

Community detection and Role extraction in Networks

A. Browet

Université catholique de Louvain EPL - ICTEAM

Complex Networks LIP6 September 2014

Networks Topology Community Structures

Networks Topology Community Structures

$$H(\sigma) = -H_0 - \sum_{i,j \in V} \left[\alpha_{ij} A(i,j) - \beta_{ij} \right] \delta \left(\sigma_i, \sigma_j \right)$$

	Unweighted network	Weighted network
Reichardt & Bornholdt	$\alpha_{ij}=1$	$\alpha_{ij} = w(i,j)$
	$eta_{ij} = \gamma_{RB} p_{ij} \qquad p_{ij} = rac{mn_c^2}{n^2}$	
Newman & Girvan (modularity)	$\alpha_{ij}=1$	$\alpha_{ij} = w(i,j)$
	$eta_{ij} = rac{k_i^{out}k_j^{in}}{m}$	$eta_{ij} = rac{s_i^{out}s_j^{in}}{m_w}$
Traag et al. (CPM)	$\alpha_{ij}=1$	$\alpha_{ij}=w(i,j)$
	$eta_{ij} = \gamma_{CPM}$	
Ronhovde & Nussinov	$\alpha_{ij} = 1 + \gamma_{RN}$	$\alpha_{ij} = w(i,j) + \gamma_{RN}$
	$eta_{ij}=\gamma_{RN}$	
Raghavan et al.	$\alpha_{ij} = w(i, j)$ $\beta_{ij} = 0$	
(label propagation)		1 1

Networks Topology Community Structures

$$H_M(\sigma) = q_{out}H(q_{out}) + \sum_{k=1}^m q_{k,in}H(q_{k,in}).$$

Rosvall & Bergstrom (2008)

$$H_{S}(\sigma) = -\log \sum_{j=f}^{\min(F,m)} \frac{\binom{F}{j}\binom{M-F}{m-j}}{\binom{M}{m}}$$

Community Detection Algorithm

Simulated annealing (SA)

Label propagation (LP)

Fast modularity

Louvain Method (LM)

Fast modularity (+ TCER)

Infomap

Community Detection Algorithm

Community Detection Algorithm


```
Input : a graph G(V, E)

Output : a community partition matrix C \in \mathbb{R}^{k \times n}

Initialize C = I_n, C_t = 0, G_t = G

while C_t \neq I do

C_t \leftarrow \operatorname{Assign}(G_t)

C_t \leftarrow \operatorname{Positive}(C_t, G_t)

while \exists i \in V_t, c \in C_t with \Delta H(c_i \rightarrow i \rightarrow c) > 0 do

C_t \leftarrow \operatorname{Maximal}(C_t, G_t)

C_t \leftarrow \operatorname{Positive}(C_t, G_t)

C_t \leftarrow \operatorname{Aggregate}(G_t, C_t)

C = C_t C
```

```
function Assign(G(V, E))

for all i \in V do

a(i) = \arg \max_{j} \Delta H(i \rightarrow j)

end for

T \leftarrow \operatorname{graph}(V, \{(i, a(i)) \forall i\})

C_t \leftarrow WCC(T)

return C_t
```



```
function Positive(C_t, G(V, E))

for all i \in V do

g(i) = -\Delta H (c_i \rightarrow i \rightarrow \{\})

while \exists i \in c_i with g(i) < 0 do

c_1, c_2 \leftarrow \text{Split}(c_i)

for all j \in c_1 \cup c_2 do

g(j) = -\Delta H (c_j \rightarrow j \rightarrow \{\}).

C_t = C_t \setminus \{c_i\} \cup \{c_1, c_2\}

return C_t
```



```
function Maximal(C_t, G(V, E))

C = C_t

for all i \in V do

c_i^* = \arg\max_c \Delta H(c_i \to i \to c)

for all i \in V, if c_i^* \neq c_i do

\operatorname{draw} p(i) uniform \in [0, 1]

if p(i) < p then

b(i) = \operatorname{branch}(i)

if \Delta H(c_i \to b(i) \to c_i^*) > 0 then

a(i) = \arg\max_{j \in c_i^*} \Delta H(i \to j)

C \leftarrow \operatorname{insert} (b(i), c_i^*).

return C
```



```
function Maximal(C_t, G(V, E))

C = C_t

for all i \in V do

c_i^* = \arg\max_c \Delta H(c_i \to i \to c)

for all i \in V, if c_i^* \neq c_i do

\operatorname{draw} p(i) uniform \in [0, 1]

if p(i) < p then

b(i) = \operatorname{branch}(i)

if \Delta H(c_i \to b(i) \to c_i^*) > 0 then

a(i) = \arg\max_{j \in c_i^*} \Delta H(i \to j)

C \leftarrow \operatorname{insert} (b(i), c_i^*).

return C
```



```
function Maximal(C_t, G(V, E))

C = C_t

for all i \in V do

c_i^* = \arg\max_c \Delta H(c_i \to i \to c)

for all i \in V, if c_i^* \neq c_i do

\operatorname{draw} p(i) uniform \in [0, 1]

if p(i) < p then

b(i) = \operatorname{branch}(i)

if \Delta H(c_i \to b(i) \to c_i^*) > 0 then

a(i) = \arg\max_{j \in c_i^*} \Delta H(i \to j)

C \leftarrow \operatorname{insert} (b(i), c_i^*).

return C
```



```
function Maximal(C_t, G(V, E))

C = C_t

for all i \in V do

c_i^* = \arg\max_c \Delta H(c_i \to i \to c)

for all i \in V, if c_i^* \neq c_i do

\operatorname{draw} p(i) uniform \in [0, 1]

if p(i) < p then

b(i) = \operatorname{branch}(i)

if \Delta H(c_i \to b(i) \to c_i^*) > 0 then

a(i) = \arg\max_{j \in c_i^*} \Delta H(i \to j)

C \leftarrow \operatorname{insert} (b(i), c_i^*).

return C
```


LFR benchmark model

Lancichinetti, Fortunato & Radicchi (2008)

$$k_i \backsim k^{-\tau_1} \qquad n_c \backsim n^{-\tau_2}$$

$$\langle k_{int} \rangle = (1 - \mu_T) \langle k \rangle ,$$

$$\langle k_{ext} \rangle = \mu_T \langle k \rangle .$$

$$\langle w^{int} \rangle = \frac{(1 - \mu_W) \langle s \rangle}{(1 - \mu_T) \langle k \rangle} = \frac{(1 - \mu_W)}{(1 - \mu_T)} \langle k \rangle^{\beta - 1} ,$$

$$s_i^{int} = (1 - \mu_W) k_i^{\beta} ,$$

$$\langle w^{ext} \rangle = \frac{\mu_W \langle s \rangle}{\mu_T \langle k \rangle} = \frac{\mu_W}{\mu_T} \langle k \rangle^{\beta - 1} ,$$

$$s_i^{ext} = \mu_W k_i^{\beta} .$$

Normalized mutual information

Danon, Diaz-Guilera, Duch, et al. (2005)

$$NMI(X,Y) = \frac{2 I(X,Y)}{H(X) + H(Y)}.$$

LFR benchmark model

Lancichinetti, Fortunato & Radicchi (2008)

(a) $\mu_T = 0.2$

(c)
$$\mu_T = 0.6$$

(b) $\mu_T = 0.4$

(d) $\mu_T = 0.8$

Application to image processing

$$w(i,j) = \begin{cases} e^{\frac{d(i,j)^2}{\sigma_x^2}} e^{\frac{|F(i)-F(j)|^2}{\sigma_i^2}} & \text{if } d(i,j) < d_{max}, \\ 0 & \text{otherwise} \end{cases}$$

$$Q_{\Lambda}(\sigma) = \frac{1}{m} \sum_{i,j \in V} \left[W - \frac{S\Lambda S}{m} \right]_{(i,j)} \delta(\sigma_i, \sigma_j)$$

Input picture

Human benchmark

FCE segmentation

Application to image processing

$$w(i,j) = \begin{cases} e^{\frac{d(i,j)^2}{\sigma_x^2}} e^{\frac{|F(i)-F(j)|^2}{\sigma_i^2}} & \text{if } d(i,j) < d_{max}, \\ 0 & \text{otherwise} \end{cases}$$

$$Q_{\Lambda}(\sigma) = \frac{1}{m} \sum_{i,j \in V} \left[W - \frac{S\Lambda S}{m} \right]_{(i,j)} \delta(\sigma_i, \sigma_j)$$

Application to image processing

$$w(i,j) = \begin{cases} e^{\frac{d(i,j)^2}{\sigma_x^2}} e^{\frac{|F(i)-F(j)|^2}{\sigma_i^2}} & \text{if } d(i,j) < d_{max}, \\ 0 & \text{otherwise} \end{cases}$$

$$Q_{\Lambda}(\sigma) = \frac{1}{m} \sum_{i,j \in V} \left[W - \frac{S\Lambda S}{m} \right]_{(i,j)} \delta(\sigma_i, \sigma_j)$$

Application to video tracking

Application to video tracking

Networks Topology Role Structure

Networks Topology Role Structure

Role modeling Pairwise node similarity

Bondel, Gajardo, Heymans, et al. (2004)

$$S_{k+1} = \frac{A S_k A^T + A^T S_k A}{\|A S_k A^T + A^T S_k A\|_F}.$$

Cooper & Barahona (2011)

$$X = \left[\beta A \mathbf{1} \mid \dots \mid (\beta A)^{l_{max}} \mathbf{1} \mid \beta A^{T} \mathbf{1} \mid \dots \mid (\beta A^{T})^{l_{max}} \mathbf{1}\right]$$

$$S_A^{CB}(i,j) = \frac{x_i x_j^T}{\|x_i\| \|x_j\|}$$

👺 Leicht, Holme & Newman (2006)

$$S_A^L(i,j) = \delta(i,j) + \frac{m\lambda}{k_i^{out}k_j^{in}} \sum_{l=1}^{\infty} \left(\frac{\alpha}{\lambda}\right)^l \left[A^l\right](i,j)$$

Role modeling Pairwise node similarity

$$T_1 = AA^T + A^T A$$

Role or Block modeling

$$T_2 = AAA^TA^T + AA^TAA^T + A^TAA^TA + A^TA^TAA.$$

Role or Block modeling

Role or Block modeling Pairwise Similarity Measure

$$S = \sum_{\ell=1}^{\infty} \beta^{2(\ell-1)} T_{\ell}.$$

$$\Gamma_A: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}: \Gamma_A[X] = AXA^T + A^TXA$$

$$T_1 = \Gamma_A [I],$$

 $T_2 = \Gamma_A [T_1] = \Gamma_A^2 [I],$
 $T_3 = \Gamma_A [T_2] = \Gamma_A^3 [I],$

$$S = \sum_{\ell=1}^{\infty} \beta^{2(\ell-1)} \Gamma_A^{\ell}[I],$$

Role or Block modeling Pairwise Similarity Measure

$$S = \sum_{\ell=1}^{\infty} \beta^{2(\ell-1)} \Gamma_A^{\ell}[I],$$

$$\Gamma_A: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}: \Gamma_A[X] = AXA^T + A^TXA$$

$$S_{k+1} = \Gamma_A[I] + \dots + (\beta^2)^k \Gamma_A^{k+1}[I] + (\beta^2)^{k+1} \Gamma_A^{k+1}[S_0]$$

Pairwise Similarity Measure

$$S_{k+1} = \Gamma_A[I] + \dots + (\beta^2)^k \Gamma_A^{k+1}[I] + (\beta^2)^{k+1} \Gamma_A^{k+1}[S_0]$$

Converges if $\rho\left(\beta^2\Gamma_A\left[.\right]\right)<1$

$$\Gamma_{A}[X] = AXA^{T} + A^{T}XA \qquad \longrightarrow \quad vec(\Gamma_{A}[X]) = (A \otimes A + A^{T} \otimes A^{T}) \, vec(X)$$

$$\rho\left(\beta^2\left(A\otimes A + A^T\otimes A^T\right)\right) < 1$$

$$\beta^2 < \frac{1}{\rho \left(A \otimes A + A^T \otimes A^T \right)}$$

Sufficient condition :
$$\beta^2 \le \frac{1}{\rho (A + A^T)^2}$$

Pairwise Similarity Measure Fixed point solution

$$S_0 = 0 S_1 = AA^T + A^T A_1$$

$$S_{k+1} = S_1 + \beta^2 \Gamma_A \left[S_k \right]$$

$$vec(S^*) = \left[I - \beta^2 \left(A \otimes A + \left(A \otimes A\right)^T\right)\right]^{-1} vec(S_1)$$

Exact solution: intractable \times Power method: expensive $O(n^3)$

Low rank Approximation

$$S_k^{(r)} = X_k X_k^T$$
 , $X_k \in \mathbb{R}^{n \times r}$

$$S_{k+1}^{(r)} = \Pi^{(r)} \left[\underbrace{S_1^{(r)} + \beta^2 \Gamma_A \left[S_k^{(r)} \right]}_{\text{Rank } 3r} \right] = X_{k+1} \ X_{k+1}^T$$

$$S_1 = A \ A^T + A^T \ A = \left[A \ | \ A^T \right] \left[A \ | \ A^T \right]^T$$

Truncated SVD $\left[A \mid A^T\right] \approx U_1 \Sigma_1 V_1^T$

$$S_1^{(r)} = \Pi^{(r)} \left[\left[A \mid A^T \right] \left[A \mid A^T \right]^T \right]$$

= $U_1 \Sigma_1^2 U_1^T = X_1 X_1^T$ $X_1 = U_1 \Sigma_1$

Low rank Approximation Iterative solutions

$$S_{k+1}^{(r)} = \Pi^{(r)} \left[S_1^{(r)} + \beta^2 \Gamma_A \left[S_k^{(r)} \right] \right] = X_{k+1} X_{k+1}^T$$

$$S_1^{(r)} + \beta^2 \Gamma_A \left[S_k^{(r)} \right] = X_1 X_1^T + \beta^2 A X_k X_k^T A^T + \beta^2 A^T X_k X_k^T A$$
$$= Y_k Y_k^T$$

$$Y_k = \left[X_1 \mid \beta A X_k \mid \beta A^T X_k \right]$$

Low rank Approximation Iterative solutions

$$X_{k+1}X_{k+1}^T = \Pi^{(r)} [Y_k Y_k^T]$$

$$Y_k = \left[X_1 \mid \beta A X_k \mid \beta A^T X_k \right]$$

QR factorization
$$Y_k = Q_k R_k$$

(keep the first r columns of Q_k)

$$X_{k+1} = Q_k \mathcal{U}_k \Omega_k$$

Truncated SVD

$$R_k \approx \mathcal{U}_k \Omega_k \mathcal{V}_k$$

Existence of Fixed Point solution and Guaranteed local convergence of the sequence for sufficiently small β !

Low rank Projection Convergence

 Δ small symmetric perturbation and $S^{(r)}$ low rank fixed point solution

$$f(S) = S_1^{(r)} + \beta^2 \Gamma_A[S]$$
 $S^{(r)} = \Pi^{(r)} (f(S^{(r)}))$ $S^{(r)} = U \Sigma^2 U^T$

$$[U\ V]^T\ f(S^{(r)})\ [U\ V] = \begin{bmatrix} \Sigma^2 & \\ & \sigma^2 \end{bmatrix}$$

$$f(S^{(r)} + \Delta) = f(S^{(r)}) + \beta^2 \Gamma_A [\Delta]$$

$$[U\ V]^T\ \left(f(S^{(r)}) + \beta^2 \Gamma[\Delta]\right)\ [U\ V] = \begin{bmatrix} E_{11} & E_{21}^T \\ E_{21} & E_{22} \end{bmatrix}$$

Low rank Projection Convergence

$$[U\ V]^T\ \left(f(S^{(r)}) + \beta^2 \Gamma[\Delta]\right)\ [U\ V] = \begin{bmatrix} E_{11} & E_{21}^T \\ E_{21} & E_{22} \end{bmatrix}$$

There exists $Q \in \mathbb{R}^{n \times r}$ such that UQ is an invariant subspace if

$$0 \le 4\beta^2 \|\Gamma[\Delta]\|_F \le \Sigma_{r,r}^2 - \sigma_{1,1}^2$$

It implies that
$$\left\|S^{(r)} - \Pi^{(r)}\left[f(S^{(r)} + \Delta)\right]\right\|_F \leq \gamma \left\|\Delta\right\|_F$$

$$\gamma < 1 \quad \text{if} \quad \beta^2 < \frac{1}{\|A \otimes A + A^T \otimes A^T\|_2 \left(\frac{4\|\Sigma^2\|}{\Sigma_{r,r}^2 - \sigma_{1,1}^2} + 1\right)}$$

Erdos-Reyni random graphs with a block stucture

 $G_{B}(V_{B},E_{B})$

$$i, j \in V_A$$

$$(i,j) \in E_A \text{ w.p. } p_{inut}$$

if
$$(R(i), R(j)) \notin E_B$$

Erdos-Reyni random graphs with a block stucture

« Language, an introduction to the study of speech »

Python lib: NLTK + Stanford PoS Tagger

Cluster 2
be (582)
say (128)
go (37)
become (33)
him (28)
show (24)
believe (23)
me (17)
animate (17)
indicate (16)
look (15)
fall (14)
observe (14)
serve (12)
run (12)

Cluster 3 greek (48) elusive (10) cambodgian (9) archaic (7) satisfying (5) grouped (4) siamese (4) nowhere (4) inclusive (4) explicit (4) religious (4) infixes (4) treated (4) formless (4)

syllabic (3)

Take Home

- ✓ Efficient and highly parallelizable algorithm for community detection
- ✓ Role Extraction or Block Modeling generalized community detection
- ✓ The pairwise node similarity measure allows to extract such roles
- ✓ Accurate low rank approximation for large graphs

