1\} = \gamma(Z_i,Z_j)$ 

We focus here on model approaches, in contrast with, e.g.

- Graph clustering [Girvan and Newman (2002)], [Newman (2004)];
- Spectral clustering [von Luxburg et al. (2008)].

State-space model: principle.

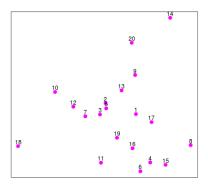
#### State-space model: principle.

• Consider n nodes (i = 1..n);

#### State-space model: principle.

- Consider n nodes (i = 1..n);
- Z<sub>i</sub> = unobserved position of no e.g.

$$\{Z_i\}$$
 iid  $\sim \mathcal{N}(0, I)$ 



#### State-space model: principle.

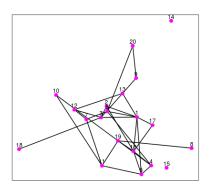
- Consider n nodes (i = 1..n);
- $Z_i$  = unobserved position of no e.g.

$$\{Z_i\}$$
 iid  $\sim \mathcal{N}(0, I)$ 

• Edge  $\{Y_{ij}\}$  independent given  $\{$ e.g.

$$\Pr\{Y_{ij}=1\}=\gamma(Z_i,Z_j)$$

$$\gamma(z, z') = f(||z, z'||).$$



#### State-space model: principle.

- Consider n nodes (i = 1..n);
- Z<sub>i</sub> = unobserved position of node i, e.g.

$$\{Z_i\}$$
 iid  $\sim \mathcal{N}(0,I)$ 

• Edge  $\{Y_{ij}\}$  independent given  $\{Z_i\}$ , e.g.

$$\Pr\{Y_{ij}=1\}=\gamma(Z_i,Z_j)$$

$$\gamma(z,z')=f(||z,z'||).$$

$$Y = \left(\begin{array}{ccccccc} 0 & 1 & 1 & 0 & 1 & \dots \\ 0 & 0 & 1 & 0 & 1 & \dots \\ 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 1 & \dots \\ 0 & 0 & 0 & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{array}\right)$$

# A variety of state-space models

#### Continuous. Latent position models.

• [Hoff et al. (2002)]:

$$Z_i \in \mathbb{R}^d$$
,  $\log it[\gamma(z, z')] = a - |z - z'|$ 

• [Handcock et al. (2007)]:

$$Z_i \sim \sum_k p_k \mathcal{N}_d(\mu_k, \sigma_k^2 I)$$

• [Lovász and Szegedy (2006)]:

$$Z_i \sim \mathcal{U}_{[0,1]}, \qquad \gamma(z,z'): [0,1]^2 \rightarrow [0,1] =: \text{graphon function}$$

• [Daudin et al. (2010)]:

$$Z_i \in \mathcal{S}_K, \qquad \gamma(z, z') = \sum_{k \ \ell} z_k z'_\ell \gamma_{k\ell}$$

A mixture model for random graphs.

[Nowicki and Snijders (2001)]

A mixture model for random graphs.

[Nowicki and Snijders (2001)]

• Consider n nodes (i = 1..n);



















#### A mixture model for random graphs.

[Nowicki and Snijders (2001)]

- Consider n nodes (i = 1..n);
- $Z_i$  = unobserved label of node i:

$$\{Z_i\}$$
 iid  $\sim \mathcal{M}(1;\pi)$ 

$$\pi = (\pi_1, ... \pi_K);$$



















#### A mixture model for random graphs.

[Nowicki and Snijders (2001)]

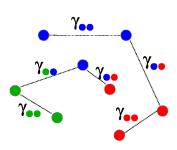
- Consider n nodes (i = 1..n);
- $Z_i$  = unobserved label of node i:

$$\{Z_i\}$$
 iid  $\sim \mathcal{M}(1;\pi)$ 

$$\pi = (\pi_1, ... \pi_K);$$

• Edge  $Y_{ij}$  depends on the labels:  $\{Y_{ij}\}$  independent given  $\{Z_i\}$ ,

$$\Pr\{Y_{ii}=1\} = \gamma(Z_i, Z_i)$$



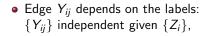
#### A mixture model for random graphs.

[Nowicki and Snijders (2001)]

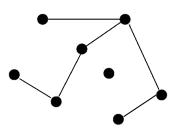
- Consider n nodes (i = 1..n);
- $Z_i$  = unobserved label of node i:

$$\{Z_i\}$$
 iid  $\sim \mathcal{M}(1;\pi)$ 

$$\pi = (\pi_1, ... \pi_K);$$



$$\Pr\{Y_{ii}=1\} = \gamma(Z_i, Z_i)$$



### Variational inference

### Incomplete data models

Aim. Based on the observed network  $Y = (Y_{ij})$ , we want to infer

• the parameters

$$\theta = (\pi, \gamma)$$

the hidden states

$$Z=(Z_i)$$

# Incomplete data models

Aim. Based on the observed network  $Y = (Y_{ij})$ , we want to infer

the parameters

$$\theta = (\pi, \gamma)$$

the hidden states

$$Z=(Z_i)$$

State space models belong to the class of incomplete data models as

- the edges  $(Y_{ii})$  are observed,
- the latent positions (or status)  $(Z_i)$  are not.
- → usual issue in unsupervised classification.

Likelihood. The (log-)likelihood

$$\log P(Y;\theta) = \log \sum_{Z} P(Y,Z;\theta)$$

can not be computed.

Likelihood. The (log-)likelihood

$$\log P(Y;\theta) = \log \sum_{Z} P(Y,Z;\theta)$$

can not be computed.

EM trick. But it can be decomposed as

$$\log P(Y; \theta) = \log P(Y, Z; \theta) - \log P(Z|Y; \theta),$$

Likelihood. The (log-)likelihood

$$\log P(Y;\theta) = \log \sum_{Z} P(Y,Z;\theta)$$

can not be computed.

EM trick. But it can be decomposed as

$$\log P(Y; \theta) = \log P(Y, Z; \theta) - \log P(Z|Y; \theta),$$

the conditional expectation of which gives

$$\mathbb{E}[\log P(Y;\theta)|Y] = \mathbb{E}[\log P(Y,Z;\theta)|Y] - \mathbb{E}[\log P(Z|Y;\theta)|Y]$$

Likelihood. The (log-)likelihood

$$\log P(Y;\theta) = \log \sum_{Z} P(Y,Z;\theta)$$

can not be computed.

EM trick. But it can be decomposed as

$$\log P(Y; \theta) = \log P(Y, Z; \theta) - \log P(Z|Y; \theta),$$

the conditional expectation of which gives

$$\mathbb{E}[\log P(Y;\theta)|Y] = \mathbb{E}[\log P(Y,Z;\theta)|Y] - \mathbb{E}[\log P(Z|Y;\theta)|Y]$$
$$\log P(Y;\theta) = \mathbb{E}[\log P(Y,Z;\theta)|Y] + \mathcal{H}[P(Z|Y;\theta)]$$

where  $\mathcal{H}$  stands for the entropy.

Aims at maximizing the log-likelihood

$$\log P(Y;\theta)$$

through the alternation of two steps [Dempster et al. (1977)]

Aims at maximizing the log-likelihood

$$\log P(Y;\theta)$$

through the alternation of two steps [Dempster et al. (1977)]

M-step: maximize  $\mathbb{E}[\log P(Y, Z; \theta)|Y]$  with respect to  $\theta$   $\rightarrow$  generally similar to standard MLE.

Aims at maximizing the log-likelihood

$$\log P(Y;\theta)$$

through the alternation of two steps [Dempster et al. (1977)]

M-step: maximize  $\mathbb{E}[\log P(Y, Z; \theta)|Y]$  with respect to  $\theta \rightarrow$  generally similar to standard MLE.

E-step: calculate P(Z|Y) (at least, some moments)

Aims at maximizing the log-likelihood

$$\log P(Y;\theta)$$

through the alternation of two steps [Dempster et al. (1977)]

M-step: maximize  $\mathbb{E}[\log P(Y, Z; \theta)|Y]$  with respect to  $\theta$ 

 $\rightarrow$  generally similar to standard MLE.

E-step: calculate P(Z|Y) (at least, some moments)

 $\rightarrow$  sometimes straightforward (independent mixture models: Bayes formula)

Aims at maximizing the log-likelihood

$$\log P(Y;\theta)$$

through the alternation of two steps [Dempster et al. (1977)]

- M-step: maximize  $\mathbb{E}[\log P(Y, Z; \theta)|Y]$  with respect to  $\theta$
- $\rightarrow$  generally similar to standard MLE.

E-step: calculate P(Z|Y) (at least, some moments)

- → sometimes straightforward (independent mixture models: Bayes formula)
- → sometimes tricky but doable (HMMs: forward-backward recursion)

Aims at maximizing the log-likelihood

$$\log P(Y;\theta)$$

through the alternation of two steps [Dempster et al. (1977)]

- M-step: maximize  $\mathbb{E}[\log P(Y, Z; \theta)|Y]$  with respect to  $\theta$
- $\rightarrow$  generally similar to standard MLE.

E-step: calculate P(Z|Y) (at least, some moments)

- → sometimes straightforward (independent mixture models: Bayes formula)
- → sometimes tricky but doable (HMMs: forward-backward recursion)
- → sometimes impossible (SBM: ...)

EM works provided that we can calculate

$$P(Z|Y;\theta)$$

EM works provided that we can calculate

$$P(Z|Y;\theta)$$

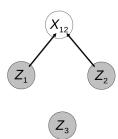




 $Z_3$ 

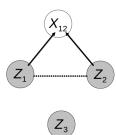
EM works provided that we can calculate

$$P(Z|Y;\theta)$$



EM works provided that we can calculate

$$P(Z|Y;\theta)$$

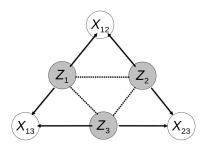


## Conditional distribution of Z

EM works provided that we can calculate

$$P(Z|Y;\theta)$$

but we can not for state space models for graph.



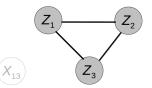
## Conditional distribution of Z



EM works provided that we can calculate

$$P(Z|Y;\theta)$$

but we can not for state space models for graph.





Conditional distribution. The dependency graph of Z given Y is a clique.

- → No factorization can be hoped (unlike for HMM).
- $\rightarrow P(Z|Y;\theta)$  can not be computed (efficiently).
- → Variational techniques may help as they provide

$$Q(Z) \simeq P(Z|Y).$$

Lower bound of the log-likelihood. For any distribution Q(Z) [Jaakkola (2000), Wainwright and Jordan (2008)],

$$\log P(Y) \geq \log P(Y) - KL[Q(Z), P(Z|Y)]$$

Lower bound of the log-likelihood. For any distribution Q(Z) [Jaakkola (2000), Wainwright and Jordan (2008)],

$$\log P(Y) \geq \log P(Y) - KL[Q(Z), P(Z|Y)]$$

$$= \int Q(Z) \log P(Y, Z) dZ - \int Q(Z) \log Q(Z) dZ$$

Lower bound of the log-likelihood. For any distribution Q(Z) [Jaakkola (2000), Wainwright and Jordan (2008)],

$$\log P(Y) \geq \log P(Y) - KL[Q(Z), P(Z|Y)]$$

$$= \int Q(Z) \log P(Y, Z) dZ - \int Q(Z) \log Q(Z) dZ$$

$$= \mathbb{E}_{Q}[\log P(Y, Z)] + \mathcal{H}[Q(Z)]$$

Lower bound of the log-likelihood. For any distribution Q(Z) [Jaakkola (2000), Wainwright and Jordan (2008)],

$$\begin{aligned} \log P(Y) & \geq & \log P(Y) - \mathit{KL}[Q(Z), P(Z|Y)] \\ & = & \int Q(Z) \log P(Y, Z) \, \mathrm{d}Z - \int Q(Z) \log Q(Z) \, \mathrm{d}Z \\ & = & \mathbb{E}_Q[\log P(Y, Z)] + \mathcal{H}[Q(Z)] \end{aligned}$$

Link with EM. This is similar to

$$\log P(Y) = \mathbb{E}[\log P(Y, Z)|Y] + \mathcal{H}[P(Z|Y)]$$

replacing P(Z|Y) with Q(Z).

## Variational EM algorithm

#### Variational EM.

• M-step: compute

$$\widehat{\theta} = \arg\max_{\theta} \mathbb{E}_{Q^*}[\log P(Y, Z; \theta)].$$

## Variational EM algorithm

#### Variational EM.

• M-step: compute

$$\widehat{\theta} = \arg\max_{\theta} \mathbb{E}_{Q^*}[\log P(Y, Z; \theta)].$$

• E-step: replace the calculation of P(Z|Y) with the search of

$$Q^*(Z) = \arg\min_{Q \in \mathcal{Q}} \mathit{KL}[Q(Z), P(Z|Y)].$$

## Variational EM algorithm

#### Variational EM.

• M-step: compute

$$\widehat{\theta} = \arg\max_{\theta} \mathbb{E}_{Q^*}[\log P(Y, Z; \theta)].$$

• E-step: replace the calculation of P(Z|Y) with the search of

$$Q^*(Z) = \arg\min_{Q \in \mathcal{Q}} \mathit{KL}[Q(Z), P(Z|Y)].$$

- $\rightarrow$  Taking  $\mathcal{Q} = \{\text{all possible distributions}\}\ \text{gives}\ \mathcal{Q}^*(Z) = P(Z|Y)$  ... like EM does.
- ightarrow Variational approximations rely on the choice a set  $\mathcal Q$  of 'good' and 'tractable' ditributions.

## Variational EM for SBM [Daudin et al. (2008)]

Distribution class. Q = set of factorisable distributions:

$$Q = \{Q : Q(Z) = \prod_i Q_i(Z_i)\}, \qquad \qquad Q_i(Z_i) = \prod_k \tau_{ik}^{Z_{ik}}.$$

 $\rightarrow$  The approximate joint distribution is  $Q(Z_i, Z_i) = Q_i(Z_i)Q_i(Z_i)$ .

## Variational EM for SBM [Daudin et al. (2008)]

Distribution class. Q = set of factorisable distributions:

$$Q = \{Q : Q(Z) = \prod_i Q_i(Z_i)\}, \qquad Q_i(Z_i) = \prod_k \tau_{ik}^{Z_{ik}}.$$

 $\rightarrow$  The approximate joint distribution is  $Q(Z_i, Z_i) = Q_i(Z_i)Q_i(Z_i)$ .

The optimal approximation within this class satisfies a fix-point relation:

$$au_{ik} \propto \pi_k \prod_{j 
eq i} \prod_\ell f_{k\ell} (Y_{ij})^{ au_{j\ell}}$$

also known as mean-field approximation in physics [Parisi (1988)].

## Variational EM for SBM [Daudin et al. (2008)]

Distribution class. Q = set of factorisable distributions:

$$Q = \{Q : Q(Z) = \prod_i Q_i(Z_i)\}, \qquad \qquad Q_i(Z_i) = \prod_k \tau_{ik}^{Z_{ik}}.$$

 $\rightarrow$  The approximate joint distribution is  $Q(Z_i, Z_i) = Q_i(Z_i)Q_i(Z_i)$ .

The optimal approximation within this class satisfies a fix-point relation:

$$au_{ik} \propto \pi_k \prod_{j 
eq i} \prod_\ell f_{k\ell} (Y_{ij})^{ au_{j\ell}}$$

also known as mean-field approximation in physics [Parisi (1988)].

#### Variational estimates.

- No general statistical guaranty for variational estimates.
- SBM is a very specific case for which the variational approximation is asymptotically exact [Celisse et al. (2012), Mariadassou and Matias (2015)].

Bayesian perspective.

$$\theta = (\pi, \gamma)$$
 is random.

Model:

### Bayesian perspective.

$$\theta = (\pi, \gamma)$$
 is random.





#### Model:

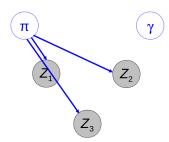
P(θ)

# Bayesian perspective.

 $\theta = (\pi, \gamma)$  is random.

#### Model:

- P(θ)
- $P(Z|\pi)$

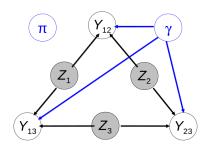


### Bayesian perspective.

$$\theta = (\pi, \gamma)$$
 is random.

#### Model:

- P(θ)
- $P(Z|\pi)$
- $P(Y|\gamma, Z)$

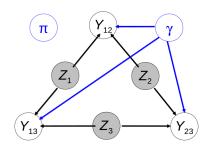


#### Bayesian perspective.

 $\theta = (\pi, \gamma)$  is random.

#### Model:

- P(θ)
- $P(Z|\pi)$
- $P(Y|\gamma, Z)$



Bayesian inference. The aim is then to get the joint conditional distribution of the parameters and of the hidden variables:

$$P(\theta, Z|Y)$$
.

## Variational Bayes algorithm

Variational Bayes. As  $P(\theta, Z|Y)$  is intractable, one look formula

$$Q^*(\theta, Z) = \arg\min_{Q \in \mathcal{Q}} \mathit{KL}\left[Q(\theta, Z) || P(\theta, Z | Y)\right]$$

taking, e.g., 
$$Q = \{Q(\theta, Z) = Q_{\theta}(\theta)Q_{Z}(Z)\}$$

## Variational Bayes algorithm

Variational Bayes. As  $P(\theta, Z|Y)$  is intractable, one look formula

$$Q^*(\theta, Z) = \arg\min_{Q \in \mathcal{Q}} \mathit{KL}\left[Q(\theta, Z) || P(\theta, Z | Y)\right]$$

taking, e.g., 
$$Q = \{Q(\theta, Z) = Q_{\theta}(\theta)Q_{Z}(Z)\}$$

#### Variational Bayes EM (VBEM). When

- $P(Z, Y|\theta)$  belongs to the exponential family,
- $P(\theta)$  is the corresponding conjugate prior,

 $Q^*$  can be obtained iteratively as [Beal and Ghahramani (2003)]

$$\log Q^h_{\theta}(\theta) \propto \mathbb{E}_{Q^{h-1}_{Z}}\left[\log P(Z,Y,\theta)\right], \quad \log Q^h_{Z}(Z) \propto \mathbb{E}_{Q^h_{\theta}}\left[\log P(Z,Y,\theta)\right].$$

## Variational Bayes algorithm

Variational Bayes. As  $P(\theta, Z|Y)$  is intractable, one look formula

$$Q^*(\theta, Z) = \arg\min_{Q \in \mathcal{Q}} \mathit{KL}\left[Q(\theta, Z) || P(\theta, Z | Y)\right]$$

taking, e.g., 
$$Q = \{Q(\theta, Z) = Q_{\theta}(\theta)Q_{Z}(Z)\}$$

#### Variational Bayes EM (VBEM). When

- $P(Z, Y|\theta)$  belongs to the exponential family,
- $P(\theta)$  is the corresponding conjugate prior,

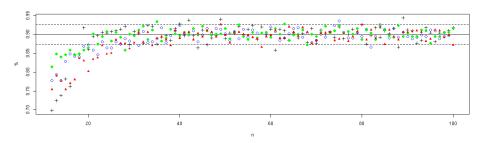
 $Q^*$  can be obtained iteratively as [Beal and Ghahramani (2003)]

$$\log Q^h_{\theta}(\theta) \propto \mathbb{E}_{Q^{h-1}_{Z}}\left[\log P(Z,Y,\theta)\right], \quad \log Q^h_{Z}(Z) \propto \mathbb{E}_{Q^h_{\theta}}\left[\log P(Z,Y,\theta)\right].$$

Application to SBM: [Latouche et al. (2012)]

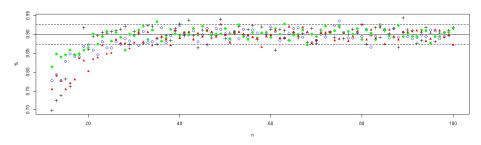
## VBEM: Simulation study [Gazal et al. (2012)]

Credibility intervals:  $\pi_1$ : +,  $\gamma_{11}$ :  $\triangle$ ,  $\gamma_{12}$ :  $\circ$ ,  $\gamma_{22}$ : •

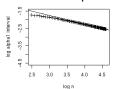


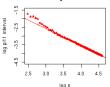
## VBEM: Simulation study [Gazal et al. (2012)]

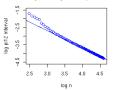
### Credibility intervals: $\pi_1$ : +, $\gamma_{11}$ : $\triangle$ , $\gamma_{12}$ : $\circ$ , $\gamma_{22}$ : •

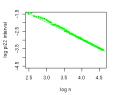


## Width of the posterior credibility intervals. $\pi_1$ , $\gamma_{11}$ , $\gamma_{12}$ , $\gamma_{22}$

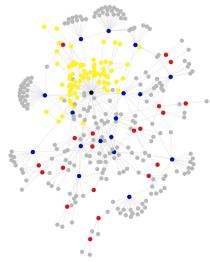






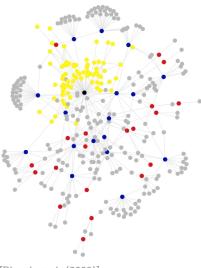


# SBM analysis of *E. coli* operon networks

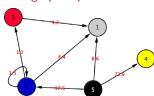


[Picard et al. (2009)]

# SBM analysis of *E. coli* operon networks

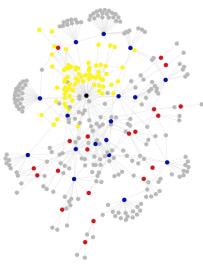


### Meta-graph representation.



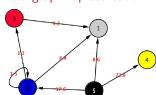
[Picard et al. (2009)]

## SBM analysis of *E. coli* operon networks

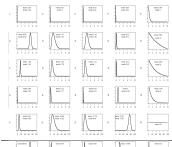


[Picard et al. (2009)]

#### Meta-graph representation.



#### Parameter estimates. K = 5



## Some extensions of SBM

## GLM framework [Mariadassou et al. (2010)]

SBM can be combined with generalized linear models (GLM) to deal with both valued graphs and covariates.

## GLM framework [Mariadassou et al. (2010)]

SBM can be combined with generalized linear models (GLM) to deal with both valued graphs and covariates.

Valued graphs. Simply adapt the emission distribution:

$$(Y_{ij} \mid Z_i = k, Z_j = \ell) \sim F_{k\ell}(\cdot) := F(\cdot; \gamma_{k\ell})$$

where F = some (parametric) distribution: Bernoulli (regular SBM), Poisson, Gaussian, etc.

## GLM framework [Mariadassou et al. (2010)]

SBM can be combined with generalized linear models (GLM) to deal with both valued graphs and covariates.

Valued graphs. Simply adapt the emission distribution:

$$(Y_{ij} \mid Z_i = k, Z_j = \ell) \sim F_{k\ell}(\cdot) := F(\cdot; \gamma_{k\ell})$$

where F = some (parametric) distribution: Bernoulli (regular SBM), Poisson, Gaussian, etc.

Covariates. In the context of exponential family, covariates x can be accounted for via a regression term

$$g(\mathbb{E}Y_{ij} \mid Z_i = k, Z_j = \ell) = \gamma_{k\ell} + x_{ij}\beta$$

where

- g stands for the link function (logit, log, identity, etc.);
- $\beta$  may depend or not on the groups  $(\beta \to \beta_{k\ell})$ .

Data: n = 51 tree species,  $X_{ij}$  = number of shared parasites [Vacher et al. (2008)].

Data: n = 51 tree species,  $X_{ij} =$  number of shared parasites [Vacher *et al.* (2008)].

#### Model:

$$X_{ij} \sim \mathcal{P}(e^{\gamma_{k\ell}}),$$

 $\gamma_{k\ell} = {
m log-mean}$  number of shared parasites.

Data: n = 51 tree species,  $X_{ij} =$  number of shared parasites [Vacher *et al.* (2008)].

#### Model:

$$X_{ij} \sim \mathcal{P}(e^{\gamma_{k\ell}}),$$

 $\gamma_{k\ell} = \text{log-mean number of shared parasites.}$ 

Results: ICL selects K = 7 groups that are partly related with phylums.

Data: n = 51 tree species,  $X_{ij}$  = number of shared parasites [Vacher et al. (2008)].

| $e^{\widehat{\gamma}}k\ell$ | T1    | T2    | Т3   | T4   | T5   | Т6   | Т7   |
|-----------------------------|-------|-------|------|------|------|------|------|
| T1                          | 14.46 | 4.19  | 5.99 | 7.67 | 2.44 | 0.13 | 1.43 |
| T2                          |       | 14.13 | 0.68 | 2.79 | 4.84 | 0.53 | 1.54 |
| T3                          |       |       | 3.19 | 4.10 | 0.66 | 0.02 | 0.69 |
| T4                          |       |       |      | 7.42 | 2.57 | 0.04 | 1.05 |
| T5                          |       |       |      |      | 3.64 | 0.23 | 0.83 |
| Т6                          | l     |       |      |      |      | 0.04 | 0.06 |
| T7                          |       |       |      |      |      |      | 0.27 |
| $\widehat{\pi}_k$           | 7.8   | 7.8   | 13.7 | 13.7 | 15.7 | 19.6 | 21.6 |

#### Model:

$$X_{ij} \sim \mathcal{P}(e^{\gamma_{k\ell}}),$$

 $\gamma_{k\ell} = \text{log-mean number of shared}$ parasites.

Results: ICL selects K = 7groups that are partly related with phylums.

Data: n = 51 tree species,  $X_{ij} =$  number of shared parasites [Vacher *et al.* (2008)].

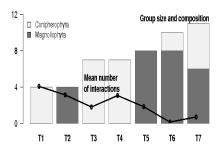
| $e^{\widehat{\gamma}}k\ell$ | T1    | T2    | Т3   | Т4   | Т5   | Т6   | Т7   |
|-----------------------------|-------|-------|------|------|------|------|------|
| T1                          | 14.46 | 4.19  | 5.99 | 7.67 | 2.44 | 0.13 | 1.43 |
| T2                          |       | 14.13 | 0.68 | 2.79 | 4.84 | 0.53 | 1.54 |
| T3                          |       |       | 3.19 | 4.10 | 0.66 | 0.02 | 0.69 |
| T4                          |       |       |      | 7.42 | 2.57 | 0.04 | 1.05 |
| T5                          |       |       |      |      | 3.64 | 0.23 | 0.83 |
| T6                          |       |       |      |      |      | 0.04 | 0.06 |
| T7                          |       |       |      |      |      |      | 0.27 |
| $\widehat{\pi}_k$           | 7.8   | 7.8   | 13.7 | 13.7 | 15.7 | 19.6 | 21.6 |

#### Model:

$$X_{ij} \sim \mathcal{P}(e^{\gamma_{k\ell}}),$$

 $\gamma_{k\ell} = \text{log-mean number of shared parasites.}$ 

Results: ICL selects K = 7 groups that are partly related with phylums.



# Accounting for taxonomic distance

Model: 
$$x_{ij} = \text{distance}(i, j)$$
  
 $Y_{ij} \sim \mathcal{P}(e^{\gamma_{k\ell} + \beta x_{ij}}).$ 

## Accounting for taxonomic distance

Model: 
$$x_{ij} = \text{distance}(i, j)$$
  
 $Y_{ij} \sim \mathcal{P}(e^{\gamma_{k\ell} + \beta x_{ij}}).$ 

Results: 
$$\widehat{\beta} = -0.317$$
.  
 $\rightarrow$  for  $\overline{x} = 3.82$ ,  
 $e^{\widehat{\beta}\overline{x}} = .298$ 

→ The mean number of shared parasites decreases with taxonomic distance.

## Accounting for taxonomic distance

Model:  $x_{ij} = distance(i, j)$ 

$$Y_{ij} \sim \mathcal{P}(e^{\gamma_{k\ell}+\beta x_{ij}}).$$

| $e^{\widehat{\lambda}_{k\ell}}$ | T'1    | T'2  | T'3   | T'4   |
|---------------------------------|--------|------|-------|-------|
| T'1                             | 0.75   | 2.46 | 0.40  | 3.77  |
| T'2                             |        | 4.30 | 0.52  | 8.77  |
| T'3                             |        |      | 0.080 | 1.05  |
| T'4                             |        |      |       | 14.22 |
| $\hat{\pi}_k$                   | 17.7   | 21.5 | 23.5  | 37.3  |
| $\widehat{\beta}$               | -0.317 |      |       |       |

Results: 
$$\widehat{\beta} = -0.317$$
.

$$\rightarrow$$
 for  $\overline{x} = 3.82$ ,

$$e^{\widehat{\beta}\overline{x}} = .298$$

 $\rightarrow$  The mean number of shared parasites decreases with taxonomic distance.

## Accounting for taxonomic distance

Model:  $x_{ij} = distance(i, j)$ 

$$Y_{ii} \sim \mathcal{P}(e^{\gamma_{k\ell} + \beta x_{ij}}).$$

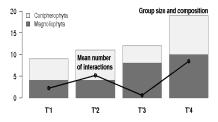
| $e^{\widehat{\lambda}_{k\ell}}$ | T'1    | T'2  | T'3   | T'4   |
|---------------------------------|--------|------|-------|-------|
| T'1                             | 0.75   | 2.46 | 0.40  | 3.77  |
| T'2                             |        | 4.30 | 0.52  | 8.77  |
| T'3                             |        |      | 0.080 | 1.05  |
| T'4                             |        |      |       | 14.22 |
| $\widehat{\pi}_k$               | 17.7   | 21.5 | 23.5  | 37.3  |
| $\widehat{\beta}$               | -0.317 |      |       |       |

Results:  $\widehat{\beta} = -0.317$ .

$$\rightarrow$$
 for  $\overline{x} = 3.82$ ,

$$e^{\widehat{\beta}\overline{x}} = .298$$

→ The mean number of shared parasites decreases with taxonomic distance.



## Accounting for taxonomic distance

Model:  $x_{ii} = distance(i, j)$ 

$$Y_{ij} \sim \mathcal{P}(e^{\gamma_{k\ell} + \beta x_{ij}}).$$

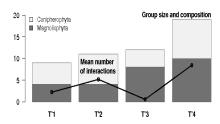
| $e^{\widehat{\lambda}_{k\ell}}$ | T'1    | T'2  | T'3   | T'4   |
|---------------------------------|--------|------|-------|-------|
| T'1                             | 0.75   | 2.46 | 0.40  | 3.77  |
| T'2                             |        | 4.30 | 0.52  | 8.77  |
| T'3                             |        |      | 0.080 | 1.05  |
| T'4                             |        |      |       | 14.22 |
| $\widehat{\pi}_k$               | 17.7   | 21.5 | 23.5  | 37.3  |
| $\widehat{\beta}$               | -0.317 |      |       |       |

Results:  $\widehat{\beta} = -0.317$ .

$$\rightarrow$$
 for  $\overline{x} = 3.82$ ,

$$e^{\widehat{\beta}\overline{x}} = .298$$

→ The mean number of shared parasites decreases with taxonomic distance.



- ightarrow Groups are no longer associated with the phylogenetic structure.
- $\rightarrow$  Mixture = residual heterogeneity of the regression.

## (Variational) Bayesian model averaging

### Model choice

Model selection. The number of classes K generally needs to be estimated.

In the frequentist setting, an approximate ICL criterion can be derived

$$ICL = \mathbb{E}[\log P(Y,Z)|Y] - \frac{1}{2} \left\{ \frac{K(K+1)}{2} \log \frac{n(n-1)}{2} - (K-1) \log n \right\}.$$

 In the Bayesian setting, exact versions of BIC and ICL criteria can be calculated as

$$\log P(Y, K), \qquad \log P(Y, Z, K).$$

(up to the variational approximation) [Latouche et al. (2012)]

### Model choice

Model selection. The number of classes K generally needs to be estimated.

• In the frequentist setting, an approximate ICL criterion can be derived

$$ICL = \mathbb{E}[\log P(Y, Z)|Y] - \frac{1}{2} \left\{ \frac{K(K+1)}{2} \log \frac{n(n-1)}{2} - (K-1) \log n \right\}.$$

 In the Bayesian setting, exact versions of BIC and ICL criteria can be calculated as

$$\log P(Y, K), \qquad \log P(Y, Z, K).$$

(up to the variational approximation) [Latouche et al. (2012)]

But, in some applications, it may be useless or meaningless and model averaging may be preferred.

## Bayesian model averaging (BMA)

### General principle. [Hoeting et al. (1999)]

- $\Delta$ : a parameter that can be defined under a series of different models  $\{\mathcal{M}_K\}_K$ .
- Denote  $P_K(\Delta|Y)$  its posterior distribution under model  $\mathcal{M}_K$ .

The posterior distribution of  $\Delta$  can be averaged over all models as

$$P(\Delta|Y) = \sum_{K} P(\mathcal{M}_{K}|Y) P_{K}(\Delta|Y)$$

## Bayesian model averaging (BMA)

#### General principle. [Hoeting et al. (1999)]

- $\Delta$ : a parameter that can be defined under a series of different models  $\{\mathcal{M}_K\}_K$ .
- Denote  $P_K(\Delta|Y)$  its posterior distribution under model  $\mathcal{M}_K$ .

The posterior distribution of  $\Delta$  can be averaged over all models as

$$P(\Delta|Y) = \sum_{K} P(\mathcal{M}_{K}|Y) P_{K}(\Delta|Y)$$

#### Remarks.

- $w_k = P(\mathcal{M}_K|Y)$ : weight given to model  $\mathcal{M}_K$  for the estimation of  $\Delta$ .
- Calculating of  $w_K$  is not easy, but variational approximation may help.

### Variational Bayesian model averaging [Volant et al. (2012)]

#### Variational Bayes formulation.

- ullet  $\mathcal{M}_{\mathcal{K}}$  can be viewed as one more hidden layer
- Variational Bayes then aims at finding

$$Q^*(K, \theta, Z) = \arg \min_{Q \in \mathcal{Q}} KL[Q(K, \theta, Z) || P(K, \theta, Z | Y)]$$

with 
$$Q = \{Q(\theta, Z) = Q_{\theta}(\theta|K)Q_{Z}(Z|K)Q_{K}(K)\}^{1}$$

<sup>&</sup>lt;sup>1</sup>No additional approximation w.r.t. the regular VBEM.

### Variational Bayesian model averaging [Volant et al. (2012)]

#### Variational Bayes formulation.

- ullet  $\mathcal{M}_K$  can be viewed as one more hidden layer
- Variational Bayes then aims at finding

$$Q^*(K, \theta, Z) = \arg \min_{Q \in \mathcal{Q}} KL[Q(K, \theta, Z)||P(K, \theta, Z|Y)]$$

with 
$$Q = \{Q(\theta, Z) = Q_{\theta}(\theta|K)Q_{Z}(Z|K)Q_{K}(K)\}^{1}$$

#### Optimal variational weights:

$$Q_K^*(K) \propto P(K) \exp\{\log P(Y|K) - KL[Q^*(Z,\theta|K); P(Z,\theta|Y,K)]\}$$

$$= P(K|Y)e^{-KL[Q^*(Z,\theta|K); P(Z,\theta|Y,K)]}.$$

<sup>&</sup>lt;sup>1</sup>No additional approximation w.r.t. the regular VBEM.

### VBMA: the recipe

### For $K = 1 \dots K_{\text{max}}$

Use regular VBEM to compute the approximate conditional posterior

$$Q_{Z,\theta|K}^*(Z,\theta|K) = Q_{Z|K}^*(Z|K)Q_{\theta|K}^*(\theta|K);$$

Compute the conditional lower bound of the log-likelihood

$$L_K = \log P(Y|K) - KL[Q^*(Z,\theta|K); P(Z,\theta|Y,K)].$$

## VBMA: the recipe

### For $K = 1 \dots K_{\text{max}}$

Use regular VBEM to compute the approximate conditional posterior

$$Q_{Z,\theta|K}^*(Z,\theta|K) = Q_{Z|K}^*(Z|K)Q_{\theta|K}^*(\theta|K);$$

Compute the conditional lower bound of the log-likelihood

$$L_K = \log P(Y|K) - KL[Q^*(Z,\theta|K); P(Z,\theta|Y,K)].$$

Compute the approximate posterior of model  $\mathcal{M}_K$ :

$$w_K := Q_K(K) \propto P(K) \exp(L_K).$$

## VBMA: the recipe

#### For $K = 1 \dots K_{\text{max}}$

Use regular VBEM to compute the approximate conditional posterior

$$Q_{Z,\theta|K}^*(Z,\theta|K) = Q_{Z|K}^*(Z|K)Q_{\theta|K}^*(\theta|K);$$

Compute the conditional lower bound of the log-likelihood

$$L_K = \log P(Y|K) - KL[Q^*(Z,\theta|K); P(Z,\theta|Y,K)].$$

Compute the approximate posterior of model  $\mathcal{M}_K$ :

$$w_K := Q_K(K) \propto P(K) \exp(L_K).$$

Deduce the approximate posterior of  $\Delta$ :

$$P(\Delta|Y) \approx \sum_{K} w_{K} Q_{\theta|K}^{*}(\Delta|K)$$

## Towards W-graphs

# W-graph model

### W graph.

Latent variables:

$$(Z_i)$$
 iid  $\sim \mathcal{U}_{[0,1]}$ ,

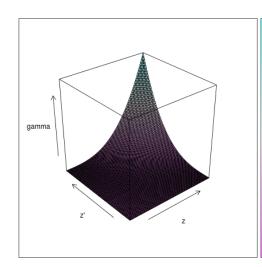
Graphon function  $\gamma$ :

$$\gamma(z,z'):[0,1]^2\to [0,1]$$

Edges:

$$\Pr\{Y_{ij}=1\}=\gamma(Z_i,Z_j)$$

### Graphon function $\gamma(z, z')$



### Inference of the graphon function

### Probabilistic point of view.

- W-graph have been mostly studied in the probability literature: [Lovász and Szegedy (2006)], [Diaconis and Janson (2008)]
- Motif (sub-graph) frequencies are invariant characteristics of a W-graph.
- Intrinsic un-identifiability of the graphon function  $\gamma$  is often overcome by imposing that  $u \mapsto \int \gamma(u, v) dv$  is monotonous increasing.

### Inference of the graphon function

### Probabilistic point of view.

- W-graph have been mostly studied in the probability literature: [Lovász and Szegedy (2006)], [Diaconis and Janson (2008)]
- Motif (sub-graph) frequencies are invariant characteristics of a W-graph.
- Intrinsic un-identifiability of the graphon function  $\gamma$  is often overcome by imposing that  $u \mapsto \int \gamma(u, v) dv$  is monotonous increasing.

### Statistical point of view.

- Not much attention has been paid to its inference until very recently: [Chatterjee (2012)], [Airoldi et al. (2013)], ...
- The latter also uses SBM as a proxy for W-graph.

# SBM as a W-graph model

Latent variables:

$$(U_i)$$
 iid  $\sim \mathcal{U}[0,1]$ 

$$Z_{ik} = \mathbb{I}\{\sigma_{k-1} \le U_i < \sigma_k\}$$

where 
$$\sigma_k = \sum_{\ell=1}^k \pi_\ell$$
.

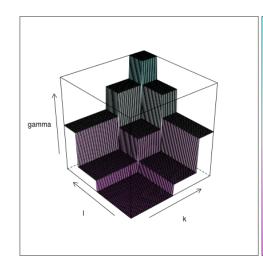
Blockwise constant graphon:

$$\gamma(z,z')=\gamma_{k\ell}$$

Edges:

$$\Pr\{Y_{ij}=1\}=\gamma(Z_i,Z_j)$$

### Graphon function $\gamma_K^{SBM}(z,z')$



## Variational Bayes estimation of $\gamma(z,z')$ [Latouche and R. (2013)]

Posterior mean of  $\gamma_K^{SBM}(z,z')$ 

**VBEM** inference provides the approximate posteriors:

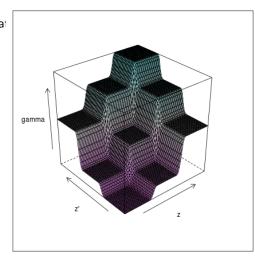
$$(\pi|Y) \approx \operatorname{Dir}(\pi^*)$$
  
 $(\gamma_{k\ell}|Y) \approx \operatorname{Beta}(\gamma_{k\ell}^{0*}, \gamma_{k\ell}^{1*})$ 

Estimate of  $\gamma(u, v)$ .

$$\widehat{\gamma}_{K}^{SBM}(u,v) = \widetilde{\mathbb{E}}\left(\gamma_{C(u),C(v)}|Y\right)$$

where 
$$C(u) = 1 + \sum_{k} \mathbb{I}\{\sigma_k \leq u\}$$
.

[Gouda and Szántai (2010)]



### Model averaging

Model averaging: There is no 'true K' in the W-graph model.

Apply VBMA recipe. For  $K=1..K_{\mathsf{max}}$ , fit an SBM model via VBEM and compute

$$\widehat{\gamma}_{K}^{SBM}(z,z') = \mathbb{E}_{Q}[\gamma_{C(z),C(z')}].$$

### Model averaging

Model averaging: There is no 'true K' in the W-graph model.

Apply VBMA recipe. For  $K=1..K_{\sf max}$ , fit an SBM model via VBEM and compute

$$\widehat{\gamma}_{K}^{SBM}(z,z') = \mathbb{E}_{Q}[\gamma_{C(z),C(z')}].$$

Perform model averaging as

$$\widehat{\gamma}(z,z') = \sum_{K} w_{K} \widehat{\gamma}_{K}^{SBM}(z,z')$$

where  $w_K$  is the variational weights arising from variational Bayes inference.

### Some simulations

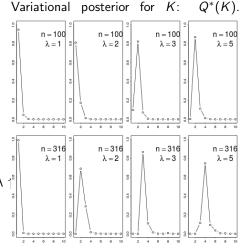
### Design. Symetric graphon:

$$\gamma(u,v) = \rho \lambda^2 (uv)^{\lambda-1}$$

- $\lambda \uparrow$ : imbalanced graph
- $\rho \uparrow$ : dense graph

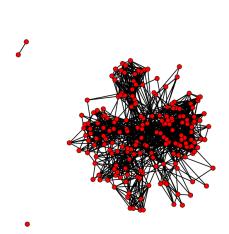
#### Results.

- ullet More complex models as n and  $\lambda$
- Posterior fairly concentrated



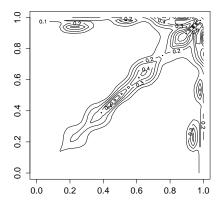
## French political blogosphere

Website network. French political blogs: 196 nodes, 1432 edges.



### French political blogosphere

Infered graphon.  $\widehat{W}(u,v) = \mathbb{E}(\gamma(u,v)|Y)$ 



Motif probability can be estimated as well as  $\widehat{\mu}(m) = \mathbb{E}(\mu(m)|Y)$ .

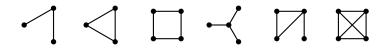
### French political blogosphere

Infered graphon.  $\widehat{W}(u, v) = \mathbb{E}(\gamma(u, v)|Y)$ 



Motif probability can be estimated as well as  $\widehat{\mu}(m) = \mathbb{E}(\mu(m)|Y)$ .

## Goodness-of-fit using network motifs



- Network motifs have sociological interpretation (e.g. triangles).
- The first moments  $\mathbb{E}N(m)$ ,  $\mathbb{V}N(m)$  of the count are known under SBM [Picard et al. (2008)]:

$$\mathbb{E}_{SBM}N(m) \propto \mu_{SBM}(m) = f(\theta_{SBM})$$

Motif probability can be estimated as

$$\widehat{\mu}(m) = \sum_{k} Q_{K}^{*}(K)\widetilde{\mathbb{E}}(\mu_{SBM}(m)|X,K)$$

→ Goodness of fit criterion

## Network motifs in the blogosphere

| Motif           | Count           | Mean            | Std. dev.         | approx          |
|-----------------|-----------------|-----------------|-------------------|-----------------|
|                 | $(\times 10^3)$ | $(\times 10^3)$ | $(\times 10^{3})$ | <i>p</i> -value |
| I               | 29.7            | 39.7            | 8.3               | 0.89            |
| $\triangleleft$ | 3.8             | 4.6             | 1.3               | 0.69            |
|                 | 608.7           | 968.3           | 336.8             | 0.86            |
| $\prec$         | 279.8           | 428.9           | 154.0             | 0.83            |
|                 | 47.4            | 74.5            | 35.1              | 0.77            |
| $\square$       | 270.5           | 397.0           | 177.0             | 0.75            |
| $\square$       | 62.1            | 87.8            | 47.4              | 0.67            |
|                 | 6.5             | 8.8             | 5.4               | 0.61            |

No specific structure seems to be exceptional wrt the model's expectations.

• Real networks are heterogeneous.

- Real networks are heterogeneous.
- State space models (including SBM) allow to capture such an heterogeneity ... but raise inference problems.

- Real networks are heterogeneous.
- State space models (including SBM) allow to capture such an heterogeneity
   but raise inference problems.
- Variational approximations help to deal with complex (conditional) dependency structures.

- Real networks are heterogeneous.
- State space models (including SBM) allow to capture such an heterogeneity
   but raise inference problems.
- Variational approximations help to deal with complex (conditional) dependency structures.
- SBM is a special (rare?) case for which guaranties exist as for the performances of the variational approximation.

- Real networks are heterogeneous.
- State space models (including SBM) allow to capture such an heterogeneity
   but raise inference problems.
- Variational approximations help to deal with complex (conditional) dependency structures.
- SBM is a special (rare?) case for which guaranties exist as for the performances of the variational approximation.
- SBM can be easily generalized to handle weighted graphs and covariates.

- Real networks are heterogeneous.
- State space models (including SBM) allow to capture such an heterogeneity
   but raise inference problems.
- Variational approximations help to deal with complex (conditional) dependency structures.
- SBM is a special (rare?) case for which guaranties exist as for the performances of the variational approximation.
- SBM can be easily generalized to handle weighted graphs and covariates.
- $\bullet$  SBM can be used as a proxy for smoother models, such as W-graphs.

- LDI, E. M., COSTA, T. B. and CHAN, S. H. (2013). Stochastic blockmodel approximation of a graphon: Theory and consistent estimation. In

  Advances in Neural Information Processing Systems, 692–700.
  - III, J., M. and GHAHRAMANI, Z. (2003). The variational Bayesian EM algorithm for incomplete data: with application to scoring graphical model structures. Bayes. Statist. 7 543–52.
- Bollobás, B., Janson, S. and Riordan, O. (2007). The phase transition in inhomogeneous random graphs. Rand. Struct. Algo. 31 (1) 3–122.
- EMSSE, A., DAUDIN, J.-J. and PIERRE, L. (2012). Consistency of maximum-likelihood and variational estimators in the stochastic block model. Electron. J. Statis. 6 1847–99.
- THE TERJEE, S. (2012), Matrix estimation by Universal Singular Value Thresholding. Technical report, arXiv:1212.1247.
- DATOIN, J.-J., PICARD, F. and ROBIN, S. (Jun, 2008). A mixture model for random graphs. Stat. Comput. 18 (2) 173-83.
- Dipin, J.-J., Pierre, L. and Vacher, C. (2010). Model for heterogeneous random networks using continuous latent variables and an application to a tree-fungus network. Biometrics. 66 (4) 1043–1051.
- DEPSTER, A. P., LAIRD, N. M. and RUBIN, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. R. Statist. Soc. B. 39
  1-38.
- Dictionis, P. and Janson, S. (2008). Graph limits and exchangeable random graphs. Rend. Mat. Appl. 7 (28) 33-61.
- L. S., DAUDIN, J.-J. and ROBIN, S. (2012). Accuracy of variational estimates for random graph mixture models. *Journal of Statistical Computation and Simulation*. 82 (6) 849–862.
- TIMAN, M. and NEWMAN, M. E. J. (2002). Community strucutre in social and biological networks. Proc. Natl. Acad. Sci. USA. 99 (12) 7821-6.
  - DA, A. and SZÁNTAI, T. (2010). On numerical calculation of probabilities according to Dirichlet distribution. Ann. Oper. Res. 177 185–200. DOI: 10.1007/s10479-009-0601-9.
- Hambcock, M., RAFTERY, A. and TANTRUM, J. (2007). Model-based clustering for social networks. JRSSA. 170 (2) 301-54. doi: 10.1111/j.1467-985X.2007.00471.x.
  - of ING, J. A., MADIGAN, D., RAFTERY, A. E. and VOLINSKY, C. T. (1999). Bayesian model averaging: A tutorial. Statistical Science. 14 (4) 382–417.

- - P. D., RAFTERY, A. E. and HANDCOCK, M. S. (2002). Latent space approaches to social network analysis. J. Amer. Statist. Assoc. 97 (460) 1090-98.
- KOLA, T. (2000). Advanced mean field methods: theory and practice. chapter Tutorial on variational approximation methods. MIT Press.
- Larbuche, P., Birmelé, E. and Ambroise, C. (2012). Variational bayesian inference and complexity control for stochastic block models. Statis. Model. 12 (1) 93-115.
- LEBUCHE, P. and ROBIN, S. (2013), Bayesian model averaging of stochastic block models to estimate the graphon function and motif frequencies in a W-graph model. Technical report, arXiv:1310.6150.
- Low Sz. L. and Szegedy, B. (2006). Limits of dense graph sequences. Journal of Combinatorial Theory, Series B. 96 (6) 933 957.
- LUXBURG, U., BELKIN, M. and BOUSOUET, O. (2008), Consistency of spectral clustering, Ann. Stat. 36 (2) 555-586.
- ADASSOU, M., ROBIN, S. and VACHER, C. (2010). Uncovering structure in valued graphs: a variational approach. Ann. Appl. Statist. 4 (2) 715-42.
  - IADASSOU, M. and MATIAS, C. (2015). Convergence of the groups posterior distribution in latent or stochastic block models. Bernoulli. ??-?? to appear.
  - AS, CATHERINE and ROBIN, STÉPHANE. (2014). Modeling heterogeneity in random graphs through latent space models: a selective review. ESAIM: Proc. 47 55-74.
- EMMAN, M. and GIRVAN, M. (2004). Finding and evaluating community structure in networks.. Phys. Rev. E. 69 026113.
- NEWMAN, M. E. J. (2004). Fast algorithm for detecting community structure in networks. Phys. Rev. E (69) 066133.
- NOWICKI, K. and SNIJDERS. T. (2001). Estimation and prediction for stochastic block-structures. J. Amer. Statist. Assoc. 96 1077-87.
- HARISI, G. (1988), Statistical Field Theory, Addison Wesley, New York),
- FIGARD, F., DAUDIN, J.-J., KOSKAS, M., SCHBATH, S. and ROBIN, S. (2008). Assessing the exceptionality of network motifs,. J. Comp. Biol. 15 (1) 1-20.
- Figure Rd., F., Miele, V., Daudin, J.-J., Cottret, L. and Robin, S. (2009). Deciphering the connectivity structure of biological networks using mixnet. BMC Bioinformatics. Suppl 6 S17. doi:10.1186/1471-2105-10-S6-S17.

#### Goodness-of-fit using network motif

Valuer, C., PIOU, D. and DESPREZ-LOUSTAU, M.-L. (2008). Architecture of an antagonistic tree/fungus network: The asymmetric influence of past evolutionary history. PLoS ONE. 3 (3) 1740. e1740. doi:10.1371/journal.pone.0001740.



VOL.NT, S., MAGNIETTE, M.-L. M. and ROBIN, S. (2012). Variational bayes approach for model aggregation in unsupervised classification with markovian dependency. Comput. Statis. & Data Analysis. 56 (8) 2375 - 2387.

