Tilings and networks

R. Dorantes Gilardi, C. Lesieur and L. Vuillon

M. Achoch, K. Salamatian, March, 2015

UMR 5127

R. Dorantes Gilardi, C. Lesieur and L. Vuillon

Tilings and networks

Outline

Adjacent atom networks

Proteins

PROTEIN: sequence of amino acids that folds and realises a biological function

R: 20 standard amino acids = protein building blocks

Main chain (backbone), side chain

Information flow: $1D \longrightarrow 3D$

Amino Acide

R. Dorantes Gilardi, C. Lesieur and L. Vuillon

Tilings and networks

Focus on one interface geometry: two aligned β -strands

★ less understood than *a*-coil; "planar" geometry: much less constrained than *a*

★ many pathologies (Alzheimer, Parkinson, cholera, ...)

classes: continuous β -sheet, β -sandwich

Guharoy, Chakrabarti 2007

10/16

Cyclic

Cyclic

FIGURE: **Abstract view of** C_4 **symmetry.** A tetramer formed by a single interface between the part *I* and \overline{I} . Each chain is adjacent via the interface to exactly 2 other chains

Lethal

FIGURE: Heptamer 4H56 in the PDB with each chain adjacent to 2 other chains. Remark that in the beta barrel the adjacency between pairs of chains is the same as in the other part of the heptamer. This implies an oligomerization with exactly 1 interface.

Protein Data Bank

HEADER TOXIN 31-JAN-00 TEET
TITLE CHOLERA TOXIN B-PENTAMER COMPLEXED WITH METANITROPHENYL-
TITLE 2 ALPHA-D-GALACTOSE
COMPND MOL_ID: 1;
COMPND 2 MOLECULE: PROTEIN (CHOLERA TOXIN B);
COMPND 3 CHAIN: D, E, F, G, H;
COMPND 4 ENGINEERED: YES;
COMPND 5 OTHER_DETAILS: RECEPTOR BINDING SITE ON EACH MONOMER
COMPND 6 OCCUPIED BY METANITROPHENYL-ALPHA-D-GALACTOSIDE
SOURCE MOL ID: 1;
SOURCE 2 ORGANISM SCIENTIFIC: VIBRIO CHOLERAE;
SOURCE 3 ORGANISM_TAXID: 666;
SOURCE 4 STRAIN: OGAWA 41 (CLASSICAL BIOTYPE);
SOURCE 5 EXPRESSION_SYSTEM: ESCHERICHIA COLI;
SOURCE 6 EXPRESSION SYSTEM TAXID: 562
KEYWDS TOXIN,ENTEROTOXIN
EXPDTA X-RAY DIFFRACTION
AUTHOR E.A.MERRITT, W.G.J.HOL
REVDAT 4 24-FEB-09 IEEI 1 VERSN
REVDAT 3 01-APR-03 IEEI 1 JRNL
REVDAT 2 07-FEB-01 1EEI 1 JRNL
REVDAT 1 16-FEB-00 1EEI 0
JRNL AUTH E.FAN, E.A.MERRITT, Z.ZHANG, J.C.PICKENS, C.ROACH,
JRNL AUTH 2 M.AHN,W.G.HOL
JRNL TITL EXPLORATION OF THE GM1 RECEPTOR-BINDING SITE OF
JRNL TITL 2 HEAT-LABILE ENTEROTOXIN AND CHOLERA TOXIN BY
JRNL TITL 3 PHENYL-RING-CONTAINING GALACTOSE DERIVATIVES.
JRNL REF ACTA CRYSTALLOGR., SECT.D V. 57 201 2001
JRNL REFN ISSN 0907-4449
JRNL PMID 11173465
JRNL DOI 10.1107/S0907444900016814

SEQRES 1 D 103 THR PRO GLN ASN ILE THR ASP LEU CYS ALA GLU TYR HIS SEQRES 2 D 103 ASN THR GLN ILE HIS THR LEU ASN ASP LYS ILE PHE SER SEQRES 3 D 103 TYR THR GLU SER LEU ALA GLY LYS ARG GLU MET ALA ILE SEQRES 4 D 103 ILE THR PHE LYS ASN GLY ALA THR PHE GLN VAL GLU VAL SEQRES 5 D 103 PRO GLY SER GLN HIS ILE ASP SER GLN LYS LYS ALA ILE SEQRES 6 D 103 GLU ARG MET LYS ASP THR LEU ARG ILE ALA TYR LEU THR SEQRES 7 D 103 GLU ALA LYS VAL GLU LYS LEU CYS VAL TRP ASN ASN LYS SEQRES 8 D 103 THR PRO HIS ALA ILE ALA ALA ILE SER MET ALA ASN SEQRES 1 E 103 THR PRO GLN ASN ILE THR ASP LEU CYS ALA GLU TYR HIS SEQRES 2 E 103 ASN THR GLN ILE HIS THR LEU ASN ASP LYS ILE PHE SER SEORES 3 E 103 TYR THR GLU SER LEU ALA GLY LYS ARG GLU MET ALA ILE SEQRES 4 E 103 ILE THR PHE LYS ASN GLY ALA THR PHE GLN VAL GLU VAL SEQRES 5 E 103 PRO GLY SER GLN HIS ILE ASP SER GLN LYS LYS ALA ILE SEORES 6 E 103 GLU ARG MET LYS ASP THR LEU ARG ILE ALA TYR LEU THR SEORES 7 E 103 GLU ALA LYS VAL GLU LYS LEU CYS VAL TRP ASN ASN LYS SEQRES 8 E 103 THR PRO HIS ALA ILE ALA ALA ILE SER MET ALA ASN SEORES 1 F 103 THR PRO GLN ASN ILE THR ASP LEU CYS ALA GLU TYR HIS SEORES 2 F 103 ASN THR GLN ILE HIS THR LEU ASN ASP LYS ILE PHE SER SEQRES 3 F 103 TYR THR GLU SER LEU ALA GLY LYS ARG GLU MET ALA ILE SEQRES 4 F 103 ILE THR PHE LYS ASN GLY ALA THR PHE GLN VAL GLU VAL SEORES 5 F 103 PRO GLY SER GLN HIS ILE ASP SER GLN LYS LYS ALA ILE

ATOM	1 N THR D 1	38.037 31.348 29.862 1.00 33.00	N
ATOM	2 CA THR D 1	36.589 31.127 30.121 1.00 35.55	С
ATOM	3 C THR D 1	35.742 31.862 29.096 1.00 33.96	С
ATOM	4 O THR D 1	35.831 33.092 28.952 1.00 32.50	0
ATOM	5 CB THR D 1	36.193 31.558 31.545 1.00 35.17	С
ATOM	6 OG1 THR D 1	36.841 30.686 32.469 1.00 39.57	0
ATOM	7 CG2 THR D 1	34.687 31.426 31.763 1.00 33.50	С
ATOM	8 N PROD 2	34.892 31.113 28.372 1.00 33.37	N
ATOM	9 CA PROD 2	34.031 31.737 27.351 1.00 34.14	С
ATOM	10 C PROD 2	33.093 32.795 27.950 1.00 31.05	С
ATOM	11 O PROD 2	32.735 32.731 29.127 1.00 32.31	0
ATOM	12 CB PROD 2	33.273 30.536 26.746 1.00 34.27	С
ATOM	13 CG PRO D 2	33.247 29.524 27.908 1.00 35.08	С
ATOM	14 CD PRO D 2	34.641 29.662 28.498 1.00 29.79	С
ATOM	15 N GLND 3	32.710 33.770 27.141 1.00 29.08	N
ATOM	16 CA GLN D 3	31.830 34.806 27.619 1.00 30.28	С
ATOM	17 C GLN D 3	30.464 34.666 27.011 1.00 27.08	С
ATOM	18 O GLN D 3	29.554 35.366 27.398 1.00 25.73	0
ATOM	19 CB GLN D 3	32.414 36.182 27.330 1.00 39.02	С
ATOM	20 CG GLN D 3	33.767 36.404 28.018 1.00 48.24	С
ATOM	21 CD GLN D 3	33.898 37.791 28.618 1.00 51.86	С
ATOM	22 OE1 GLN D 3	32.950 38.339 29.188 1.00 54.42	0
ATOM	23 NE2 GLN D 3	35.083 38.370 28.499 1.00 53.78	N

GEMINI

Interactions at the interface GEMINI

- Interaction patterns
- Large ensembles of data
- Time: 0.1 s/protein

Agence pour la protection des programmes, 2009 G. Feverati, C. Lesieur, Plos ONE 2010 G. Feverati et al., Plos ONE 2012

4/16

GEMINI

G. Feverati, C. Lesieur, L. Vuillon, International Journal "Information Technologies and Knowledge", 2012

$$egin{aligned} R_0 &= \{(a,b) \in \ A imes B ext{ s.t. } d(a,b) \leq d_0 \} \ & L_A = \ \{(a,b) \in R_0 ext{ s.t. } d(a,b) = \ min_{c \in B} \{d(a,c)\} \} \ & L_B = \ \{(a,b) \in R_0 ext{ s.t. } d(a,b) = \ \{min_{d \in A} \{d(d,b)\} \} \ & S_0 = L_A \cap L_B \end{aligned}$$

Example: β-interfaces: cholera toxin, Alzheimer, Parkinson...

Interfaces and inhibition of the Cholera

Symmetry

Display Files -

Download Files -

Dihedral

Atomic Model of Mm-c	pn in the Closed State
----------------------	------------------------

DOI:10.2210/pdb3los/pdb

ENTRY 3LOS SUPERSEDES 3IYE

Primary Citation

Mechanism of folding chamber closure in a group II chaperonin.

Zhang, J., Baker, M.L., Schroder, G.F., Douglas, N.R., Reissmann, S., Jakana, J., Dougherty, M., Fu, C.J., Levitt, M., Ludtke, S.J., Frydman, J., Chiu, W.,

Journal: (2010) Nature 463: 379-383

PubMed: 20090755 @ PubMedCentral: PMC2834796 @ DOI: 10.1038/nature08701 @ Search Related Articles in PubMed [3]

PubMed Abstract:

Group II chaperonins are essential mediators of cellular protein folding in eukaryotes and archaea. These oligomeric protein machines, approximately 1 megadaton, consist of two back-to-back rings encompassing a central cavity that accommodates polypetide substrates. Chaperonin-mediated protein folding is critically dependent... [Read More & Scarch Publed Abstracts]

‡ Molecular Desc	ription				Hic
Classification: Structure Weight:	Chaperon 932652.81	e.0			
Molecule: Polymer:	Chape 1	ronin Type:	protein	Length:	543

3LOS

Dihedral

Tetrahedral

Cryst	al Stru	cture of	an ai	rchaeal	amino	pe	ptidase
-------	---------	----------	-------	---------	-------	----	---------

DOI:10.2210/pdb1xfo/pdb

Primary Citation	Biological Assembly	
Crystal structure of a dodecameric tetrahedral-shaped aminopeptidase.	+	
Russo, S. A. Baumann, U.A	ALL IS A	
Journal: (2004) J.Biol.Chem. 279: 51275-51281	3 4 4 2	
Publick15375158 @ DDI: 10.1074/jbc.H409455200 @ Sarch Related Articles in Publied	NG 3	
PubMed Abstract:	STATE STATE	
Protein turrover is an essential process in hiving cells. The degradation of optoxic polyaptides is mainly carried out by the proteasome, resulting in 73-patient of the proteins. Further degradation is usually carried out by energy-independent proteases like the tricom protease [Read More & Search PubMed Abstracts]	1918	
Molecular Description Hide	and SD View More Images	
Classification: Hydrolase / Structure Weight: 158566.63 ()	Symmetry: T view Stoichiometry: Homo 12-mer - A12	
Molecula: Prv operan protein FrvX Polymer: 1 Type:: protein Length: 357 Chaines: A, B, C, D E E 57 Cer: 3.4.1.1.0 @ @ E E Organism: Pyrococcus horizonti J.> @ E E	Biological assembly 1 assigned by authors and generated by PISA,PQS (software) Downloadable viewers: Simple Viewer Protein Workshop Klosk Viewer	

Tetrahedral

Octahedral

CA atoms are being shown in order to display this large structure in Jmol.	
CHainte at deny shown and the to deprive any show and the shutther.	Structure Details Structure biological Assembly 1 5 Symmetry Type Gobal Symmetry 1 Symmetry 424 Select Orientation Generation Generation Select Display Mode Secondary Structure Subunit Symmetry Symmetry View aptions Custom View

Icosahedral

Life in the extre	mes: atomic structu	re of Sulfolob	us Turreted Icos	ahedral Virus	3J31	🖹 Display Files 🗸 🛓
DOI:10.2210/pdb3j31/p	db			EMDataBank @:5584		
Primary Citation					4 Biologi	cal Assembly 🕜
Atomic structure of the 7 crystallography.	5 MDa extremophile Sulfolob	us turreted icosahedr	al virus determined by C	CryoEM and X-ray		*
Veesler, D. P. Ng, T.S. P. C.Y. P	Sendamarai, A.K. ,, Eilers, B	J. P, Lawrence, C.M.	ନ, Lok, S.M.ନ, Young, I	M.J. A, Johnson, J.E. A, Fu,	1	
Journal: (2013) Proc.Natl.	Acad.Sci.USA 110: 5504-5509					
PubMed: 2352055 02 PubMedCanthis PRC515359 02 DD1:10.1073/pnss.1300601110 02 Search Related Articles in PubMed 32 PubMed Abstract:						
Sulfolobus turreted icosahe determined the STIV struct	dral virus (STIV) was isolated in a ture using near-atomic resolution	cidic hot springs where electron microscopy and	it infects the archeon Sulfo	lobus solfataricus. We wing tracing of structural	- ANDA	the alte
polypeptide chains and visu	polypeptide chains and visualization of [Read More & Search PubMed Abstracts]					More Images
Molecular Description Classification: Virus Structure Weight: 6353:	1 ≥ [VIPERdb &] 29.60 (j)			Hide	Symmetry: I vie Stoichiometry: H A900B60C60 No info available assembly	w etero 1020-mer - for origin of biological
Molecule: Polymer: Chains: Organism: Gene Name:	A223 penton base 1 Type: Q Sulfolobus turreted icosahee A223	protein Iral virus 1 🖉	Length:	223	Downloadable Simple Viewer Kiosk Viewer	viewers: Protein Workshop

Icosahedral

FIGURE: Protein oligomers and fibers. A. Protein oligomer. Cholera toxin B pentamer ($CtxB_5$) is shown (PDB code 3CHB). B. Oligomer to fiber transition. Each monomer is indicated by a different color.

Tilings of the plane

Définition

A *polyomino* is the interior of a closed non intersecting path in a square lattice.

Tilings of the plane

Definitions

A *tiling by translation* of a polyomino P is a covering of \mathbb{R}^2 by translation of copies of P without overlapping or hole.

Tilings of the plane

Isometries of the plane : translation, rotation, reflection and glide reflection.

17 crystalographic groups for the plane (Bravais 1847).

The 17 crystallographic groups are represented at the Alhambra of Grenada (by artists around 1350).

Cristallographic groups

Tilings of the plane by translation

Definitions

Let *bw* be a *boundary word of* P, i.e. a word on the alphabet $\{a, b, \bar{a}, \bar{b}\}$ where *a* codes left step, *b* up step, \bar{a} right step and \bar{b} down step which codes the boundary of the polyomino P.

bw is defined up to circular permutations of letters.

Beauquier-Nivat's Theorem

Theorem [Beauquier-Nivat 1991]

A polyomino *P* tiles the plane by translation if and only if the boundary word *bw* of *P* is equal to $XYZ \ \overline{X} \ \overline{Y} \ \overline{Z}$ or $XY \ \overline{X} \ \overline{Y}$ with $X, Y, Z \in \{a, b, \overline{a}, \overline{b}\}^*$ and where $\overline{w} = \overline{w_1 w_2 \cdots w_n} = \overline{w_n w_{n-1} \cdots w_1}$ with $w_i \in \{a, b, \overline{a}, \overline{b}\}$.

Tiling models

According to Beauquier-Nivat's Theorem, we have 2 ways of tilings the plane by translations :

If the boundary word is $XYZ \ \overline{X} \ \overline{Y} \ \overline{Z}$, we talk about pseudo-hexagon.

If the boundary word is $XY \overline{X} \overline{Y}$, we talk about pseudo-square.

Lattice periodic tilings

Definition

A tiling is called *lattice periodic* if it is invariant under the translation by two non-collinear vectors.

FIGURE: Tiling by a mino and the 4 adjacent tiles of the grey mino

FIGURE: Tiling of the plane by a domino like a pseudo square and the 4 adjacent tiles of the grey domino

FIGURE: Tiling of the plane by a domino like a pseudo hexagon and the 6 adjacent tiles of the grey domino

FIGURE: A thin cross that doesn't tile the plane

FIGURE: Two regular tilings of the plane by the same polyomino

FIGURE: Spider silk.

From regular tilings of the plane to tilings of a fiber

FIGURE: From tiling to cylinder by using the translation of 8 times the vector \vec{e}_1 .

FIGURE: Two boundaries in correspondence by the translation $4\vec{v}_1+2\vec{v}_2)$

FIGURE: Fiber with a pseudo square shape. Each tile is surrounded by 4 tiles.

FIGURE: Tobacco Mosaic Virus.

FIGURE: Tobacco Mosaic Virus : an example of tiling of a fiber with 4 adjacent chains.

FIGURE: Tobacco Mosaic Virus : a 17-mer.

FIGURE: Fiber with a pseudo hexagon shape. Each tile is surrounded by 6 tiles. Remark that pseudo hexagon shapes appear in particular when there is a tilt on the fiber.

FIGURE: 3J1R : an example of tiling of a fiber with 6 adjacent chains.

From fold plasticity to fibers : the P53 case

FIGURE: **A.** The p53 tetrameric domain is made of 2 dimers. Each monomer is made of a β -strand followed by a small helix ended by a long α -helix parallel to the β -strand (1SAK). The residue R337 is sensitive to mutation.

Tiling fibers by *n*-mers

Fibers

FIGURE: Fiber 3J2U with a tetramer inside each pseudo hexagon

FIGURE: Fiber with a dimer inside each pseudo hexagon

FIGURE: Replacement of each pseudo square by a tetramer.

FIGURE: Replacement of a pseudo square and of a pseudo hexagon.

FIGURE: Replacement of pseudo square by 2 non regular pentamers.

Fibers

FIGURE: Double asymmetrical pentamer (Tachylectin).
PDB of 1SAK

PDB of 1SAK

Chain structure of P53

Atomic structure of P53

Protein graph

A protein graph (network) is produced by *Spectralpro* (algorithm) considering amino acids as vertices and, for every two vertices there exists an edge if there is an atomic interaction between them. The weight of an edge is the number of atoms involved in the interaction between the two amino acids.

Network structure of P53

Network of mutated G334V in silico using FoldX

The effect of a mutation is measured by comparing wild type and mutated networks *edges*.

The Appeared (a), disappeared (d) and conserved (c) atomic interactions are counted as in $\frac{a+d}{c}$ and summed over the whole network.

When two vertices:

- Are no more in interaction (no edge exist between them) after a mutation, or
- They are in interaction only in the mutated network.

Namely, when c = 0, a factor of 100 is considered in the sum.

wild type

mutated

0

example

$$\frac{0}{7} + \frac{3}{5} + \frac{0}{8} + 100 + 100 = 200.6$$

R. Dorantes Gilardi, C. Lesieur and L. Vuillon Tilings and networks Sheet1

mutation

R. Dorantes Gilardi, C. Lesieur and L. Vuillon Tilings and networks

Propagation of the destabilization on the network

Sheet1

